Рефетека.ру / Промышленность и пр-во

Курсовая работа: Проектирование привода цепного транспортера

Спроектировать привод, состоящий из трехступенчатого цилиндро-коническо-цилиндрического мотор-редуктора (1), компенсирующе-предохранительной муфты (2), приводного вала с тяговой звездочкой (3), приводящей в движение тяговую цепь М112-1-125-2 ГОСТ 588-81 цепного транспортера. Мотор-редуктор и приводной вал установлены на сварной раме.

Принять:

Типовой режим нагружения: 3.

Расчетный ресурс: 7 000 часов.

Изготовление в год: 1 шт.


Проектирование привода цепного транспортера Проектирование привода цепного транспортера


Техническая характеристика привода:

Окружная сила на звездочке Ft, кН: 4,5.

Скорость тяговой цепи V, м/с: 0,4.

Число зубьев звездочки z: 7.

Ft=F1-F2; F2=0,25F1.

Принял

Выбор электродвигателя и кинематический расчет.

Выбор двигателя [1].

Общий КПД привода: η = ηред · ηм · ηп

ηред - КПД редуктора.

ηред = ηцп2 · ηкп · ηп3


ηцп = 0,95…0,97; принимаем ηцп = 0,96 - КПД закрытой цилиндрической передачи;

ηкп = 0,95…0,97; принимаем ηкп = 0,96 - КПД закрытой конической передачи;

ηп = 0,99 - КПД пары подшипников качения.

ηред = 0,962 · 0,96 · 0,993 = 0,86

ηм = 0,98 - КПД муфты.

η = 0,86 · 0,98 · 0,99 = 0,83

Требуемая мощность двигателя:


Ртр = Рвых/ η = 1,8/0,83 = 2,2 кВт.


Рвых - мощность на тяговой звездочке.


Рвых = Ft · V = 4,5 · 103 · 0,4 = 1,8 кВт.


Кэ = 1 - коэффициент, учитывающий условия эксплуатации передачи.

Частота вращения тяговой звездочки [3].


V = Проектирование привода цепного транспортера, следовательно nвых = Проектирование привода цепного транспортера = Проектирование привода цепного транспортера = 27 об/мин.


nвых - частота вращения тяговой звездочки. V = 0,4 м/с - скорость тяговой цепи. Z = 7 - число зубьев тяговой звездочки. t = 125 мм - шаг цепи.

По заданию: М112-1-125-2 ГОСТ 588-81 - тяговая пластинчатая цепь с разрушающей нагрузкой 112 кН, типа 1, с шагом 125 мм, исполнения 2.


Ft = F1 - F2 = 4,5 кН., F2 = 0,25F1

Отсюда: F1 = 6 кН, F2 = 1,5 кН.

Выбираем электродвигатель с запасом мощности: АИР100S4


Pдв = 3 кВт; nдв = 1440 об/мин.


Передаточное число редуктора [4].


Uред = U1 · U2 · U3 = nдв / nвых = 1440/27 = 53,3


U1 - передаточное число первой ступени;

U2 - передаточное число второй ступени;

U3 - передаточное число третьей ступени.


Примем: U1 = 4; U2 = 3,5; U3 = 3,8.


Частота вращения валов:


n1 = nдв = 1440 об/мин;

n2 = n1/U1 = 1440/4 = 360 об/мин;

n3 = n2/U2 = 360/3,5 = 102,8 об/мин;

n4 = nвых = 27 об/мин.


Угловые скорости валов:


ω1 = πn1/30 = 3,14 · 1440/30 = 150,7 рад/с;

ω2 = πn2/30 = 3,14 · 360/30 = 37,7 рад/с;

ω3 = πn3/30 = 3,14 · 102,8/30 = 10,8 рад/с;

ω4 = ωвых = πn4/30 = 3,14 · 27/30 = 2,8 рад/с.


Мощности на валах:

Р1 = Рдв = 3 кВт; Р2 = Р1 · ηцп · ηп = 3 · 0,96 · 0,99 = 2,85 кВт;

Р3 = Р2 · ηкп · ηп = 2,85 · 0,96 · 0,99 = 2,7 кВт;

Р4 = Р3 · ηцп · ηп = 2,7 · 0,96 · 0,99 = 2,6 кВт;

Рвых = Р4 · ηм · ηп = 2,6 · 0,98 · 0,99 = 2,5 кВт;


Вращающие моменты на валах:


М1 = Р1/ω 1 = 3/150,7 = 0,02 кН·м = 20 Н·м;

М2 = Р2/ω 2 = 2,85/37,7 = 0,076 кН·м = 76 Н·м;

М3 = Р3/ω 3 = 2,7/10,8 = 0,25 кН·м = 250 Н·м;

М4 = Р4/ω 4 = 2,6/2,8 = 0,93 кН·м = 930 Н·м;

Мвых = Рвых / ω 4 = 2,5/2,8 = 0,9 кН·м = 900 Н·м.


Выбор материалов шестерен и колес и определение допускаемых напряжений.

Материал колес - сталь 45; термообработка - улучшение: 235…262 НВ2;


248,5 НВСР2; σв = 780 МПа; σ-1 = 540 МПа; τ = 335 МПа.


Материал шестерен - сталь 45; термообработка - улучшение: 269…302 НВ1;


285,5 НВСР1; σв = 890 МПа; σ-1 = 650 МПа; τ = 380 МПа. табл.3.2 [4].


Допускаемые контактные напряжения для шестерни и колеса.


