Рефетека.ру / Технология

Реферат: Расчет механизмов – козлового консольного крана грузоподъемностью 8 тонн

смотреть на рефераты похожие на "Расчет механизмов – козлового консольного крана грузоподъемностью 8 тонн "

Содержание
1 Введение

2

2 Исходные данные 3

3 Расчёт механизма подъема груза 4

4 Расчёт механизма перемещения крана 10

5 Расчёт механизма перемещения тележки 14

6 Выбор приборов безопасности 18

7 Литература

19

Введение

Козловые краны применяют для обслуживания открытых складов и погрузочных площадок, монтажа сборных строительных сооружений и оборудования, промышленных предприятии, обслуживания гидротехнических сооружений, перегрузки крупнотоннажных контейнеров и длинномерных грузов.
Козловые краны выполняют преимущественно крюковыми или со специальными захватами.
В зависимости от типа моста, краны делятся на одно- и двухбалочные.
Грузовые тележки бывают самоходными или с канатным приводом. Грузовые тележки двухбалочных кранов могут иметь поворотную стрелу.
Опоры крана устанавливаются на ходовые тележки, движущиеся по рельсам.
Опоры козловых кранов выполняют двухстоечными равной жёсткости, или одну
-жёсткой, другую -гибкой(шарнирной).
Для механизмов передвижения козловых кранов предусматривают раздельные приводы. Приводными выполняют не менее половины всех ходовых колёс.
Обозначение по ГОСТ : Кран козловой 540-33 ГОСТ 7352-75

Исходные данные.
Таблица № 1.
|Грузоподъемность крана |8 тонн |
|Пролет |25 метров |
|Высота консолей |4,5 метра |
|Скорость подъема груза |0,2 м/с |
|Скорость передвижения тележки |38 м/мин |
|Скорость передвижения крана |96 м/мин |
|Высота подъема |9 метров |
|Режим работы |5к |

Расчет механизма подъема груза.
Механизм подъёма груза предназначен для перемещения груза в вертикальном направлении. Он выбирается в зависимости от грузоподъёмности.
Привод механизма подъёма и опускания груза включает в себя лебёдку механизма подъёма. Крутящий момент, создаваемый электродвигателем передаётся на редуктор через муфту. Редуктор предназначен для уменьшения числа оборотов и увеличения крутящего момента на барабане.

Барабан предназначен для преобразования вращательного движения привода в поступательное движение каната.

Усилие в канате набегающем на барабан, H:

Fб=Qg/zun(0=8000*9,81/2*2*0,99=19818 где: Q-номинальная грузоподъемность крана, кг; z - число полиспастов в системе; un – кратность полиспаста;

(0 – общий КПД полиспаста и обводных блоков;
Поскольку обводные блоки отсутствуют, то

(0=(п=(1 - nблUп)/un(1-(бл)=(1-0,982)/2*(1-0,98)=0,99

Расчетное разрывное усилие в канате при максимальной нагрузке на канат Fк=Fб=19818 Н и k=5,5

F(Fк*k=19818*5,5=108999 Н где: Fк – наибольшее натяжение в канате (без учета динамических нагрузок), Н; k – коэффициент запаса прочности (для среднего режима работы k=5,5).

Принимаем канат по ГОСТ 2688 – 80 двойной свивки типа ЛК-Р конструкции
6х19(1+6+6/6+1 о.с) диаметром 15 мм имеющий при маркировочной группе проволок 1764 Мпа разрывное усилие F=125500 Н.

Канат – 11 – Г – 1 – Н – 1764 ГОСТ 2688-80

Фактический коэффициент запаса прочности: kф=F/Fб=125500/19818=6,33>k=5,5

Требуемый диаметр барабана по средней линии навитого стального каната, мм

D(d*e=15*25=375 где: d – диаметр каната е – коэффициент зависящий от типа машины, привода механизма и режима работы машины механизма.
Принимаем диаметр барабана D=400 мм.

