канд. биол. наук М.П.Иванов, д-р техн. наук В.В.Кашинов
ФНИИ им.А.А.Ухтомского, СПбГУ
Введены континуально многозначные функции, позволяющие адекватно описывать физические задачи. Показано их отличие от разрывных функций. Сформулирована и решена вариационная задача для функционалов с разрывным интегрантом, зависящих от линейных интегральных операторов, действующих на искомую оптимизируемую функцию, причем ядро оператора и оптимизируемая функция могут быть континуально непрерывными. С помощью таких операторов можно адекватно описывать распределенные частицы.
Хорошо известный в физике принцип наименьшего действия [1] основан на классическом вариационном исчислении, когда функционал зависит от экстремали и ее производных, применим только для нейтральных частиц. В заметке [2] показано, что для заряда ускорение запаздывает по отношению к возмущающей силе за счет лоренцевых сил трения, т.е. для заряда существует некоторая переходная импульсная характеристика, а движение заряда можно описать интегральным оператором. Поэтому для зарядов, когда нельзя связать значение ускорения в данный момент со значением возмущения в тот же (или другой) момент, принцип наименьшего действия неприменим. Для таких задач требуется другой математический аппарат. Обобщенный принцип наименьшего действия основан на методах обобщенного вариационного исчисления. Рассмотрим его.
В последнее время негладкие, разрывные и сингулярные функции стали привлекать внимание [3-5]. Построен пример непрерывно дифференцируемой разрывной функции на пространстве D - бесконечно дифференцируемых финитных функций [4]. При решении вариационных задач экстремалями иногда оказываются негладкие, т.н. разрывные или сингулярные функции [3, 5]. Однако понятие разрывности функций в точках разрыва) не всегда соответствует физическим и математическим объектам - непрерывным кривым, которые они фактически описывают.
Рассмотрим кривую - прямоугольный импульс (рис. 1), определенный и непрерывный на всей оси абсцисс. Подобные объекты можно представить не только математически: например, так можно представить разложенную на плоской поверхности веревку. Но если про прямую b мы говорим, что она существует, и пишем при, то про точки x=0 и x=1 говорится, что в них функция терпит разрыв первого рода, а прямых a и c как бы нет, хотя веревка физических разрывов не имеет.
Рис.1. Непрерывная кривая - прямоугольный импульс
По-видимому, объясняется это тем, что рассмотрения многозначных функций традиционно стараются избегать. В нашем же случае точкам x=0 и x=1 соответствуют замкнутые отрезки [0,1], параллельные оси ординат, т.е. одной точке на оси абсцисс соответствует множество точек на оси ординат, имеющее мощность континуума. Получается не просто многозначность, а многозначность мощности континуума.
Рассмотрим характерный пример - первую введенную в физике разрывную функцию - функцию Хевисайда, которая определяется [6-8] как предел последовательностей непрерывных функций, имеющих все производные. Поэтому график предельной функции вроде бы должен быть непрерывным. Этому противоречит определение функции Хевисайда, данное, например, в монографиях [6-8],
(1.1)
Введем уточненное определение функции включения, соответствующее предельному переходу в эквивалентных последовательностях [6] непрерывных функций, имеющее непрерывный график,
(1.2)
Если функцию включения (1.2) можно представить в виде непрерывной веревки, разложенной на плоской поверхности, то функция Хевисайда представляется той же веревкой, из которой вырезан кусок (сегмент [0,1]) в точке x=0. Обе функции имеют равные односторонние пределы, но разные графики при x=0 и вытекающие из этого свойства.
На первый взгляд, определение (1.2) непривычное, но фактически оно не новое. Когда говорят о значении определенного интеграла от положительной подынтегральной функции, то имеют в виду, что он "равен площади криволинейной трапеции, ограниченной графиком подынтегральной функции, осью абсцисс и прямыми, параллельными оси ординат, построенными на концах отрезка интегрирования" [8].
Поскольку определенный интеграл в конечных пределах от a до b всегда можно выразить с помощью сдвинутых функций включения H(x) через интеграл с бесконечными пределами
(1.3)
то функции включения (1.2) как раз и описывают "прямые, параллельные оси ординат", чего не скажешь о функции Хевисайда (1.1).