NK6 = 573 · ω 4 · Lh = 573 · 2,8 · 7000 = 17,2 · 106 циклов;

NK5 = NK6 · U3 = 17,2 · 106 · 3,8 = 65,4 · 106 циклов.


NHO = 16,5 · 106 табл.3.3 [4] - число циклов перемены напряжений, соответствующих пределу выносливости.

При NK > NHO, коэффициент долговечности КНL = 1.

NFO = 4 · 106 - число циклов перемены напряжений при изгибе для всех видов сталей, стр.56 [4].

При NK > NFO, коэффициент долговечности КFL = 1.


[σ] H5 = 1,8HBCP1 + 67 = 285,5 · 1,8 + 67 = 581 МПа

[σ] H6 = 1,8HBCP2 + 67 = 248,5 · 1,8 + 67 = 514 МПа

[σ] F5 = 1,03HBCP1 = 285,5 · 1,03 = 294 МПа

[σ] F6 = 1,03HBCP2 = 248,5 · 1,03 = 256 МПа


Расчет третьей ступени редуктора.

Межосевое расстояние из условия контактной прочности зубьев:


α3 = Кα (U3 + 1) Проектирование привода цепного транспортера = 495 · (3,8 + 1) Проектирование привода цепного транспортера = 201,5 мм.


Кα = 495 - для прямозубых передач, стр.135 [3].

КНβ = 1 - при постоянной нагрузке.

Принимаем α3 = 200 мм.

m = (0,01-0,02) α3 = 2-4 мм, принимаем m = 3 мм.


z5 = 2α3/m (U3 + 1) = 2 · 200/3 · (3,8 + 1) = 28

z6 = z5U3 = 28 · 3,8 = 106

d5 = m z5 = 3 · 28 = 84 мм

da5 = d5 + 2m = 84 + 2 · 3 = 90 мм

dt5 = d5 - 2,5m = 84 - 2,5 · 3 = 76,5 мм

d6 = m z6 = 3 · 106 = 318 мм

da6 = d6 + 2m = 318 + 2 · 3 = 324 мм

dt6 = d6 - 2,5m = 318 - 2,5 · 3 = 310,5 мм

b6 = ψва · α3 = 0,4 · 200 = 80 мм

b5 = b6 + 5 = 80 + 5 = 85 мм


Окружная скорость:


V3 = Проектирование привода цепного транспортера = Проектирование привода цепного транспортера = 0,45 м/с


Назначим 8 степень точности изготовления зубьев, стр.32 [1].

Коэффициент формы зуба: уF5 = 3,9, уF6 = 3,6, стр.42 [1].


[σF5] / уF5 = 294/3,9 = 75,4 МПа; [σF6] / уF6 = 256/3,6 = 71 МПа


71<75,4 - следовательно, расчет ведем по зубьям колеса.

Коэффициент нагрузки:


КF = КFβ · KFV = 1,03 · 1,1 = 1,14


Усилия в зацеплении:


окружное: Ft5 = Ft6 = 2М3/d5 = 2 · 250/0,084 = 5952 H

радиальное: Fr5 = Fr6 = Ft5 · tgα = 5952 · tg 20° = 2166 H


Напряжение изгиба в зубьях колеса:


σF6 = Ft6 · КF · уF6/b6 · m = 5952 · 1,14 · 3,6/80 · 3 = 101,8 МПа< [σ] F6 = 256 МПа


Прочность зубьев по изгибу обеспечена.

Проверочный расчет зубьев по контактному напряжению:


σН6 = Проектирование привода цепного транспортераПроектирование привода цепного транспортера = Проектирование привода цепного транспортераПроектирование привода цепного транспортера = 474 МПа

КН = КНα· КНβ · КНV = 1 · 1 · 1,05 = 1,05

КНα = 1 стр.32 [1] ; КНβ = 1 табл.3.1 [1] ; КНV = 1,05 стр.32 [1].

σН6 < [σ] Н6


Следовательно, прочность зубьев по контактному напряжению обеспечена. Расчет второй ступени редуктора. Внешний делительный диаметр колеса [1].


de4 ≥ 165 Проектирование привода цепного транспортера


Для прямозубых колес:


vH = kHΒ =1

de4 ≥ 165 Проектирование привода цепного транспортера = 245,94 мм


По ГОСТ 6636-69 принимаем de4= 250 мм.

Углы делительных конусов.


δ4 = arctg (U2) = arctg 3,5 = 74,05є; δ3 = 90є - δ4 = 15,95є


Внешнее конусное расстояние:


Re = de4/2sin (δ4) = 250/2sin 74,05 = 130,2 мм

Ширина зубчатого венца шестерни и колеса:


b = 0,285Re = 0,285 · 130,2 = 37,11 мм


Внешний окружной модуль:


me = Проектирование привода цепного транспортера


vF = 0,85 - для прямозубых колес,

KFβ = 1 для прямозубых колес.


me = Проектирование привода цепного транспортера = 1,73 мм


Число зубьев колеса и шестерни:


z4 = de4/me = 250/1,73 = 144,5, принимаем z4 = 144.

z3 = z4/U2 = 144/3,5 = 41.


Внешние диаметры шестерни и колеса.

Делительные диаметры:


de3 = me z3 = 1,73 · 41 = 70,93 мм;

de4 = me z4 = 1,73 · 144 = 249,12 мм.