Длина каната навиваемого на барабан с одного полиспаста при z1=2 и z2=3, м:

Lк=H*Uп+(*D(z1+z2)=9*2+3,14*0,4(2+3)=24,28 где: Н – высота поднимаемого груза;

Uп – кратность полиспаста;

D – диаметр барабана по средней линии навитого каната; z1 – число запасных ( неиспользуемых ) витков на барабане до места крепления: (z1=1,5…2) z2 – число витков каната, находящихся под зажимным устройством на барабане: z2=3…4.

Рабочая длина барабана, м:

Lб=Lk*t/(*m(m*d+D)*(=24,28*0,017/3,14*1(1*0,015+0,4)=0,239 где: Lк – длина каната, навиваемого на барабан; t – шаг витка; m – число слоев навивки; d – диаметр каната;

( - коэффициент не плотности навивки; для гладких барабанов;

Полная длина барабана, м:

L=2Lб+l=2*0,444+0,2=1,088

Толщина стенки литого чугунного барабана должна быть, м:

(min=0,02Dб+(0,006…0,01)=0,02*0,389+0,006…0,01=0,014

=0,018

Принимаем (=16 мм.

Dб=D – d=0,4 – 0,015=0,385 м.

Приняв в качестве материала барабана чугун марки СЧ 15 ((в=650 Мпа,
[(сж]=130 Мпа) найдем напряжения сжатия стенки барабана:

(сж=Fб/t[(сж] = 19818/17*10-3*16*10-3 = 72,86 Мпаtт=0,54

Замедление при торможении, м/с2: ат=vгф/tт=0,194/0,41=0,47

Расчет механизма передвижения крана.
Механизм передвижения крана служит для перемещения крана по рельсам.

Найдем рекомендуемый диаметр ходовых колес Dк=720 мм.
Коэффициент качения ходовых колес по рельсам (=0,0006 м. Коэффициент трения в подшипниках качения ходовых колес f=0,02.

Диаметр вала цапфы ходового колеса, мм:

Dк=0,2*720=144. Примем также kр=2,5

Общее сопротивление передвижению крана, Н:

Fпер=Fтр=kp(m+Q)g(fdk+2()/Dk=2,5(22000+8000)*

9,81(0,020*0,14+2*0,0006)/0,720=4087,5

Статическая мощность привода при ( = 0,85, кВт:

Pc=Fпер*vпер/103*(=4087*1,6/1000*0,85=7,693 где: Fпер – сопротивление передвижению крана, кг; vпер – скорость передвижения крана, м/с;

( - КПД механизма

Т.к привод механизма передвижения крана раздельный, то выбираем двигатель приблизительно в два раза по мощности меньше расчетной. Из таблицы III.3.5 выбираем крановый электродвигатель MTF – 111 – 6 имеющим
ПВ=25% номинальную мощность Рном=4,1 кВт и частоту вращения n=870 мин-1.
Момент инерции ротора Ip=0,048 кг*м2.

Номинальный момент на валу двигателя Н*м.

Тном=9550Р/n=9550*4,1/870=44,7

Частота вращения вращения ходового колеса (мин-1): nб=60vпер/(*Dк=60*1,6/3,14*0,720=42,16 где: vпер – скорость передвижения крана;

Dк – расчетный диаметр колеса, м.

Требуемое передаточное число привода:

U=n/nк=870/42,46=20,48
Поскольку в приводе механизма перемещения крана должно быть установлено два одинаковых редуктора. Выбираем редуктор типа ВК – 475 передаточное число up=19,68 и Pр=8,3 кВт.