Замечание. Из формулы (1.3) следует, что все интегрируемые функции фактически определены на всей оси абсцисс, что позволяет, обладая методикой решения разрывных экстремальных задач, например, приведенной в монографии [5], легко решать их, когда экстремум не внутренний, а достигается на границе замкнутого отрезка [a,b].
Используя определение функции включения (1.2), функцию, изображенную на рис.1, - прямоугольный импульс - можно записать:
Предложенное непротиворечивое определение непрерывной функции включения позволяет адекватно описывать непрерывные кривые в точках математической разрывности. Сам термин "разрывная функция" выбран несколько неудачно. Фактически мы имеем дело с непрерывными функциями, обладающими многозначностью мощности континуума. Действительно разрывными являются функции типа функции Хевисайда (1.1), но фактически, когда говорится о "разрывных функциях", в большинстве случаев имеются в виду функции вида (1.2).
Интересно отметить, что популярные пакеты компьютерных программ для решения прикладных задач и построения графиков EUREKA и MATHEMATICS дают графическое изображение функции включения, записанной как H(x)=(1+sgn(x))/2, именно в виде формулы (1.2). В монографии [5] в графиках также используется непрерывная функция включения (1.2), хотя это определение и не приводится.
Наглядное представление d -функции в виде обычной функции в математической литературе отрицается, поэтому при решении экстремальных негладких и разрывных задач понятие d -функции не используется [3, 5]. Для аналитического решения экстремальных задач требуется уточнение определения в d -функции.
Для уточнения определения введенной Дираком сингулярной функции - d -функции введем d -образную эквивалентную последовательность [6, 9] через функции включения (1.2)
(1.4)
При любом значении a существует интеграл
и предел формулы (1.4) при a- 0 является d -функцией, т.е.
(1.5)
Так определенная (1.4)-(1.5) d -функция является пределом непрерывного графика прямоугольного импульса высотой 1/2a и шириной 2a. При a- 0 высота "стенок" прямоугольного импульса неограниченно возрастает, а ширина импульса стремится к 0. В пределе "стенки" "слипаются" в один луч - d -функцию, расположенную в начале координат.
При прохождении функции в d a(x) по направлению кривой от к "стенки" прямоугольного импульса проходят в противоположных направлениях, поэтому d -функция (состоящая из двух "слипшихся" "стенок") одновременно направлена в противоположных направлениях. (Одну кривую, которую проходят в разных направлениях, считают различными кривыми [8]).
Определенная выше d -функция имеет наглядное представление в виде луча - положительной полуоси ординат. Имея бесконечную высоту и нулевую ширину, d -функция ограничивает единичную площадь (неопределенность типа) и обладает двойной направленностью.
Следует отметить, что в приведенном определении d -функция не рассматривается как "равная нулю при всех и обращающаяся в точке x=0 в бесконечность" [8]. Теперь d -функция рассматривается как луч - линейное множество, имеющее мощность континуума.
Поскольку уточненное определение d -функции не затрагивает ее определения как функционала на пространстве D, все свойства d -функции, рассматриваемой как сингулярная обобщенная функция, сохраняются.
Производная d -функции имеет наглядное представление в виде оси ординат, обладает двойной направленностью в каждой из полуплоскостей y<0 и y>0 и пересекает ось абсцисс (все это в одной точке x=0).
Далее все производные понимаются в обобщенном смысле [6-9], т.е. в виде свертки с производными сингулярной d -функции.
Теория обобщенных функций и разработанная техника вычислений их производных [6-9] позволяют распространить необходимые условия экстремума на континуально многозначные (так называемые разрывные) функции многих действительных переменных.
Многие прикладные оптимизационные задачи сводятся к поиску экстремумов интегральных функционалов с разрывным интегрантом. Здесь "разрывной" понимается так: не обязательно разрывной. Обычно, в том числе и в монографиях [3, 5], оптимизационные задачи рассматриваются для функционалов, зависящих от операторов дифференцирования. В работах [10, 11] рассматриваются функционалы, зависящие от интегральных операторов, что существенно расширяет круг решаемых задач.