Диаметры вершин:


dae3 = de3 + 2 (1 + Xe3) me cosδ3

dae4 = de4 + 2 (1 - Xe3) me cosδ4

Xe3 = 0,33 - коэффициент смещения [1].


dae3 = 70,93 + 2 · 1,33 · 1,73 · cos15,95є = 75,35 мм

dae4 = 249,12 + 2 · 0,67 · 1,73 · cos74,05є = 249,76 мм


Средние делительные диаметры:


d3 = 0,857de3 = 0,857 · 70,93 = 60,8 мм

d4 = 0,857de4 = 0,857 · 249,12 = 213,5 мм


Проверочный расчет.

Проверка контактных напряжений.


σН = 470Проектирование привода цепного транспортера ≤ [σ] H,


где Ft4 = Проектирование привода цепного транспортера = Проектирование привода цепного транспортера = 2342 H - окружная сила в зацеплении.

VH = KHβ = KHα = 1


Величину KHv находим из [1], в зависимости от класса прочности и окружной скорости.


V2 = ω3d4/2 · 103 = 10,8 · 213,5/2 · 103 = 1,15 м/с

KHv = 1,04

σН = 470Проектирование привода цепного транспортера = 460 МПа < [σ] Н = 514 МПа


Проверка напряжения изгиба.

σF4 = YF4 Yβ Проектирование привода цепного транспортераKFα KFβ KFv ≤ [σ] F

Yβ = KFα = KFβ =1, vF = 0,85, KFv = 1,01, YF4 = 3,63 [4].

zv4 = z4/cos δ4 = 144/cos 74,05є = 523,6

σF4 = 3,63 · Проектирование привода цепного транспортера · 1,01 = 157 МПа ≤ [σ] F = 256 МПа


Силы в зацеплении:


Fr3 = Fa4 = Ft4 · tgα · cos δ3 = 2342 · tg 20є · cos 15,95є = 820 H

Fa3 = Fr4 = Ft4 · tgα · cos δ4 = 2342 · tg 20є · cos 74,05є = 234 H


Расчет первой ступени редуктора. U1 = 4

Материалы и допускаемые напряжения одинаковы с тихоходной ступенью


α1 = Кα (U1 + 1) Проектирование привода цепного транспортера = 495 · (4 + 1) Проектирование привода цепного транспортера = 97,6 мм.


Кα = 495 - для прямозубых передач, стр.135 [3].

КНβ = 1 - при постоянной нагрузке. Принимаем α1 = 100 мм.


m = (0,01-0,02) α1 = 1-2 мм, принимаем m = 1,5 мм.

z1 = 2α1/m (U1 + 1) = 2 · 100/1,5 · (4 + 1) = 27

z2 = z1U1 = 27 · 4 = 108, d1 = m z1 = 1,5 · 27 = 40,5 мм

da1 = d1 + 2m = 40,5 + 2 · 1,5 = 43,5 мм

dt1 = d1 - 2,5m = 40,5 - 2,5 · 1,5 = 36,75 мм

d2 = m z2 = 1,5 · 108 = 162 мм

da2 = d2 + 2m = 162 + 2 · 1,5 = 165 мм

dt2 = d2 - 2,5m = 162 - 2,5 · 1,5 = 158,25 мм

b2 = ψва · α1 = 0,315 · 100 = 32 мм

b1 = b2 + 5 = 32 + 5 = 37 мм


Коэффициент формы зуба: уF1 = 4,07, уF2 = 3,6, стр.42 [1]. Усилия в зацеплении:


окружное: Ft1 = Ft2 = 2М1/d1 = 2 · 20/0,0405 = 988 H

радиальное: Fr1 = Fr2 = Ft1 · tgα = 988 · tg 20° = 360 H

[σF1] / уF1 = 294/4,07 = 72 МПа; [σF2] / уF2 = 256/3,6 = 71 МПа


71<72 - следовательно, расчет на изгиб ведем по зубьям колеса.


Коэффициент нагрузки: КF = КFβ · KFV = 1,04 · 1,25 = 1,3


КFβ = 1,04 табл.3.7 [1], KFV = 1,25 табл.3.8 [1]. Напряжение изгиба в зубьях колеса:


σF2 = Ft2 · КF · уF2/b2 · m = 988 · 1,3 · 3,6/32 · 1,5 = 96 МПа< [σ] F2 = 256 МПа


Прочность зубьев по изгибу обеспечена. Напряжение изгиба при перегрузке:


σFmax = σF · Мmax / Мном = 96 · 2,2 = 211 < [σFmax] = 681 МПа

[σFmax] = 2,74НВ2 = 2,74 · 248,5 = 681 МПа


Проверочный расчет зубьев по контактному напряжению:


σН2 = Проектирование привода цепного транспортераПроектирование привода цепного транспортера= Проектирование привода цепного транспортераПроектирование привода цепного транспортера= 433 МПа < [σ] Н2=514 МПа

КН = КНα· КНβ · КНV = 1 · 1 · 1,05 = 1,05

КНα = 1 стр.32 [1] ; КНβ = 1 табл.3.1 [1] ; КНV = 1,05 стр.32 [1].


Проверка контактных напряжений при перегрузке:


σmax = σН · Проектирование привода цепного транспортера = 433 · Проектирование привода цепного транспортера = 642 МПа < [σНпр] = 1674 МПа

[σНпр] = 3,1 · σТ = 3,1 · 540 = 1674 МПа


Окружная скорость в зацеплении:


V1 = Проектирование привода цепного транспортера = 3,14 · 0,0405 · 1440/60 = 3,1 м/с


Назначим 8 степень точности изготовления зубьев, стр.32 [1].