Номинальный момент передаваемый муфтой двигателя, Н*м

Тм=Тс=FперDк/2uр(=2043*0,720/2*19,68*0,85=43,98

Расчетный момент для выбора соединительной муфты, Н*м:

Тм=Тмном*k1*k2=43,98*1,2*1,2=62,3

Выбираем по таблице III.5.6 втулочно – пальцевую муфту c крутящим моментом 63 Н*м с диаметром D=100 мм,

Момент инерции муфты, кг*м2:

Iм=0,1*m*D2=0,1*2*0,1=0,002

Фактическая скорость передвижения крана, м/с: vперф=vпер*u/up=1,6*20,48/19,68=1,66 – отличается от стандартного ряда на допустимую величину.

Примем коэффициент сцепления ходовых колес с рельсами (=0,12 коэффициент запаса сцепления k(=1,1.

Вычисляем максимально допустимое ускорение крана при пуске в предположении, что ветровая нагрузка Fp=0, м/с2 amax=[(zпр(((/k()+(f*dk/Dk))/z)-(2(+f*dk)kp/Dk)*g=

=(2((0,12/1,1)+(0,02*0,144/0,720))/4-

-(2*0,0006+0,02*0,144)*2,0/0,720)*9,81=0,66 где: zпр- число приводных колес; z – общее число ходовых колес;

( - коэффициент сцепления ходовых колес с рельсами: при работе на открытом воздухе (=0,12 f – коэффициент трения (приведенной к цапфе вала) в подшипниках опор вала ходового колеса

( - коэффициент трения качения ходовых колес по рельсам м; dk – диаметр цапфы вала ходового колеса, м: kp – коэффициент, учитывающий дополнительное сопротивления от трения реборд ходовых колес
Средний пусковой момент двигателя, Н*м:

Тср.п=((max+(min)*Tном/2=(2,25+1,1)*43,98/2=93,66 где: (min- минимальная кратность пускового момента электродвигателя:

(min=1,1…1,4

Наименьшее допускаемое время пуска по условию сцепления, с: tдоп=v/amax=1,66/0,66=2,515

Момент статических сопротивлений при работе крана без груза, Н*м:

Тс=F’перDк/2uр(=2445,96*0,72/2*19,68*0,85=52,6

Момент инерции ротора двигателя Iр=0,048 кг*м2 и муфты быстроходного вала Iм=0,002

I=Ip+Iм=0,048+0,002=0,050 кг/м2

Фактическое время пуска механизма передвижения без груза, с: tп=((*I*n/9,55(Тср.п-Тс))+9,55*Q*v2/n((Тср.пТс)*(=

=(12*0,05*870/9,55(93,66-52,6))+9,55*11000*1,662/870(93,66-

52,6)*0,85=7,95 с

Фактическое ускорение крана без груза, м/с2 аф=Vпер/tп=1,66/7,95=0,2081,2

Определение тормозных моментов и выбор тормоза. Максимальное допустимое замедление крана при торможении, м/с2: amaxт=((zпр(((/k()-(f*dk/Dk))/z)+(2(+f*dk)/Dk)*g=((2((0,12/1,1)-
(0,02*0,144/0,720))/4)+(2*0,0006+0,02*0,144)/0,720)*9,81=0,571

По таблице принимаем амахт=0,15 м/с2

Время торможения крана без груза, с: tt=Vфпер/амахт=1,66/0,15=11,06

Сопротивление при торможении крана без груза, Н:
Fтрт=mg(f*dk+2()/Dk=22000*9,81(0,02*0,144+2*0,0006)/0,720=1222,98

Момент статических сопротивлений на тормозном валу при торможении крана, Н*м:

Тст=Fттр*Dk*(/2*up=1222,98*0,720*0,85/2*19,68=19,01

Момент сил инерции при торможении крана без груза, Н*м:

Тинт=((*I*n/9,55*tт)+9,55*m*v2*(/n*tт=

=(1,2*0,05*870/9,55*11,06)+9,55*22000*1,662*0,85/870*

*11,06=51,63 где: tт- время торможения механизма, с:

Расчетный тормозной момент на валу тормоза, Н,м:

Трт=Тинт – Тст=51,63-11,06=40,57

Из таблицы III 5.13 выбираем тормоз типа ТКГ – 160 с диаметром тормозного шкива Dт=160 мм и наибольшим тормозным моментом Тт=100 Н*м, который следует отрегулировать до Тт=41 Н*м.

