Рефетека.ру / Эк.-мат. моделирование

Контрольная работа: Составление стоимостного межотраслевого баланса

Содержание


Задание 1

Задание 2

Список литературы


Задание 1


Стоимостной МОБ включает пять отраслей:

тяжелая промышленность;

легкая промышленность;

строительство;

сельское и лесное хозяйство;

прочие отрасли.

1) Необходимо составить плановый МОБ, если спрос на конечную продукцию на следующий год по всем отраслям увеличится на (4+n)%.

2) Проследить эффект распространения, вызванный увеличением спроса на продукцию тяжелой промышленности дополнительно на (2+n/2)%.

3) Определить равновесные цены в предположении (4+n/3)%-го роста заработной платы по каждой отрасли. Проследите эффект распространения, вызванный дополнительным ростом заработной платы в легкой промышленности на 5% (считайте, что доли заработной платы в добавленной стоимости по отраслям соответственно равны 0,5, 0,517, 0,499, 0,345, 0,547).


Таблица 1 межотраслевых потоков


1 2 3 4 5
1 46,07 3,28 17,64 6,19 4,82
2 3,92 38,42 0,84 0,86 2,25
3 0 0 0 0 0
4 0,52 27,22 1,01 16,18 0
5 16,08 10,1 4,73 0,34 0,4


Таблица 2конечных продуктов

1 48,18
2 91,16
3 43,8
4 28,33
5 3,04

Таблица 3 стоимости фондов и затрат труда

Стоимость фондов 200 110 130 250 80
Стоимость затрат труда 100 80 50 35 33

Решение


Введем следующие обозначения

Составление стоимостного межотраслевого баланса– общий (валовой) объем продукции i-ой отрасли;

Составление стоимостного межотраслевого баланса– объем продукции i-ой отрасли, потребляемой j-ой отраслью (i, j = 1, 2, ... п);

Составление стоимостного межотраслевого баланса– объем конечного продукта i-ой отрасли для непроизводственного потребления.

Тогда


Составление стоимостного межотраслевого баланса


Перепишем эту систему уравнений


Составление стоимостного межотраслевого баланса


введя коэффициенты прямых затрат


Составление стоимостного межотраслевого баланса


Обозначим Х – вектор валового выпуска, Y – вектор конечного продута, А = (аij) – матрица прямых затрат, (i, j = 1, 2, … п). Тогда соотношения баланса перепишутся в матричном виде: Составление стоимостного межотраслевого баланса Это соотношение называется матричным уравнением Леонтьева.

Основная задача межотраслевого баланса состоит в отыскании таково вектора валового выпуска Х, который при известной матрице прямых затрат А обеспечивает заданный вектор конечного продукта Y. Перепишем последнее уравнение в виде


Составление стоимостного межотраслевого баланса


Если


Составление стоимостного межотраслевого баланса


то решение задачи межотраслевого баланса записывается


Составление стоимостного межотраслевого баланса


Матрица


Составление стоимостного межотраслевого баланса


называется матрицей полных затрат

Представим исходные данные задачи в виде одной таблицы – матрицы межотраслевого баланса



ОТРАСЛЬ 1 2 3 4 5 Конечный продукт Валовой продукт
1 тяжелая промышленность 46,07 3,28 17,64 6,19 4,82 48,18 126,18
2 легкая промышленность 3,92 38,42 0,84 0,86 2,25 91,16 137,45
3 строительство 0 0 0 0 0 43,8 43,8
4 сельское и лесное хозяйство 0,52 27,22 1,01 16,18 0 28,33 73,26
5 прочие отрасли 16,08 10,1 4,73 0,34 0,4 3,04 34,69

Матричные вычисления произведем с помощью пакета Excel. Итак, матрицы


Составление стоимостного межотраслевого баланса

Составление стоимостного межотраслевого баланса


Матрица полных затрат


Составление стоимостного межотраслевого баланса


По условию задачи, спрос по всем отраслям должен увеличиться на 8%, т.е. вектор конечного продукта должен стать

межотраслевой баланс равновесный цена затраты

Составление стоимостного межотраслевого баланса


Тогда искомый вектор валового выпуска


Составление стоимостного межотраслевого баланса

Составим новую матрицу межотраслевого баланса (с точностью до второго знака после запятой). Для этого воспользуемся формулами


Составление стоимостного межотраслевого баланса;

Составление стоимостного межотраслевого баланса;

Составление стоимостного межотраслевого баланса;

