Файл FERMA-KDVar © Н. М. Козий, 2008
Свидетельство Украины № 27312
о регистрации авторского права
КРАТКОЕ ДОКАЗАТЕЛЬСТВО ВЕЛИКОЙ ТЕОРЕМЫ ФЕРМА
Великая теорема Ферма формулируется следующим образом: диофантово уравнение (http://soluvel.okis.ru/evrika.html):
Аn+ Вn = Сn* /1/
где n- целое положительное число, большее двух, не имеет решения в целых положительных числах A, B, С.
ДОКАЗАТЕЛЬСТВО
Из формулировки Великой теоремы Ферма следует: если n – целое положительное число, большее двух, то при условии, что два из трех чисел А, В или С - целые положительные числа, одно из этих чисел не является целым положительным числом.
Доказательство строим, исходя из основной теоремы арифметики, которая называется «теоремой о единственности факторизации» или «теоремой о единственности разложения на простые множители целых составных чисел». Возможны нечетные и четные показатели степени n. Рассмотрим оба случая.
1. Случай первый: показатель степени n - нечетное число.
В этом случае выражение /1/ преобразуется по известным формулам следующим образом:
Аn + Вn = Сn = (A+B)[An-1-An-2·B +An-3·B2- …-A·Bn-2+Bn-1] /2/
Полагаем, что A и B – целые положительные числа.
Числа А, В и С должны быть взаимно простыми числами.
Из уравнения /2/ следует, что при заданных значениях чисел A и B множитель (A+B) имеет одно и тоже значение при любых значениях показателя степени n, следовательно, он является делителем числа С.
Допустим, что число С - целое положительное число. С учетом принятых условий и основной теоремы арифметики должно выполняться условие:
Сn = An + Bn =(A+B)n∙ Dn , /3/
где множитель Dn должен быть целым числом и, следовательно, число D также должно быть целым числом.
Из уравнения /3/ следует:
/4/
Из уравнения /3/ также следует, что число [Cn =An + Bn] при условии, что число С – целое число, должно делиться на число (A+B)n . Однако известно, что:
An + Bn < (A+B)n /5/
Следовательно:
- дробное число, меньшее единицы. /6/
- дробное число.
Отсюда следует, что при нечетном значении показателя степени n уравнение /1/ великой теоремы Ферма не имеет решения в целых положительных числах.
При нечетных показателях степени n >2 число:
< 1- дробное число, не являющееся рациональной дробью.
Из анализа уравнения /2/ следует, что при нечетном показателе степени n число:
Сn =Аn + Вn = (A+B)[An-1-An-2·B +An-3·B2- …-A·Bn-2+Bn-1]
состоит из двух определенных алгебраических множителей, при этом при любом значении показателя степени n неизменным остается алгебраический множитель (A+B).
Таким образом, великая теорема Ферма не имеет решения в целых положительных числах при нечетном показателе степени n >2.
Случай второй: показатель степени n - четное число.
Суть великой теоремы Ферма не изменится, если уравнение /1/ перепишем следующим образом:
An = Cn - Bn /7/
В этом случае уравнение /7/ преобразуется следующим образом:
An = Cn - Bn = (С+B)∙(Cn-1 + Cn-2 · B + Cn-3∙ B2 +…+ C ∙ Bn-2 + Bn-1 ). /8/
Принимаем, что С и В – целые числа.
Из уравнения /8/ следует, что при заданных значениях чисел B и C множитель (С+B) имеет одно и тоже значение при любых значениях показателя степени n, следовательно, он является делителем числа A.
Допустим, что число А – целое число. С учетом принятых условий и основной теоремы арифметики должно выполняться условие:
Аn = Сn - Bn =(С+B)n∙ Dn , /9/
где множитель Dn должен быть целым числом и, следовательно, число D также должно быть целым числом.