Основные размеры корпуса и крышки редуктора.

Толщина стенок:


δ = 0,025α3 + 3 = 0,025 · 201,5 + 3 = 8 мм

δ1 = 0,02α3 + 3 = 0,02 · 201,5 + 3 = 7 мм


Принимаем: δ = δ1 = 8 мм. Толщина поясов стыка:


b = b1 = 1,5δ = 1,5 · 8 = 12 мм


Толщина бобышки крепления на раму:


p = 2,35δ = 2,35 · 8 = 20 мм


Диаметры болтов:

d1 = 0,03α3 + 12 = 0,03 · 201,5 + 12 = 18 мм - М18

d2 = 0,75d1 = 0,75 · 18 = 13,5 мм - М14

d3 = 0,6d1 = 0,6 · 18 = 9,9 мм - М10

d4 = 0,5d1 = 0,5 · 18 = 9 мм - М10


Расчет ведомого вала и расчет подшипников для него.

Диаметр выходного конца вала, исходя из расчета на кручение:


d4 = Проектирование привода цепного транспортера= Проектирование привода цепного транспортера = 55,8 мм


Принимаем: выходной диаметр Ш56 мм, под подшипники - Ш60 мм, под колесо - Ш65 мм. Усилие от муфты: FM = 250Проектирование привода цепного транспортера = 250Проектирование привода цепного транспортера = 7624 H


Ft6 = 5952 H, Fr6 = 2166 H, a = 212 мм, b = 71,5 мм, с = 100 мм.

Проектирование привода цепного транспортера


Реакции от усилий в зацеплении:


RAx (a + b) - Ft6b = 0; RAx = Ft6b / (a + b) = 5952 · 0,0715/0,2835 = 1501 H

RBx = Ft6 - RAx = 5952 - 1501 = 4451 H

Mx = RBxb = 4451 · 0,0715 = 318 H · м

RAy = Fr6b / (a + b) = 2166 · 0,0715/0,2835 = 546 H

RBy = Fr6 - RAy = 2166 - 546 = 1620 H

My = RByb = 1620 · 0,0715 = 116 H · м


Реакции от усилия муфты:


FM (a + b + c) - RAFм (a + b) = 0;

RAFм = FM (a + b + c) / (a + b) = 7624 · 0,3835/0,2835 = 10313 H

RBFм = RAFм - FM = 10313 - 7624 = 2689 H

RA = Проектирование привода цепного транспортера = Проектирование привода цепного транспортера = 1597 H

RB = Проектирование привода цепного транспортера = Проектирование привода цепного транспортера = 4736 H


Для расчета подшипников:


RA' = RA + RAFм = 1597 + 10313 = 11910 H

RB' = RB + RBFм = 4736 + 2689 = 7425 H


Опасное сечение I - I. Концентрация напряжений в сечении I - I вызвана напрессовкой внутреннего кольца подшипника на вал с натягом.

Материал вала - сталь 45, НВ = 240, σв = 780 МПа, σт = 540 МПа, τт = 290 МПа,


σ-1 = 360 МПа, τ-1 = 200 МПа, ψτ = 0,09, табл.10.2 [2].


Расчет вала в сечении I - I на сопротивление усталости.


σа = σu = МAFм / 0,1d43 = 762,4 · 103/0,1 · 603 = 35,3 МПа

τа = τк /2 = М4/2 · 0,2d43 = 930 · 103/0,4 · 603 = 10,8 МПа

Кσ / Кdσ = 3,8 табл.10.13 [2] ; Кτ / Кdτ = 2,2 табл.10.13 [2] ;

KFσ = KFτ = 1 табл.10.8 [2] ; KV = 1 табл.10.9 [2].

KσД = (Кσ / Кdσ + 1/КFσ - 1) · 1/KV = (3,8 + 1 - 1) · 1 = 3,8

KτД = (Кτ / Кdτ + 1/КFτ - 1) · 1/KV = (2,2 + 1 - 1) · 1 = 2,2

σ-1Д = σ-1/KσД = 360/3,8 = 94,7 МПа

τ-1Д = τ - 1/KτД = 200/2,2 = 91 МПа

Sσ = σ-1Д / σа = 94,7/35,3 = 2,7; Sτ = τ - 1Д / τ а = 91/10,8 = 8,4

S = Sσ Sτ / Проектирование привода цепного транспортера = 2,7 · 8,4/Проектирование привода цепного транспортера = 2,6 > [S] = 2,5

Прочность вала обеспечена.

Выбор типа подшипника.

Осевые нагрузки отсутствуют, поэтому берем радиальные шарикоподшипники №212,


С = 52 кН, С0 = 31 кН, dЧDЧB = 60Ч110Ч22

QA = RA' Kδ KT = 11910 · 1,3 · 1 = 15483 H


Ресурс подшипника:


Lh = a23 (C / QA) m (106/60n4) = 0,8 · (52/15,483) 3 · (106/60 · 27) = 1,9 · 104 ч

1,9 · 104 ч < [t] = 2,5 · 104 ч


Так как Lh < [t] возьмем роликовые подшипники №2312; С = 151 кН;


dЧDЧB = 60Ч130Ч31, тогда:

Lh = 0,7 · (151/15,183) 3,3 · (106/60 · 27) = 8,2 · 104 ч > [t] = 2,5 · 104 ч


Подшипник подходит. Расчет промежуточного (третьего) вала

и расчет подшипников для него.