Минимальная длина пути торможения, м:

S=V2/R=1,662/0,9=3,06

Фактическая длина пути торможения, м:

Sф=0,5*v*tт=0,5*1,66*11,06=9,17

Расчет механизма передвижения грузовой тележки.

Найдем рекомендуемый диаметр ходовых колес Dк=360 мм.
Коэффициент качения ходовых колес по рельсам (=0,0006 м. Коэффициент трения в подшипниках качения ходовых колес f=0,02.

Диаметр вала цапфы ходового колеса, мм:

Dк=0,2*360=72 Примем также kр=2,5

Общее сопротивление передвижению крана, Н:

Fпер=Fтр=kp(m+Q)g(fdk+2()/Dk=2,5(3200+8000)*

9,81(0,02*0,072+2*0,0006)/0,36=2014,31

Статическая мощность привода при ( = 0,85, кВт:

Pc=Fпер*vпер/103*(=2014*0,63/1000*0,85=1,49 кВт. где: Fпер – общее сопротивление передвижению тележки, Н; vпер – скорость передвижения грузовой тележки, м/с;

( - КПД механизма

Из таблицы III.3.5 выбираем крановый электродвигатель MTF – 011-16 имеющим ПВ=25% номинальную мощность Р=1,7 кВт и частоту вращения n=835 мин-
1. Момент инерции ротора Ip=0,02 кг*м2.

Номинальный момент на валу двигателя Н*м:

Тном=9550Р/n=9550*1,7/835=19,44

Частота вращения вращения ходового колеса (мин-1): nб=60vпер/(*Dк=60*0,63/3,14*0,36=32,89 где: vпер – скорость передвижения тележки м/с;

Dк – расчетный диаметр колеса, м.

Требуемое передаточное число привода:

U=n/nк=835/32,89=25,38
Поскольку в приводе механизма перемещения крана должно быть установлено два одинаковых редуктора. Выбираем редуктор типа ВК – 475 передаточное число up=29,06 и Pр=8,1 кВт.

Номинальный момент передаваемый муфтой двигателя, Н*м:

Тм=Тс=FперDк/2uр(=2014,31*0,36/2*29,06*0,85=14,67

Расчетный момент для выбора соединительной муфты, Н*м:

Тм=Тмном*k1*k2=14,47*1,2*1,2=21,12

Выбираем по таблице III.5.6 втулочно – пальцевую муфту c крутящим моментом 31,5 Н*м с диаметром D=90 мм.

Момент инерции муфты, кг*м2:

Iм=0,1*m*D2=0,1*2*0,09=0,018

Фактическая скорость передвижения тележки, м/с: vперф=vпер*u/up=0,63*25,38/29,06=0,55 – отличается от стандартного ряда на допустимую величину.

Примем коэффициент сцепления ходовых колес с рельсами (=0,12 коэффициент запаса сцепления k(=1,1.

Вычисляем максимально допустимое ускорение грузовой тележки при пуске в предположении, что ветровая нагрузка Fp=0, м/с2 amax=[(zпр(((/k()+(f*dk/Dk))/z)-(2(+f*dk)kp/Dk)*g=

=(2((0,12/1,1)+(0,02*0,072/0,36))/4-

-(2*0,0006+0,02*0,072)*2,5/0,36)*9,81=0,46 м/с2 где: zпр- число приводных колес; z – общее число ходовых колес;

( - коэффициент сцепления ходовых колес с рельсами: при работе на открытом воздухе (=0,12 f – коэффициент трения (приведенной к цапфе вала) в подшипниках опор вала ходового колеса