Будем решать вариационную задачу для функционалов с разрывным интегрантом, зависящих от линейных интегральных операторов
(2.1)
где h(t) - экстремаль, относительно которой предполагаем, что.
Функционал качества I может зависеть от нескольких операторов
(2.2)
где F[T ]- интегрант, определяющий связь (композицию) операторов F i в функционале I. Интегрант F[T ] может быть непрерывным, гладким, негладким и даже континуально многозначным или разрывным.
Оптимизации методами негладкого анализа посвящена монография Френка Кларка [3], но методику Кларка применить к функционалам, зависящим от интегральных операторов, нельзя, как нельзя ее применять и для функционалов с континуально многозначным или разрывным интегрантом. Кроме того, экстремали у Кларка предполагаются абсолютно непрерывными. Все это несколько сужает область применения негладкой оптимизации Кларка - теории, впитавшей в себя достижения его предшественников, на кoторых он ссылается в своей монографии. Поскольку оптимизируемый функционал зависит от интегральных операторов, метод, использованный в монографии [5], неприменим тоже. В то же время для решения сформулированной задачи достаточно методов вариационного исчисления, теории обобщенных функций и теоремы Фубини [8], поэтому будем поступать так.
Негладкий, континуально многозначный или разрывной интегрант можно представить с помощью функции включения H(x) (1.2) или ее производных, т.е. d -функции (1.5) и ее производных, используя их фильтрующие свойства. При варьировании функционала I все производные будем понимать в обобщенном смысле
.
Заметим, что этот интеграл теперь имеет математический и физический смыл, а не является "просто символом", как при классическом определении d -функции.
По общему правилу [9-12] введем однопараметрическое семейство кривых , где d h(t)-произвольная функция из Lp[a,b], a - малый параметр. Подставляя в операторы (2.1), а операторы (2.1) в функционал (2.2) и дифференцируя I по a , получим вариацию функционала d I и приравняем ее нулю:
(2.3)
Теперь, чтобы получить необходимое условие экстремума, надо исключить произвольную функцию из вариации функционала d I. В классическом вариационном исчислении это делается с помощью интегрирования по частям, которое в данном случае неприменимо. Полагая, что к вариации d I применима теорема Фубини [8], одним из условий применимости которой может быть суммируемость произведений
изменим в формуле (2.3) порядок интегрирования [10, 11]
(2.4)
Используя основную лемму вариационного исчисления в формулировке Л.Янга [7], получим аналог уравнения Эйлера для функционалов с континуально многозначным или разрывным интегрантом, зависящих от линейных интегральных операторов, действующих на экстремаль,
(2.5)
Следствие. Если воспользоваться фильтрующим свойством d -функции и ее производных, и обозначить ядра операторов (2.1) через Ki(x,t)=d (i)(x-t), то уравнение (2.5) примет вид уравнения Эйлера
(2.6)
простейшей вариационной задачи [12], но для функционалов с континуально многозначным или разрывным интегрантом
(2.7)
зависящих от искомой функции h(t) и ее производных h(i)(t).
Пример. Задача Дидоны с канавой. В распоряжении царевны имеется веревка заданной длины L, которой следует ограничить участок побережья, причем береговая черта представляется линией x=0 на плоскости Оtx (Рис.2). При этом надо найти кривую длины L, лежащую в полуплоскости, соединяющую точки (-1,0) и (1,0), такую что площадь между кривой и осью t максимальна.
Стремясь иметь для примера негладкий интегрант, Кларк модифицировал [3, с.178] задачу Дидоны следующим образом. Он полагает, что для некоторого a >0 земля в области x>a худшего качества и доход с нее составляет только половину дохода с земли в области x<a .
Рис.2. Участок Дидоны с канавой
Доход Д с огороженного участка, ограниченного кривой x(t), равен
(П.1)
где gn[x(t)] = {x(t), если; (x+a )/2, если } .Следует максимизировать значение дохода Д (интеграла (П.1)) при наличии ограничений
(П.2)
. (П.3)
Далее Кларк использует методы негладкого анализа для решения модифицированной задачи Дидоны. Применение этих методов ограничивается негладкими интегрантами и абсолютно непрерывными экстремалями.