Диаметр вала, исходя из расчета на кручение:


d3 = Проектирование привода цепного транспортера= Проектирование привода цепного транспортера = 36,7 мм


Принимаем: диаметр под подшипники - Ш40 мм, под коническое колесо - Ш45мм.


Ft5 = 5952 H, Fr5 = 2166 H, d = 71,5 мм, e = 133 мм, f = 78,5 мм.

Ft4 = 2342 H, Fr4 = 234 H, Fa4 = 820 H.

Проектирование привода цепного транспортера


Реакции опор:

в плоскости xz:


RDX = (Ft5d + Fr4 (d+e) + Fa4d4/2) / (d+e+f) = (5952·71,5 + 234·204,5 + 820·106,75) /283 = 1982 Н;

RCX = (Fr4f + Ft5 (f+e) - Fa4d4/2) / (d+e+f) = (234·78,5 + 5952·211,55 - 820·106,75) /283 = 4204 Н;

Проверка: RDX + RCX - Ft5 - Fr4 = 1982 + 4204 - 5952 - 234 = 0.

в плоскости yz:

RDY = (Fr5d + Ft4 (d+e)) / (d+e+f) = (2166·71,5 + 2342·204,5) /283 = 2238 Н;

RCY = (Ft4f + Fr5 (f+e)) / (d+e+f) = (2342·78,5 + 2166·211,5) /283 = 2270 Н;

Проверка: RDY + RCY - Fr5 - Ft4 = 2238 + 2270 - 2166 - 2342 = 0.


Суммарные реакции:


RD = Проектирование привода цепного транспортера = Проектирование привода цепного транспортера = 2989 H;

RC = Проектирование привода цепного транспортера = Проектирование привода цепного транспортера = 4778 H;


Опасное сечение - место под колесо цилиндрической передачи.

Материал вала - сталь 45, НВ = 240, σв = 780 МПа, σт = 540 МПа, τт = 290 МПа,


σ-1 = 360 МПа, τ-1 = 200 МПа, ψτ = 0,09, табл.10.2 [2].


Найдем значения изгибающих моментов в наиболее опасном сечении:


Му = RDX (e+f) - Fr4e - Fa4d4/2 = 1982 · 0,2115 - 234 · 0,133 - 820 · 0,107= 300,7 Н·м;

Мх = RDY (e+f) - Ft4e = 2238 · 0,2115 - 2342 · 0,133 = 162 Н·м;

Мсеч = Проектирование привода цепного транспортера = Проектирование привода цепного транспортера= 341,6 Н·м.


Расчет вала в опасном сечении на сопротивление усталости.


σа = σu = Мсеч / 0,1d3 = 341,6 · 103/0,1 · 76,53 = 37,5 МПа

τа = τк /2 = М3/2 · 0,2d3 = 250 · 103/0,4 · 76,53 = 6,9 МПа

Кσ / Кdσ = 3,8 табл.10.13 [2] ; Кτ / Кdτ = 2,2 табл.10.13 [2] ;

KFσ = KFτ = 1 табл.10.8 [2] ; KV = 1 табл.10.9 [2].

KσД = (Кσ / Кdσ + 1/КFσ - 1) · 1/KV = (3,8 + 1 - 1) · 1 = 3,8

KτД = (Кτ / Кdτ + 1/КFτ - 1) · 1/KV = (2,2 + 1 - 1) · 1 = 2,2

σ-1Д = σ-1/KσД = 360/3,8 = 94,7 МПа

τ-1Д = τ - 1/KτД = 200/2,2 = 91 МПа

Sσ = σ-1Д / σа = 94,7/37,5 = 2,6; Sτ = τ - 1Д / τ а = 91/6,9 = 13,2

S = Sσ Sτ / Проектирование привода цепного транспортера = 2,6 · 13,2/Проектирование привода цепного транспортера = 2,63 > [S] = 2,5


Прочность вала обеспечена.

Выбор типа подшипника.

Осевые нагрузки присутствуют, поэтому берем роликовые подшипники №7208, С = 58,3 кН, С0 = 40 кН, dЧDЧB = 40Ч80Ч18

Эквивалентная нагрузка:


Qэ = (XVRC + YFa4) KбKT,


в которой радиальная нагрузка RC = 4778 H; осевая нагрузка Fa4 = 820 H; V = 1 -

вращается внутреннее кольцо; коэффициент безопасности Kб = 1,3; КТ = 1.

Отношение Fa4/Со = 820/40000 = 0,021; этой величине соответствует е = 0,37.

Отношение Fa4/RC = 820/4778 = 0,17 < е; Х = 0,4; Y = 1,6.


Qэ = (0,4·4778 + 1,6· 820) ·1,3 = 4077 H.


Ресурс подшипника:


Lh = a23 (C / Qэ) m (106/60n3) = 0,8 · (58,3/4,077) 3 · (106/60 · 102,8) = 3,9 · 104 ч

3,9 · 104 ч > [t] = 2,5 · 104 ч


Подшипник подходит.

Расчет промежуточного (второго) вала

и расчет подшипников для него.

Диаметр вала, исходя из расчета на кручение:


d2 = Проектирование привода цепного транспортера= Проектирование привода цепного транспортера = 24,7 мм


Принимаем: диаметр под подшипники - Ш30 мм, под цилиндрическое колесо - Ш35 мм.

Ft2 = 988 H, Fr2 = 360 H, k = 46,5 мм, l = 46,5 мм, m = 48,5 мм.

Ft3 = 2342 H, Fr3 = 820 H, Fa3 = 234 H.


