Андреев А.А., Савин А.Н.
Целой частью действительного числа x называется наибольшее целое число, не превосходящее x. Обозначается целая часть x символом "[x]". Далее целую часть x будем также называть "антье" (от франц. entire-целый). Например: [3,5]=3, [-3,5]=-4, [3]=3, [-5]=-5.
Наряду с целой частью числа существует понятие дробной части числа, которая обозначается "{x}" и определяется следующим образом: {x} = x-[x]. Так {3,5}=0.5, {-3,5}=-0.5, {5}=0, {-5}=0. Очевидно, что для любого действительного числа x выполняется двойное неравенство:0 Ј {x} < 1.
Антье обладает различными свойствами. Перечислим некоторые из них.
1. Если x і 0, то [x] і 0. Если x < 0, то [x] < 0.
2. Если p- целое число, то [x+p] = [x]+p.
Так как дробная часть числа x равна дробной части числа x+p, то из равенства {x+p} = {x} следует x+p-[x+p] = x-[x], откуда получаем [x+p] = [x]+p.
3. Для любых двух действительных чисел a и b справедливо [a+b] і [a]+[b].
Действительно, a = [a]+{a}, b = [b]+{b}. Следовательно, a+b = [a]+[b]+{a}+ {b}. Так как[a] и [b]- целые числа, то по свойству 2
[a+b] = [[a]+ [b]+{a}+{b}] = [a]+[b]+[{a}+ {b}] і [a]+ [b],
потому что {a},{b} і 0 и по свойству 1 [{a}+ {b}] і 0.
Свойство 3 распространяется также на любое конечное число действительных чисел:
[a+b+...+w] і [a]+[b]+...+ [w].
4. Если [x] = [y], то |x-y| < 1.
Так как x = [x]+{x}, y = [y]+{y}, то |x-y| = |[x]+{x}-[y]-{y}| = |{x}-{y}|