Для частичной иллюстрации возможностей предложенного нами метода решения задач с разрывным интегрантом будем полагать, что участок Дидоны параллельно береговой линии пересекает канава шириной b -a . Один берег канавы проходит по линии x(t)=a ., а другой - по линии x(t)=b . Участок канавы, ограниченный берегами и веревкой (рис.2), никакого дохода не приносит, и интегрант выглядит так:
(П.4)
Веревка ограничивает канаву, пересекая ее, но разорвать веревку Дидона не может, поэтому изопериметрическое условие (П.3) остается в силе. Требуется максимизировать доход с участка, расположенного по берегам канавы, ограниченного береговой линией и веревкой.
Представим g[x(t)] с помощью единичной функции включения (1.2) в виде
В уравнение Эйлера простейшей вариационной задачи (2.6) входят производные интегранта по x и по. Вычислим эту производную
Производя сокращения и учитывая свойства d -функции [7], находим
или
(П.5)
С учетом изопериметрического условия (П.3), получим дифференциальное уравнение для экстремали
(П.6)
где l - неопределенный пока множитель Лагранжа [7].
Уравнение (П.6) при и ограничениях (П.2) имеет интегралом окружность
(П.7)
где C = ¦ (l 2 /a2-1)1/2, симметрично расположенную относительно оси Оx (рис.2). Выразим длину веревки Дидоны через параметры задачи a , b , g и неизвестный коэффициент l .
В горизонтальной полосе 0<x<a и центр соответствующей окружности располагается ниже оси Оt (иначе интегральные дуги окажутся вне вертикальной полосы -1<t<1), откуда для длины дуги получим
(П.8)
При x>b и при отыскании максимума функционала (П.1) в случае g >1 (или g <1) центр окружности, содержащей интегральную дугу, будет расположен выше (или ниже) оси Оt. Для длины дуги получим
(П.9)
В полосе a <x<b и интегральная линия имеет вид отрезков прямой, соединяющей концы дуг и с концами дуги. При разных значениях параметра g может быть разная ориентировка этих отрезков. В частности, они могут быть параллельны оси Оy ()или наклонены. Длина отрезка определяется выражением
или
Заметим, что при a =b и лишь при g =1, т.е. требования "стыковки" или даже "сопряжения" дуг и, наложенные в [3] при, не вытекают из условия задачи, несмотря на неразрывность веревки.
Окончательно получим
или (П.10)
При a = b получаем
При a = b и a = 1 получается длина дуги в классической задаче [12] Дидоны
Или
(П.11)
Кроме приведенной в разделе 2 постановки вариационной задачи, сформулируем задачу поиска ядра оптимального оператора F i , действующего на заданные функции Si, и доставляющего экстремум функционалу с разрывным интегрантом F. Такие задачи могут, например встречаться при нахождении распределения плотности заряда в частице.
Пусть существует функционал I с разрывным интегрантом F
(3.1)
В случае конечных пределов интегрирования в (3.1) функционал I всегда можно выразить через интеграл с бесконечными пределами с помощью функции (1.2) включения H(x). В формуле (3.1) символами F i(x) обозначены линейные интегральные операторы
(3.2)
с искомым ядром K(x,t), действующим на заданные функции,.
Частные решение
Установим интересное свойство множества экстремалей. Для этого представим ядро в виде произведения
(3.3)
где, - выбранная из некоторого множества произвольная функция, на которую умножаются входные процессы Si (t);, - разностное ядро, которое требуется найти из условия экстремума функционала I. Подставив (3.3) в (3.2), получим
(3.4)
Используем свойство свертки и приведем оператор (3.4) к виду
(3.5)
Частная оптимизационная задача для функционала (3.1), зависящего от линейного интегрального оператора с ядром (3.3), свелась к задаче для функционала (3.1), зависящего от интегральных операторов (3.5) с разностными ядрами Ki (x,t)=Si (x-t)r (x-t). Решение этой задачи получено в разделе 2. Частным необходимым условием экстремума функционала I на основе раздела 2 является уравнение
(3.6)
Поскольку функции Si (x-t) заданы из условий задачи, а функция r (x-t) выбирается произвольно, то каждой из выбранных r (x-t) соответствует оптимальная h(t), т.е. даже при представлении ядра K(x,t) в виде произведения (3.3) единственного решения сформулированной задачи не существует.