Реакции опор:


Проектирование привода цепного транспортера


в плоскости xz:


RGX = (-Ft2k + Fr3 (k+l+m) - Fa3d3/2) / (k+l) = (-988·46,5 + 820·141,5 - 234·30,4) /93= 677 Н

RFX = (-Ft2l - Fr3m + Fa3d3/2) / (k+l) = (-988·46,5 - 820·48,5 + 234·30,4) /93= - 845 Н. Проверка: RFX + RGX + Ft2 - Fr3 = - 845 + 677 + 988 - 820 = 0.


в плоскости yz:


RGY = (Fr2k - Ft3 (k+l+m)) / (k+l) = (360·46,5 - 2342·141,5) /93= - 3383 Н

RFY = (Fr2l + Ft3m) / (k+l) = (360·46,5 + 2342·48,5) /93= 1401 Н

Проверка: RGY + RFY - Fr2 + Ft3 = - 3383 + 1401 - 360 + 2342 = 0.

Суммарные реакции:


RG = Проектирование привода цепного транспортера = Проектирование привода цепного транспортера = 3450 H;

RF = Проектирование привода цепного транспортера = Проектирование привода цепного транспортера = 1636 H;


Опасное сечение - опора G. Материал вала - сталь 45, НВ = 240, σв = 780 МПа, σт = 540 МПа, τт = 290 МПа,


σ-1 = 360 МПа, τ-1 = 200 МПа, ψτ = 0,09, табл.10.2 [2].


Найдем значения изгибающих моментов в наиболее опасном сечении:


Му = Fa3d3/2 - Fr3m = 234·0,0304 - 820·0,0485 = - 32,7 Н·м;

Мх = Ft3m = 2342·0,0485 = 113,6 Н·м;

Мсеч = Проектирование привода цепного транспортера = Проектирование привода цепного транспортера= 118 Н·м.


Расчет вала в опасном сечении на сопротивление усталости.


σа = σu = Мсеч / 0,1d3 = 118 · 103/0,1 · 303 = 43,7 МПа

τа = τк /2 = М2/2 · 0,2d3 = 76 · 103/0,4 · 303 = 7 МПа

Кσ / Кdσ = 3,8 табл.10.13 [2] ; Кτ / Кdτ = 2,2 табл.10.13 [2] ;

KFσ = KFτ = 1 табл.10.8 [2] ; KV = 1 табл.10.9 [2].

KσД = (Кσ / Кdσ + 1/КFσ - 1) · 1/KV = (3,8 + 1 - 1) · 1 = 3,8

KτД = (Кτ / Кdτ + 1/КFτ - 1) · 1/KV = (2,2 + 1 - 1) · 1 = 2,2

σ-1Д = σ-1/KσД = 360/3,8 = 94,7 МПа

τ-1Д = τ - 1/KτД = 200/2,2 = 91 МПа

Sσ = σ-1Д / σа = 94,7/43,7 = 2,2; Sτ = τ - 1Д / τ а = 91/7 = 13

S = Sσ Sτ / Проектирование привода цепного транспортера = 2,2 · 13/Проектирование привода цепного транспортера = 2,57 > [S] = 2,5

Прочность вала обеспечена.

Выбор типа подшипника.

Осевые нагрузки присутствуют, поэтому берем роликовые подшипники №7206,


С = 38 кН, С0 = 25,5 кН, dЧDЧB = 30Ч62Ч16


Эквивалентная нагрузка:


Qэ = (XVRG + YFa3) KбKT,


в которой радиальная нагрузка RG = 3450 H; осевая нагрузка Fa3 = 234 H; V = 1 - вращается внутреннее кольцо; коэффициент безопасности Kб = 1,3; КТ = 1.


Отношение Fa3/Со = 234/25500 = 0,009;


этой величине соответствует е = 0,26.


Отношение Fa3/RG = 234/3450 = 0,07 < е; Х = 0,56; Y = 1,71.

Qэ = (0,56·3450 + 1,71· 234) ·1,3 = 3032 H.


Ресурс подшипника:


Lh = a23 (C / Qэ) m (106/60n2) = 0,8 · (38/3,032) 3 · (106/60 · 360) = 7,2 · 104 ч

7,2 · 104 ч > [t] = 2,5 · 104 ч


Подшипник подходит.

Расчет тяговой звездочки.

Цепь: М112-1-125-2 ГОСТ 588-81. Шаг цепи: t = 125 мм. Окружная сила на звездочке: Ft = 4,5 кН. Скорость тяговой цепи: V = 0,4 м/с. Число зубьев звездочки:

Z = 7.

DЦ = 21 мм - диаметр элемента зацепления.

Геометрическая характеристика зацепления:


λ = t / DЦ = 125/21 = 5,95


Шаг зубьев звездочки: tZ = t = 125 мм.

Диаметр делительной окружности:


в шагах: dt = cosec (180є / z) = cosec (180/7) = 2,3048;

в мм: dд = dt · t = 2,3048 · 125 = 288,1 мм.


Диаметр наружной окружности:


De = t (K + KZ - 0,31/λ) = 125 (0,7 + 2,08 - 0,31/5,95) = 341 мм

К = 0,7 - коэффициент высоты зуба,

KZ = ctg (180є / z) = ctg (180є / 7) = 2,08 - коэффициент числа зубьев.


Диаметр окружности впадин:


Di = dд - (DЦ + 0,175Проектирование привода цепного транспортера) = 288,1 - (21 + 0,175Проектирование привода цепного транспортера) = 264,13 мм.