Из уравнения /9/ следует:
/10/
Из уравнения /9/ также следует, что число [Аn =Сn - Bn] при условии, что число А – целое число, должно делиться на число (С+B)n . Однако известно, что:
Сn - Bn < (С+B)n /11/
Следовательно:
- дробное число, меньшее единицы. /12/
- дробное число.
Отсюда следует, что при нечетном значении показателя степени n уравнение /1/ великой теоремы Ферма не имеет решения в целых положительных числах.
При четных показателях степени n >2 число:
< 1- дробное число, не являющееся рациональной дробью.
Таким образом, великая теорема Ферма не имеет решения в целых положительных числах и при четном показателе степени n >2.
Из изложенного следует общий вывод: уравнение /1/ великой теоремы Ферма не имеет решения в целых положительных числах А, В и С при условии, что показатель степени n >2.
ДОПОЛНИТЕЛЬНЫЕ ОБОСНОВАНИЯ
В том случае когда показатель степени n – четное число, алгебраическое выражение (Cn - Bn) раскладывается на алгебраические множители:
C2 – B2 = (C-B) ∙ (C+B); /13/
C4 – B4 = (C-B) ∙ (C+B) (C2 + B2); /14/
C6 – B6 = (C-B) ∙ (C+B) · (C2 –CB + B2) ∙ (C2 +CB+ B2); /15/
C8 – B8 = (C-B) ∙ (C+B) ∙ (C2 + B2) ∙ (C4 + B4). /16/
Приведем примеры в числах.
ПРИМЕР 1: В=11; С=35.
C2 – B2 = (22 ∙ 3) ∙ (2 · 23) = 24 · 3 · 23;
C4 – B4 = (22 ∙ 3) ∙ (2 · 23) · (2 · 673) = 24 · 3 · 23 · 673;
C6 – B6 = (22 ∙ 3) ∙ (2 · 23) · (312) ·(3 · 577) =2 ∙ 3 ∙ 23 ∙ 312 ∙ 577;
C8 – B8 = (22 ∙ 3) ∙ (2 · 23) · (2 · 673) ∙ (2 · 75633) = 25 ∙ 3 ∙ 23 ∙673 ∙ 75633.
ПРИМЕР 2: В=16; С=25.
C2 – B2 = (32) ∙ (41) = 32 ∙ 41;
C4 – B4 = (32) ∙ (41) · (881) =32 ∙ 41 · 881;
C6 – B6 = (32) ∙ (41) ∙ (22 ∙ 3) ∙ (13 · 37) · (3 ∙ 7 · 61) = 33 · 7 ∙ 13· 37 ∙ 41 ∙ 61;
C8 – B8 = (32) ∙ (41) ∙ (881) ∙ (17 ·26833) = 32 ∙ 41 ∙ 881 ∙ 17 ·26833.
Из анализа уравнений /13/, /14/, /15/ и /16/ и соответствующих им числовых примеров следует:
- при заданном показателе степени n, если он четное число, число Аn = Сn - Bn раскладывается на вполне определенное количество вполне определенных алгебраических множителей;
- при любом показателе степени n, если он четное число, в алгебраическом выражении (Cn - Bn) всегда имеются множители (C-B) и (C+B);
- каждому алгебраическому множителю соответствует вполне определенный числовой множитель;
- при заданных значениях чисел В и С числовые множители могут быть простыми числами или составными числовыми множителями;
- каждый составной числовой множитель является произведением простых чисел, которые частично или полностью отсутствуют в составе других составных числовых множителей;
- величина простых чисел в составе составных числовых множителей увеличивается с увеличением этих множителей;
- в состав наибольшего составного числового множителя, соответствующего наибольшему алгебраическому множителю, входит наибольшее простое число в степени, меньшей показателя степени n (чаще всего в первой степени).
ВЫВОДЫ: дополнительные обоснования подтверждают заключение о том, что великая теорема Ферма не имеет решения в целых положительных числах.
Автор: Николай Михайлович Козий,
инженер-механик
E-mail: nik_krm@mail.ru