МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ
КУРСОВАЯ РАБОТАтема:
«Вычисление определённого интеграла
с помощью метода трапеций
на компьютере»
Выполнил:
студент ф-та
ЭОУС-1-12
Зыков И.
Принял:
Зоткин С. П.
Москва 2001
1. Введение:
Определенный интеграл от функции, имеющей неэлементарную первообразную, можно вычислить с помощью той или иной приближенной формулы. Для решения этой задачи на компьютере, можно воспользоваться формулами прямоугольников, трапеций или формулой Симпсона. В данной работе рассматривается формула трапеций.
Пусть I=ò f(x)dx, где f(x) – непрерывная функция, которую мы для наглядности будем предполагать положительной. Тогда I представит собой площадь криволинейной трапеции, ограниченной линиями x=a, x=b, y=0, y=f(x). Выберем какое-нибудь натуральное число n и разложим отрезок [a,b] на n равных отрезков при помощи точек x0=a<x1<…<xn=b. Прямые x=xi разбивают интересующую нас криволинейную трапецию на n полосок. Примем каждую из этих полосок за обыкновенную прямолинейную трапецию (рис. 1, где n=4).
рис. 1
Тогда площадь первой слева полоски будет приближенно выражаться числом
((f(x0)+f(x1))/2)*(x1-x0)=((y0+y1)/2)*((b-a)/n),
ибо основания трапеции, за которую мы принимаем полоску, равны f(x0)=y0 и f(x1)=y1, а высота её
x1-x0=(b-a)/n.
Аналогично площади дальнейших полосок выразятся числами
(y1+y2)*((b-a)/2*n), (y2+y3)*((b-a)/2*n), … , (yn-1+yn)*((b-a)/2*n).
Значит, для нашего интеграла получается формула
I»((b-a)/2*n)*[y0+2*(y1+…+yn-1)+yn].
Пологая для краткости y0+yn=Yкр (крайние), y1+y2+…+yn-1=Yпром (промежуточные), получим