Рефетека.ру / Математика

Реферат: Функция и ее свойства

Русская гимназия

КОНСПЕКТ

на тему:

Функция

Выполнил ученик 10«Ф» класса Бурмистров Сергей

Руководитель учитель Математики

Юлина О.А.

Нижний Новгород

1997 год

Функция и её свойства

Функция- зависимость переменной у от переменной x, если каждому значению х соответствует единственное значение у.
Переменная х- независимая переменная или аргумент.
Переменная у- зависимая переменная
Значение функции- значение у, соответствующее заданному значению х.
Область определения функции- все значения, которые принимает независимая переменная.
Область значений функции (множество значений)- все значения, которые принимает функция.
Функция является четной- если для любого х из области определения функции выполняется равенство f(x)=f(-x)
Функция является нечетной- если для любого х из области определения функции выполняется равенство f(-x)=-f(x)
Возрастающая функция- если для любых х1 и х2, таких, что х1< х2, выполняется неравенство f(х1)f(х2)

Способы задания функции
- Чтобы задать функцию, нужно указать способ, с помощью которого для каждого значения аргумента можно найти соответствующее значение функции.
Наиболее употребительным является способ задания функции с помощью формулы у=f(x), где f(x)-некоторое выражение с переменной х. В таком случае говорят, что функция задана формулой или что функция задана аналитически.
- На практике часто используется табличный способ задания функции. При этом способе приводится таблица, указывающая значения функции для имеющихся в таблице значений аргумента. Примерами табличного задания функции являются таблица квадратов, таблица кубов.

Виды функций и их свойства

1) Постоянная функция- функция, заданная формулой у=b, где b-некоторое число. Графиком постоянной функции у=b является прямая, параллельная оси абсцисс и проходящая через точку (0;b) на оси ординат


2) Прямая пропорциональность- функция, заданная формулой у=kx, где к(0.
Число k называется коэффициентом пропорциональности.

Cвойства функции y=kx:
1. Область определения функции- множество всех действительных чисел
2. y=kx - нечетная функция
3. При k>0 функция возрастает, а при k0 функция возрастает, а при k0, то функция убывает на промежутке (0;+() и на промежутке (-

(;0). Если k1 тем круче идут вверх, чем больше n, а при |х|1.

На рисунке изображен график функции y=x2/3. Подобный вид имеет график любой степенной функции y=xr , где 0

Рефетека ру refoteka@gmail.com