Рефетека.ру / Математика

Реферат: Численное интегрирование определённых интегралов

АННОТАЦИЯ

В данной работе будут рассмотрены три метода приближённого интегрирования определённого интеграла: метод прямоугольников, метод трапеций и метод Симпсона. Все эти методы будут подробно выведены с оценкой погрешности каждого из них. Для более полного восприятия материала в работу помещён раздел, в котором подробно расписано решение, всеми тремя методами, определённого интеграла. В материале имеются иллюстрации, с помощью которых, можно более глубоко вникнуть в суть рассматриваемой темы.

СОДЕРЖАНИЕ

Введение…………………………………………………………3

Основная часть………………………………………………....4

-формула прямоугольников………………………………....6

-формула трапеций…………………………………………..8

-формула Симпсона…………………………………………10

Практика……………………………………………………….15

Заключение…………………………………………………….19

Список литературы…………………………………………….20

ВВЕДЕНИЕ

Цель данной курсовой работы – изучение методов приближённого интегрирования. Для некоторых подынтегральных функций [pic] интеграл можно вычислить аналитически или найти в справочниках. Однако в общем случае первообразная [pic] может быть не определена: либо первообразные не выражаются через элементарные функции, либо сами подынтегральные функции не являются элементарными. Это приводит к необходимости разработки приближенных методов вычисления определенных интегралов. Наиболее общеупотребительными приближенными методами вычисления одномерных определенных интегралов являются, так называемые, "классические" методы численного интегрирования: метод прямоугольников, метод трапеций, метод парабол (основанные на суммировании элементарных площадей, на которые разбивается вся площадь под функцией [pic]). Хотя эти методы обычно предпочтительней в случае малых размерностей, они практически не годятся для вычисления многомерных интегралов, для их вычисления используются другие методы, однако в этой работе они рассмотрены не будут.

ОСНОВНАЯ ЧАСТЬ

I.Определение интеграла и его геометрический смысл.

В начале узнаем, что такое определённый интеграл. Возможны два различных подхода к определению определённого интеграла.

ОПРЕДЕЛЕНИЕ 1: приращение F(b)-F(a) любой из преобразованных функций
F(x)+c при изменении аргумента от x=a до x=b называют определённым интегралом от a до b функции f и обозначается [pic].

Причём функция F является первообразной для функции f на некотором промежутке D, а числа а и b принадлежат этому промежутку. Это можно записать следующим образом:

[pic] (1) это формула Ньютона-Лейбница.

ОПРЕДЕЛЕНИЕ 2:

[pic]Если при любой последовательности разбиений отрезка [a;b] таких, что ?=max?xi>0 (n>?) и при любом выборе точек[pic] интегральная сумма
?k=[pic]f(?i) ?xi стремится к одному и тому же конечному пределу А, то это число А и есть определённый интеграл, т.е.[pic] limn>? ?k = lim?>0 [pic]f
(?i) ?xi=A(2).

Где ?хi=xi-xi-1 (i=1,2,…,n) ?=max?xi – начало разбиения [pic] произвольная точка из отрезка[xi-1;xi]

сумма всех произведений f(?i)?xi(i=1,…,n). Простыми словами, определенный интеграл есть предел интегральной суммы, число членов которой неограниченно возрастает, а каждое слагаемое стремится к нулю.

ГЕОМЕТРИЧЕСКИЙ СМЫСЛ:

[pic]Всякая непрерывная на отрезке [a,b] функция f интегрируема на отрезке [a,b], функция f неотрицательна, но определённый интеграл [pic] численно равен S криволинейной трапеции, ограниченной графиком функции f, осью абсцисс и прямыми x=a и x=b, S=[pic]f(x)dx.

II.Приближённые методы вычисления.

Как мы уже отметили, если функция f непрерывна на промежутке, то на этом промежутке существует функция F такая, что F’=f, то есть существует первообразная для функции f, но не всякая элементарная функция f имеет элементарную первообразную F. Объясним понятие элементарной функции.

Функции: степенная, показательная, тригонометрическая, логарифмическая, обратные тригонометрическим называются основными элементарными функциями.
Элементарной функцией называется функция, которая может быть задана с помощью формулы, содержащей лишь конечное число арифметических операций и суперпозиций основных элементарных.

Например следующие интегралы: ?e-xdx; ?[pic]; ?dx/ln|x|; ?(ex/x)dx;
?sinx2dx; ?ln|x|sinxdx существуют, но не выражаются в конечном виде через элементарные функции, то есть относятся к числу интегралов, «не берущихся» в элементарных функциях.

Бывает, что на практике сталкиваются с вычислением интегралов от функций, которые заданы табличными и графическими способами, или интегралы от функций, первообразные которых выражаются через элементарные функции очень сложно, что не удобно, долго и не рационально. В этих случаях вычисление определённого интеграла по формуле Ньютона-Лейбница (1) сводит вычисление определённого интеграла от какой-либо функции к нахождению её первообразной. Значит, если первообразная не элементарна, надо вычислить определённый интеграл как-то по другому, поэтому прибегают к различным методам приближённого интегрирования.