Радиус впадины зубьев:


R = 0,5 (DЦ - 0,05t) = 0,5 · (21 - 0,05 · 125) = 7,38 мм.


Половина угла заострения зуба: γ = 13 - 20є; γ = 16 є

Угол впадины зуба: β = 2 γ + 360є / z = 2 · 16 + 360є / 7 = 86 є

Ширина зуба звездочки:


bfmax = 0,9b3 - 1 = 0,9 · 31 - 1 = 26,9 мм;

bfmin = 0,87b3 - 1,7 = 0,87 · 31 - 1,7 = 25,27 мм;

bf = 26,085 мм.


Ширина вершины зуба:


b = 0,83 bf = 0,83 · 26,085 = 21,65 мм.


Диаметр венца:


DC = tKZ - 1,3h = 125 · 2,08 - 1,3 · 40 = 208 мм.


Окружная сила на звездочке: Ft = 4,5 кН. Центробежная сила на валы и опоры не передается. Нагрузку на них от полезного натяжения и собственной силы тяжести цепи условно принимают равной:


Fr = 1,15Ft = 1,15 · 4,5 = 5,18 кН.


Расчет приводного вала и расчет подшипников для него.

Диаметр выходного конца вала, исходя из расчета на кручение:


dпр = Проектирование привода цепного транспортера= Проектирование привода цепного транспортера = 56,2 мм


Принимаем: выходной диаметр Ш56 мм, под подшипники - Ш60 мм, под тяговую звездочку - Ш65 мм.


Усилие от муфты: FM = 250Проектирование привода цепного транспортера = 250Проектирование привода цепного транспортера = 7500 H

Ft = 4500 H, Fr = 5180 H, p = 100 мм, s = 200 мм, t = 200 мм.


Проектирование привода цепного транспортера


Реакции от усилий в зацеплении:


RLx (s + t) - Fts = 0; RLx = Fts / (s + t) = 4500 · 0,2/0,4 = 2250 H

RKx = Ft - RLx = 4500 - 2250 = 2250 H

My = RKxs = 2250 · 0,2 = 450 H · м

RLy = Frs / (s + t) = 5180 · 0,2/0,4 = 2590 H

RKy = Fr - RLy = 5180 - 2590 = 2590 H

Mx = RKys = 2590 · 0,2 = 518 H · м


Реакции от усилия муфты:


FM (s + t + p) - RLFм (s + t) = 0;

RLFм = FM (s + t + p) / (s + t) = 7500 · 0,5/0,4 = 9375 H

RKFм = RLFм - FM = 9375 - 7500 = 1875 H

RL = Проектирование привода цепного транспортера = Проектирование привода цепного транспортера = 3431 H

RK = Проектирование привода цепного транспортера = Проектирование привода цепного транспортера = 3431 H


Для расчета подшипников:


RL' = RL + RLFм = 3431 + 9375 = 12806 H

RK' = RK + RKFм = 3431 + 1875 = 5306 H


Опасное сечение I - I. Концентрация напряжений в сечении I - I вызвана напрессовкой внутреннего кольца подшипника на вал с натягом.

Материал вала - сталь 45, НВ = 240, σв = 780 МПа, σт = 540 МПа, τт = 290 МПа,


σ-1 = 360 МПа, τ-1 = 200 МПа, ψτ = 0,09, табл.10.2 [2].


Расчет вала в сечении I - I на сопротивление усталости.


σа = σu = МLFм / 0,1d43 = 750 · 103/0,1 · 603 = 34,7 МПа

τа = τк /2 = Мвых / 2 · 0,2d43 = 900 · 103/0,4 · 603 = 10,4 МПа

Кσ / Кdσ = 3,8 табл.10.13 [2] ; Кτ / Кdτ = 2,2 табл.10.13 [2] ;

KFσ = KFτ = 1 табл.10.8 [2] ; KV = 1 табл.10.9 [2].

KσД = (Кσ / Кdσ + 1/КFσ - 1) · 1/KV = (3,8 + 1 - 1) · 1 = 3,8

KτД = (Кτ / Кdτ + 1/КFτ - 1) · 1/KV = (2,2 + 1 - 1) · 1 = 2,2

σ-1Д = σ-1/KσД = 360/3,8 = 94,7 МПа

τ-1Д = τ - 1/KτД = 200/2,2 = 91 МПа

Sσ = σ-1Д / σа = 94,7/34,7 = 2,7; Sτ = τ - 1Д / τ а = 91/10,4 = 8,4

S = Sσ Sτ / Проектирование привода цепного транспортера = 2,7 · 8,4/Проектирование привода цепного транспортера = 2,6 > [S] = 2,5

Прочность вала обеспечена.

Выбор типа подшипника.

Осевые нагрузки отсутствуют, поэтому берем радиальные шарикоподшипники №212, С = 52 кН, С0 = 31 кН, dЧDЧB = 60Ч110Ч22


QL = RL' Kδ KT = 12806 · 1,3 · 1 = 16648 H


Ресурс подшипника:


Lh = a23 (C / QL) m (106/60nвых) = 0,8 · (52/16,648) 3 · (106/60 · 27) = 1,5 · 104 ч

1,5 · 104 ч < [t] = 2,5 · 104 ч


Так как Lh < [t] возьмем роликовые подшипники №2312; С = 151 кН;


dЧDЧB = 60Ч130Ч31, тогда:

Lh = 0,7 · (151/16,648) 3,3 · (106/60 · 27) = 6,2 · 104 ч > [t] = 2,5 · 104 ч


Подшипник подходит.