Никаких ограничений на непрерывность ядер K(x,t) при выводе частных необходимых условий экстремума не накладывалось, поэтому и функции r (x-t), и функции h(t) могут быть разрывными или d -функцией и ее производными. Следовательно, на основании теоремы [13] о мощности множества функций действительного переменного можно сделать вывод о том, что множества частных и, тем более, общих необходимых условий экстремума имеют мощность больше мощности континуума.
В связи с тем, что задача (3.1), (3.2) счетного множества решений не имеет, решением в данном случае можно назвать конструктивное описание подмножества функций K(x,t), доставляющих экстремум функционалу I, причем мощность множества K больше мощности континуума.
Рассмотрим общую задачу (3.1), (3.2). Будем ее решать как вариационную. Для этого введем однопараметрическое семейство кривых - функций двух переменных K(x,t)=K(x,t) + a d K(x,t), где d K(x,t) - произвольная функция двух переменных, a - малый параметр K(x,t) вместо K(x,t) в операторы (3.2), операторы (3.2) в функционал (3.1), дифференцируя (3.1) по параметру a , получим вариацию d I
(3.7)
Полагая, что к вариации (3.7) применима теорема Фубини, изменим порядок интегрирования и суммирования и положим вариацию dI равной нулю
(3.8)
Применяя к вариации (3.8) основную лемму вариационного исчисления в формулировке Л.Янга [7], получим необходимое условие экстремума функционала (3.1), зависящего от оператора (3.2),
(3.9)
Если интегрант функционала (3.1) не является линейным, частные производные интегранта всегда содержат сам оператор (3.2), а уравнение (3.9) является нелинейным двумерным интегральным уравнением, когда искомая функция K(x,t) двух независимых переменных входит под знак интеграла. Свойства уравнений типа (3.9) пока исследованы мало. Только если функционал I - квадратичный, уравнение (3.9) - линейное двумерное интегральное уравнение, некоторые свойства которых сведены в монографии [11].
[1] Фейнмановские лекции по физике, Том 6, М.: Мир, 1977.
[2] КашиновВ.В. Физическая мысль России, N 1/2, (1999), с.127.
[3] КларкФ. Оптимизация и негладкий анализ: Пер. с англ. / Под ред. В.И.Благодатских, М.: Наука, 1988.
[4] СмоляноваМ.О. Непрерывно дифференцируемая разрывная функция на пространстве D // Известия РАН. Серия математическая. Том 59.5, (1995), с.197-202.
[5] БатухтинВ.Д., МайбородаЛ.А. Разрывные экстремальные задачи, СПб.: Гиппократ, 1995.
[6] АнтосикП., МикусинскийЯ., СикорскийР. Теория обобщенных функций (Секвенциальный подход). - М.: Мир, 1976.
[7] ЯнгЛ. Лекции по вариационному исчислению и оптимальному управлению. - М.: Мир, 1974.
[8] КолмогоровА.Н., ФоминС.В. Элементы теории функций и функционального анализа. - М.: Наука, 1981.
[9] МышкисА.Д. Лекции по высшей математике. - М.: Наука, 1973. с.186-188.
[10] КашиновВ.В. Необходимые условия оптимальности в некоторых задачах управления и фильтрации // Кибернетика. 6, 1972, с.148-149.
[11] ПахолковГ.А., КашиновВ.В., ПономаренкоБ.В. Вариационный метод синтеза сигналов и фильтров. - М.: Радио и связь, 1981.
[12] КрасновМ.Л., МакаренкоГ.И., КиселевА.И. Вариационное исчисление. - М.: Наука, 1973.
[13] МакаровИ.П. Дополнительные главы математического анализа. - М.: Просвещение, 1968.