Составление стоимостного межотраслевого баланса


Промежуточные вычисления (с точностью до 2-го знака после запятой


Составление стоимостного межотраслевого баланса

=Составление стоимостного межотраслевого баланса

Составление стоимостного межотраслевого баланса


После чего новая матрица межотраслевого баланса будет выглядеть



ОТРАСЛЬ 1 2 3 4 5 Конечный продукт Валовой продукт
1 тяжелая промышленность 60,438 74,404 58,72 72,679 71,33 3875,28 4212,85
2 легкая промышленность 43,375 35,122 43,712 45,307 43,227 4424,46 4635,2
3 строительство 0 0 0 0 0 3804,54 3804,54
4 сельское и лесное хозяйство 43,828 34,105 43,825 40,993 43,092 4380,10 4585,94
5 прочие отрасли 25,413 28,346 24,929 30,096 28,756 4350,89 4488,43

2) Проследить эффект распространения, вызванный увеличением спроса на продукцию тяжелой промышленности дополнительно на 6%, т.е. конечный продукт станет равным

Составление стоимостного межотраслевого баланса


В результате этого изменения эффект распространения будет заключаться в том, что новый вектор валового выпуска будет иметь вид


Составление стоимостного межотраслевого баланса


Для нахождения эффекта распространения привлечем уравнение для цен


P = AT P + v, откуда P = (E – AT)-1v.


Обратная матрица Леонтьева (E – AT)-1 – ценовой матричный мультипликатор – матричный мультипликатор ценового эффекта распространения.

Этот мультипликатор эффекта распространения найдем с помощью пакета Excel, сначала транспонируя матрицу А, затем отнимая ее от единичной матрицы и находя обратную матрицу. Проводя эти вычисления, получим

Составление стоимостного межотраслевого баланса.


Этот результат в качестве промежуточного будет использован в следующем пункте при расчете равновесной цены.

3) Отношение vj = Vj/Xj – называют долей добавленной стоимости, а вектор v = (v1,…,vn) – вектор долей добавленной стоимости. В матричном виде уравнение для цен будет иметь следующий вид


P = AT P + v


Решая уравнение это относительно Р, получим


P = (E – AT)-1v


По условию задачи, вектор


v = (0,5, 0,517, 0,499, 0,345, 0,547)


Тогда, с помощью пакета Excel, найдем равновесные цены


Составление стоимостного межотраслевого баланса


При этом эффект распространения, вызванный дополнительным ростом заработной платы в легкой промышленности на 5% (считая, что доли заработной платы в добавленной стоимости по отраслям соответственно равны 0,5, 0,517, 0,499, 0,345, 0,547) дается мультипликатором эффекта распространения


Составление стоимостного межотраслевого баланса.


Задание 2


Условие задания:

Имеются данные экономического развития США за 1953 - 1974 гг


Год Валовой национальный продукт, млрд. долл. Объем загруженного капитала, млрд. долл Количество отработанных часов, млрд. час.
1953 623,6 380,53 136,07
1954 616,1 354,20 131,12
1955 657,5 400,66 134,16
1956 671,6 415,15 136,04
1957 683,8 418,83 134,77
1958 680,9 384,87 130,44
1959 721,7 431,04 133,87
1960 737,2 435,65 134,99
1961 756,6 432,28 134,25
1962 800,3 471,65 137,36
1963 832,5 499,75 138,72
1964 876,4 535,09 141,00
1965 926,3 593,96 145,39
1966 984,4 644,26 150,88
1967 1011,4 647,58 152,67
1968 1058,1 628,43 155,51
1969 1087,6 711,58 159,20
1970 1085,6 628,06 156,49
1971 1122,4 696,74 155,85
1972 1185,9 770,96 159,56
1973 1255,0 850,63 165,41
1974 1248,0 848,39 165,51

Необходимо определить


Параметры А, a и b степенной производственной функции;

Расчетные значения ВНП;

Оценить точность полученной модели;

Эластичность выпуска и производства;

Для 1974 года построить изокванту и изоклинали.


Решение


1. Определение параметров А, a и b степенной производственной функции проведем с помощью пакета Excel. Будем искать параметры производственной функции в виде


Составление стоимостного межотраслевого баланса


где Составление стоимостного межотраслевого баланса, причем a и b положительные.