В основе приближённых методов интегрирования лежит геометрический смысл определённого интеграла, который рассмотрен выше.

Формул приближённого интегрирования существует много. В данной курсовой работе будет рассмотрено три метода приближённого интегрирования: метод трапеций, метод прямоугольников и метод Симпсона.

1. Формула прямоугольников

Теперь рассмотрим первый вид приближённого вычисления:

требуется вычислить определённый интеграл: [pic].

Пусть на отрезке [a,b] задана непрерывная функция y=f(x). Разделим отрезок [a,b], аналогично как в формуле трапеций: точками a=x0,x1,x2,…,xn=b на n равных частей длины ?х, где ?х=(b-a)/n.

[pic]Обозначим через y0,y1,y2,…,yn-1,yn значение функции f(x) в точках x0, x1, x2…,xn, то есть, если записать в наглядной формуле:

Y0=f(x0), y1=f(x1), y2=f(x2)…yn,=f(xn).

В данном способе подынтегральную функцию заменяем функцией, которая имеет ступенчатый вид (на рис. выделена).
Составим суммы: y0?x+ y1?x1+ y2?x2…+yn-1?x; Y1?x+ y2?x+…+yn?x

Каждое слагаемое этих сумм выражает площадь, полученных прямоугольников с основанием ?х, которое является шириной прямоугольника, и длиной выраженной через yi: Sпр=a*b=yi?x.

Каждая из этих сумм является интегральной суммой для f(x) на отрезке
[a,b], и равна площади ступенчатых фигур, а значит приближённо выражает интеграл. Вынесем ?x=(b-a)/n из каждой суммы, получим:

[pic]f(x)dx??x(y0+y1+…+yn-1);

[pic]f(x)dx??x(y1+y2+…+yn).
Выразив x, получим окончательно:

[pic]f(x)dx?((b-a)/n)(y0+y1+…+yn-1);(3)

[pic]f(x)dx?((b-a)/n)(y1+y2+…+yn);(3*)

Это и есть формулы прямоугольников. Их две, так как можно использовать два способа замены подынтегральной функции. Если f(x)- положительная и возрастающая функция, то формула (3) выражает S фигуры, расположенной под графиком, составленной из входящих прямоугольников, а формула (3*)- площадь ступенчатой фигуры, расположенной под графиком функции составленной из выходящих треугольников.
Ошибка, совершаемая при вычислении интегралов по формуле прямоугольников, будет тем меньше, чем больше число n (то есть чем меньше шаг деления)[pic].
Для вычисления погрешности этого метода используется формула:
Pnp=[pic], где [pic] Результат полученный по формуле (3) заведомо даёт большую площадь прямоугольника, так же по формуле (3*) даёт заведомо меньшую площадь, для получения среднего результата используется формула средних прямоугольников:[pic] (3**)

2.Формула трапеций.

Возьмём определённый интеграл ?f(x)dx, где f(x)- непрерывная подынтегральная функция, которую мы для наглядности будем предполагать положительной. При вычислении интеграла с помощью формулы трапеций подынтегральная функция f заменяется функцией, график которой представляет собой ломанную линию (на рисунке 2 красным цветом), звенья которой соединяют концы ординат yi-1 и yi (i=1,2,…,n).[pic]Тогда площадь криволинейной трапеции, ограниченной линиями x=a, x=b, y=0, y=f(x), а значит (следуя из геометрического смысла), и значение нужного нам интеграла, приблизительно равна сумме площадей обычных трапеций с основаниями yi-1 и yi и высотой h=(b-a)/n, так как (если более привычно выражать для нас) h это ?x,a ?x=(b-a)/n при делении отрезка на n равных отрезков при помощи точек x0=a

Похожие работы:

  1. • Численное интегрирование методом Гаусса
  2. • Вычисление определенного интеграла
  3. • Разработка программы расчета определенного интеграла по ...
  4. • Численное интегрирование функции методом Гаусса
  5. • Экзаменационные билеты по численным методам за первый семестр ...
  6. • Вычисление определённых интегралов по правилу прямоугольников
  7. • Отыскание корня уравнения методом половинного деления
  8. • Обучение информатике
  9. • Измерение напряжения
  10. • Численное интегрирование функций
  11. • Общее понятие определённого интеграла, его геометрический и ...
  12. • Интеграл и его свойства
  13. • Определенный интеграл
  14. • Техника интегрирования и приложения определенного ...
  15. • Методы интегрирования
  16. • Приближенное вычисление определенного интеграла при помощи ...
  17. •  ... формулы Чебышева для вычисления определенного интеграла
  18. • Численные методы вычисления интегралов
  19. • Приближенное вычисление определенного интеграла при помощи ...
Рефетека ру refoteka@gmail.com