( - коэффициент трения качения ходовых колес по рельсам м; dk – диаметр цапфы вала ходового колеса, м: kp – коэффициент, учитывающий дополнительное сопротивления от трения реборд ходовых колес
Средний пусковой момент двигателя, Н*м:

Тср.п=(1,5…1,6)*Tном=1,5*19,44=29,16

Наименьшее допускаемое время пуска по условию сцепления, с: tдоп=v/amax=0,55/0,464=1,185

Момент статических сопротивлений при работе тележки без груза Н*м:

Тс=F’перDк/2uр(=575*0,36/2*29,0,6*0,85=4,150

Момент инерции ротора двигателя Iр=0,02 кг*м2 и муфты быстроходного вала Iм=0,018

I=Ip+Iм=0,02+0,018=0,038 кг/м2

Фактическое время пуска механизма передвижения тележки с грузом, с: tп.г=((*I*n/9,55(Тср.п-Тс))+9,55*(Q+mт)*v2/n((Тср.п-Тс)*(=

=(1,2*0,038*835/9,55(29,16-14,67))+9,55*

*(8000+3200)*0,552/835(29,16-14,67)*0,85=5,42

Фактическое время пуска механизма передвижения тележки без груза, с: tп.г=((*I*n/9,55(Тср.п-Тс))+9,55*mт*v2/n((Тср.п-Тс)*(=

=(1,2*0,038*835/9,55(29,16-4,150))+9,55*

*3200*0,552/835(29,16-4,150)*0,85=2,3

Фактическое ускорение грузовой тележки без груза, м/с2 аф=Vпер/tп=0,55/2,3=0,23

Проверяем суммарный запас сцепления. Для этого найдем:

А) суммарную нагрузку на привод колеса без груза, Н:

Fпр=m*zпр*g/z=3200*2*9,81/4=15696

Б) суммарную нагрузку на привод колеса с грузом, Н:

Fпр=m*zпр*g/z=(3200+8000)*2*9,81/4=54936

В) сопротивление передвижению грузовой тележки без груза, Н:

F’пер=kp*m*g(f*dk+2()/Dk=2,5*3200*9,81*(0,02*0,072+2*0,0006)/0,36=

= 575,5

C) сопротивление передвижению грузовой тележки с грузом, Н:

F’пер=kp*m*g(f*dk+2()/Dk=2,5*(3200+8000)*9,81*(0,02*0,072+2*0,0006)/

/0,36=2014

Определим фактический запас сцепления: k(=Fпр*(/F’пер+mg((a/g)-zпр*f*dk/z*Dk)=

=15696*0,15/575,5+3200*9,81((0,23/9,81)-2*0,02*0,072/4*0,36)=1,2

Определение тормозных моментов и выбор тормоза. Максимальное допустимое замедление грузовой тележки при торможении, м/с2: amaxт=((zпр(((/k()-(f*dk/Dk))/z)+(2(+f*dk)/Dk)*g=((2((0,15/1,2)-
(0,02*0,072/0,36))/4)+(2*0,0006+0,02*0,072)/0,36)*9,81=0,66 м/с2

По таблице принимаем амахт=0,15 м/с2

Время торможения грузовой тележки без груза, с: tt=Vфпер/амахт=0,55/0,15=3,66 с.

Сопротивление при торможении грузовой тележки без груза, Н:
Fтрт=mg(f*dk+2()/Dk=3200*9,81(0,02*0,072+2*0,0006)/0,36=230,208 H.

Момент статических сопротивлений на тормозном валу при торможении грузовой тележки, Н*м.