Сначала исследуем зависимость Составление стоимостного межотраслевого баланса. С помощью пакета Excel получим


Составление стоимостного межотраслевого баланса


Из соображений


Составление стоимостного межотраслевого баланса


примем вид степенной производственной функции


Составление стоимостного межотраслевого баланса


2. С помощью пакета Excel найдем расчетные значения ВНП


Год Валовой национальный продукт, млрд. долл. Объем загруженного капитала, млрд. долл Количество отработанных часов, млрд. час. Расчет ВНП отклонение расчета от факта
1953 623,6 380,53 136,07 855,3352 231,7352
1954 616,1 354,2 131,12 816,2174 200,1174
1955 657,5 400,66 134,16 857,6237 200,1237
1956 671,6 415,15 136,04 874,7891 203,1891
1957 683,8 418,83 134,77 870,5739 186,7739
1958 680,9 384,87 130,44 830,7576 149,8576
1959 721,7 431,04 133,87 872,6536 150,9536
1960 737,2 435,65 134,99 880,6296 143,4296
1961 756,6 432,28 134,25 875,189 118,589
1962 800,3 471,65 137,36 910,9795 110,6795
1963 832,5 499,75 138,72 931,7497 99,24966
1964 876,4 535,09 141 960,2843 83,88431
1965 926,3 593,96 145,39 1009,978 83,67786
1966 984,4 644,26 150,88 1061,032 76,63217
1967 1011,4 647,58 152,67 1072,016 60,6156
1968 1058,1 628,43 155,51 1078,676 20,57574
1969 1087,6 711,58 159,2 1134,152 46,55247
1970 1085,6 628,06 156,49 1083,671 -1,92939
1971 1122,4 696,74 155,85 1109,87 -12,53
1972 1185,9 770,96 159,56 1160,042 -25,8576
1973 1255 850,63 165,41 1223,118 -31,8823
1974 1248 848,39 165,51 1222,84 -25,1598

3. Оценим точность полученной модели, для этого выполним графическое представление результатов вычислений.


Составление стоимостного межотраслевого баланса


Как можно видеть из табличных значений и графического представления, расчетные значения, по крайней мере, повторяют тенденцию фактических значений с ошибкой порядка ±7%.


4. Оценим эластичность производственной функции по объему загруженного капитала и количеству отработанных часов, т.е. эластичность функции z по переменной х и эластичность функции z по переменной у.

В общем виде эластичность степенной производственной функции от двух переменных будет выглядеть следующим образом


Составление стоимостного межотраслевого баланса

Составление стоимостного межотраслевого баланса


Для рассматриваемой функции


Составление стоимостного межотраслевого балансаСоставление стоимостного межотраслевого балансаСоставление стоимостного межотраслевого балансаСоставление стоимостного межотраслевого баланса


Таким образом, ВНП пропорционален коэффициентам a и b, но не коэффициенту А.


5. Для 1974 года построим изокванту и изоклинали


Графическое изображение функции представлено изоквантой. Она подобна кривой безразличия, только отличие состоит в том, что изокванта количественно определена. Объем выпуска, соответствующий конкретной изокванте может быть достигнут при различном сочетании капитала и труда.

Итак, для 1974 года уравнение для построения изокванты выглядит:

Составление стоимостного межотраслевого баланса

Отсюда Составление стоимостного межотраслевого баланса


Изокванта выглядит


Составление стоимостного межотраслевого баланса


Изоклиналь


Составление стоимостного межотраслевого баланса


Составление стоимостного межотраслевого баланса


Изоклиналь

Составление стоимостного межотраслевого баланса


Составление стоимостного межотраслевого баланса


Список литературы


«Математическая статистика» Л. Н. Павлова, Юнити-Дана, 2003 г., 269с.

«Теория вероятностей и математической статистики для экономистов», Морошкин В.А., Финансы и статистика, 2004 г., 112с.

«Система национальных счетов», В.В. Ковалев, Финансы и статистика, 2001 г., 144с.

Семенов С.Д. «Экономическая теория», Финансы и статистика, 2000 г., 768с.

«Теория вероятности и математическая статистика. Учебное пособие для ВУЗов» Гмурман В.Е., Высшая школа, 2000г., 479с.

Похожие работы:

  1. • Межотраслевой баланс
  2. • Межотраслевой баланс
  3. • Межотраслевой баланс в концепции системы ...
  4. • Оптимизационные модели межотраслевого баланса
  5. • Система национальных счетов и межотраслевой баланс ...
  6. • Межотраслевой баланс производства и ...
  7. • Системы уравнений межотраслевого баланса
  8. • Модель динамического межотраслевого баланса
  9. • Составление регионального межотраслевого ...
  10. • Балансовый метод планирования
  11. • Математическое моделирование экономических процессов ...
  12. • Лабораторные работы по ЭММ (системы уравнений межотраслевого ...
  13. • Построение межотраслевых балансов
  14. • Межотраслевой баланс: структура, назначение ...
  15. • Научно-технический прогресс. Методы его прогнозирования
  16. • Макроэкономика
  17. • Аналитическая геометрия в решении экономических задач
  18. • Советская школа выработки управленческих решений
  19. • Методология прогнозирования и анализ конечного ...
Рефетека ру refoteka@gmail.com