Смазка.

Смазка зубчатых зацеплений осуществляется окунанием одного из зубчатых колес в масло на полную высоту зуба.

Вязкость масла по табл.11.1 [2]:


V1 = 3,1 м/с - V40° = 27 мм2/с, V2 = 1,15 м/с - V40° = 33 мм2/с

V3 = 0,45 м/с - V40° = 35 мм2/с, V40°ср = 31 мм2/с


По таблице 11.2 [2] принимаем масло индустриальное И-Г-А-32, у которого

V40°C = 29-35 мм2/с. Подшипники смазываются тем же маслом, что и зацепления за счет разбрызгивания масла и образования масляного тумана.

Проверка прочности шпоночных соединений.

Напряжение смятия:


σсм = 2М / d (l - b) (h - t1) < [σ] см = 120 МПа


Вал электродвигателя Ш28 мм, шпонка 7 Ч 7 Ч 28, t1 = 4 мм.


σсм = 2 · 20 · 103/28 · (28 - 7) (7 - 4) = 22,6 МПа < [σ] см


Промежуточный вал (третий) Ш45 мм, шпонка 14 Ч 9 Ч 40, t1 = 5,5 мм.


σсм = 2 · 250 · 103/45 · (40 - 14) (9 - 5,5) = 103 МПа < [σ] см


Промежуточный вал (второй) Ш35 мм, шпонка 10 Ч 8 Ч 32, t1 = 5 мм.


σсм = 2 · 76 · 103/35 · (32 - 10) (8 - 5) = 65,8 МПа < [σ] см


Ведомый вал Ш56 мм, шпонка 16 Ч 10 Ч 70, t1 = 6 мм.


σсм = 2 · 930 · 103/56 · (70 - 16) (10 - 6) = 118,3 МПа < [σ] см


Ведомый вал Ш65 мм, шпонка 18 Ч 11 Ч 70, t1 = 7 мм.


σсм = 2 · 930 · 103/65 · (70 - 18) (11 - 7) = 116 МПа < [σ] см


Приводной вал Ш65 мм, шпонка 18 Ч 11 Ч 70, t1 = 7 мм.


σсм = 2 · 900 · 103/65 · (70 - 18) (11 - 7) = 109,2 МПа < [σ] см

Выбор муфт.

При проектировании компенсирующе-предохранительной муфты, за основу возьмем упругую втулочно-пальцевую муфту:

Муфта 1000-56-1-У3 ГОСТ 21424-93.


[М] = 1000 Н · м, D Ч L = 220 Ч 226.


В нашем случае: М4 = 930 Н · м

Наличие упругих втулок позволяет скомпенсировать неточность расположения в пространстве ведомого вала и приводного вала. Доработаем данную муфту, заменив ее крепление на приводном валу со шпонки на штифт. Штифт рассчитаем таким образом, чтобы при превышении максимально допустимого передаваемого момента его срезало. Таким образом, штифт будет служить для ограничения передаваемого момента и предохранения частей механизма от поломок при перегрузках, превышающих расчетные. [2]

Наибольший номинальный вращающий момент, передаваемый муфтой: Мном = 930 Н · м

Расчетный вращающий момент М срабатывания муфты:


М = 1,25Мном = 1,25 · 930 = 1162,5 Н · м


Радиус расположения поверхности среза: R = 28 мм

Материал предохранительного штифта:

Сталь 30 ГОСТ 1050-88, σв = 490 МПа

Коэффициент пропорциональности между пределами прочности на срез и на разрыв: К = 0,68

Расчетный предел прочности на срез штифта:


τср = К · σв = 0,68 · 490 = 333,2 МПа

Диаметр предохранительного штифта:


d = Проектирование привода цепного транспортера = Проектирование привода цепного транспортера = 0,0045 м, d = 4,5 мм


Предельный вращающий момент (проверочный расчет):


М = πd2r τср /4 = 3,14 · 0,00452 · 0,028 · 333,2 · 106/4 = 1162,5 Н · м

Список использованной литературы


С.А. Чернавский и др. - Курсовое проектирование деталей машин,

Москва, "Машиностроение", 1988 г.

П.Ф. Дунаев, С.П. Леликов - Конструирование узлов и деталей машин,

Москва, "Высшая школа", 1998 г.

М.Н. Иванов - Детали машин, Москва, "Высшая школа", 1998 г.

А.Е. Шейнблит - Курсовое проектирование деталей машин,

Калининград, "Янтарный сказ", 2002 г.

Похожие работы:

  1. • Проектирование привода цепного транспортёра ...
  2. • Проектирование привода цепного транспортера
  3. • Проектирование привода цепного транспортера
  4. • Привод цепного транспортера
  5. • Привод цепного транспортера
  6. • Проектирование привода цепного конвейера
  7. • Разработка привода цепного транспортера
  8. • Проектирование привода ленточного транспортера
  9. • Проектирование привода ленточного транспортёра
  10. • Разработка цепной передачи для механического привода ...
  11. • Проектирование привода к цепному конвейеру
  12. • Проектирование привода цепного конвейера
  13. • Основы конструирования: Проектирование привода общего ...
  14. • Проектирование привода
  15. • Привод транспортера для перемещения грузов на склад
  16. • Привод ленточного транспортера
  17. • Проектирование электродвигателя транспортера
  18. • Проектирование привода технологического оборудования
  19. • Проектирование привода общего назначения
Рефетека ру refoteka@gmail.com