Тст=Fттр*Dk*(/2*up=230,208*0,36*0,85/2*29,6=1,189

Момент сил инерции при торможении грузовой тележки без груза, Н*м:

Тинт=((*I*n/9,55*tт)+9,55*m*v2*(/n*tт=

=(1,2*0,038*835/9,55*3,66)+9,55*3200*0,552*0,85/830*

*3,66=3,6 где: tт- время торможения механизма, с:

Расчетный тормозной момент на валу тормоза, Н*м:

Трт=Тинт – Тст=3,6 – 1,89 =1,77

Из таблицы III 5.13 выбираем тормоз типа ТКГ – 160 с диаметром тормозного шкива Dт=160 мм и наибольшим тормозным моментом Тт=100 Н*м, который следует отрегулировать до Тт=41 Н*м.

Минимальная длина пути торможения, м:

S=V2/R=0,552/1,7=0,17

Фактическая длина пути торможения, м:

Sф=0,5*v*tт=0,5*0,55*3,66=1,0065 >1м

Выбор приборов безопасности

Ограничители высоты подъема грузозахватного устройства.
В качестве исполнительных устройств этих ограничителей применяют преимущественно рычажные и шпиндельные конечные выключатели.
В мостовых и козловых кранах с приводными грузовыми тележками, а так же в стреловых кранах с подъемной стрелой при использовании рычажных выключателей к его рычагу крепят штангу которая может перемещаться в направлении движения рычага выключателя и удерживать рычаг в устойчивом положении при замкнутых контактах.
Движение штанги в боковом направлении ограничено направляющей. При подходе к крайнему верхнему положению обойма грузового крюка поднимает штангу, которая воздействует на рычаг конечного выключателя, отключает привод механизма подъема груза.

Упоры и буфера.
Тупиковые упоры, установленные на концах рельсового кранового пути, предназначены для ограничения пути передвижения крана.
Стационарный упор для рельсовых путей козловых кранов грузоподъемностью 8-
15 т листовой стальной щит усиленный средними и боковым ребром.
Щит и ребра приварены к основанию. Снизу в щите имеется вырез, обеспечивающий установку упора под рельсами. К щиту болтами прикреплен амортизатор. Основание упора крепится на деревянных шпалах рельсового пути костылем, а ребро направлено к рельсу.
Буфера предназначены смягчения возможного удара грузоподъемной машины об упоры. Они могут быть выполнены эластичными, пружинными, пружинно – фрикционными и гидравлическими. В зависимости от установки буфера они могут быть подвижными, неподвижными, и комбинированными. На грузовых тележках кранов подвижные буфера закреплены на боковых сторонах рамы. Эти буфера перемещаются при работе крана вместе с крановым мостом и грузовой тележкой.

ЛИТЕРАТУРА

1. Справочник по расчетам механизмов подъемно – транспортных машин. А.В.
Кузьмин, Ф.Л. Марон. Высшая школа, 1983 г.
2. Справочник по кранам. Александров М.П., Гохберг М.М., том 1,2. -Л:
Машиностроение,1988.
3. Подъёмно-транспортные машины. Атлас конструкций., под ред. Александрова
М.П. и Решетникова Д.Н.-М.:1987.


Похожие работы:

  1. • Отчет по практике по курсу Строительные машины
  2. • Пролетные и консольные краны
  3. • Характеристика козловых кранов
  4. • Кран козловой ПТМ 00.000.ПЗ.
  5. • Организация работы и обслуживание козловых кранов
  6. • Башенные краны и другие машины, используемые в ...
  7. • Склады лесных грузов
  8. • Кран козловой ПТМ 00.000.ПЗ.
  9. • Анализ состояния и перспективы развития морского ...
  10. • Виды технологического оборудования складов
  11. • Расчет механизма подъема тележки консольной с ...
  12. • Расчет технико-экономических показателей участка для ...
  13. • Ремонт крана мостового грузоподъемностью 5т ...
  14. • Использование лесных ресурсов
  15. • Насосная станция второго подъема
  16. • Організація ремонтної служби цеху
  17. • Расчет и проектирование кислородно-конвертерного цеха
  18. • Оптимальное планирование работы флота судоходной компании
  19. • Оптимальное планирование работы флота судоходной компании
Рефетека ру refoteka@gmail.com