Рефетека.ру / Математика

Реферат: Высшая математика

Высшая математика Содержание Часть I.

Задание №2. Вопрос №9.

Задание №3. Вопрос №1.

Задание №12. Вопрос №9.

Задание №13. Вопрос №2.

Задание №18. Вопрос №9

Часть II.

Задание №8. Вопрос №8.

Задание №12. Вопрос №9.

Задание №14. Вопрос №2.

Задание №15. Вопрос №6.

Задание №18. Вопрос №9.

Дополнительно Часть I.

Задание №7. Вопрос №1.

Задание №9. Вопрос №8.

Задание №11. Вопрос №6.

Задание №15. Вопрос №1.

Дополнительно Часть II.

Задание №7. Вопрос №1.

Задание №9. Вопрос №8.

Задание №11. Вопрос №6.

Задание №15. Вопрос №1.

Часть I. Задание №2. Вопрос №9.

В штате гаража числится 54 водителя. Сколько свободных дней может иметь каждый водитель в месяц (30 дней), если ежедневно 25% автомашин из имеющихся 60 остаются в гараже для профилактического ремонта.

Решение:

машин ежедневно остается в гараже на профилактическом ремонте.

60-15=45

машин с водителями ежедневно уходят в рейс.

54-45=9

водителей из штата гаража ежедневно не выходит в рейс из-за профилактического ремонта автомашин.

количество водителей в течение месяца, не выходящих в рейс из-за профилактического ремонта автомашин.

дней в месяц каждый водитель из штата гаража не выходит в рейс из-за профилактического ремонта автомашин.

Ответ:Каждый водитель из штата гаража в течение месяца может иметь свободных дней.

Задание №3. Вопрос №1.

Построить график функции спроса Q=QD(P) и предложения Q=QS(P) и найдите координаты точки равновесия, если , .

Решение:

Построим в плоскости POQ график функции спроса Q=QD(P) и предложения Q=QS(P). Для этого найдем координаты пересечения с осями координат:


С осью OP (Q=0):

С осью OQ (P=0):

Для Q=QS(P):

Для Q=QD(P):

 

Т.к. функции QS(P) и QD(P) – линейные функции, то их графиками являются прямые, для построения которых достаточно определить их точки пересечения с осями координат. Они найдены, значит можно производить построение графика (рис.1).

Найдем точку равновесия графиков функции спроса и предложения (М), в которой спрос равен предложению. Для этого решим систему:

, из этой системы получаем:

, тогда , значит координаты т.M.

Ответ:Координаты точки равновесия равны ,

Задание №12. Вопрос №9.

Используя правила вычисления производных и таблицу, найдите производные следующих функций:

 

Решение:

Ответ:Производная заданной функции равна

Задание №13. Вопрос №2.

Используя дифференциал функции, найдите приближенное значение

числа:

Решение:

Ответ:Приближенное значение заданного числа равно 1,975.

Задание №18. Вопрос №9

Исследуйте функцию и постройте ее график:

Решение:

Область определения данной функции: . Найдем точки пересечения с осями координат:

С осью OY :

С осью OX (y=0):

, дробь равна нулю, если ее числитель равен нулю, т.е.

Точка пересечения:

Точки пересечения: ,

Т.к. все точки входят в область значений функции, то точек разрыва НЕТ. Вертикальных асимптот у графика функции нет, т.к. нет точек разрыва. Правая и левая наклонные асимптоты имеют уравнение: , где:

т.к. правая и левая наклонные асимптоты совпадают, то уравнение имеет вид: , т.е. - уравнение горизонтальной асимптоты.

Найдем точки экстремума заданной функции. Для этого найдем ее первую производную:

Т.к. если у функции есть точка экстремума, то в этой точке первая производная функции равна нулю, т.е. :

, дробь равна нулю, если ее числитель равен нулю, т.е. , отсюда x=0, следовательно , значит точка - точка экстремума функции.

На участке производная > 0, значит, при , заданная функция возрастает.

На участке производная < 0, значит, при , заданная функция убывает (рис 2.).

Следовательно - точка максимума заданной функции .

Найдем участки выпуклости/вогнутости заданной функции. Для этого найдем ее вторую производную:

Т.к. если у функции есть точка перегиба, то в этой точке вторая производная функции равна нулю, т.е. :

, дробь равна нулю, если ее числитель равен нулю, т.е. , значит , тогда , отсюда

Отсюда , .

На участке производная >0, значит это участок вогнутости графика функции.

На участке производная >0,

значит это тоже участок вогнутости графика функции.

Следовательно, при график заданной функции является вогнутым.

На участке производная 0, то экстремум есть, а т.к.

Рефетека ру refoteka@gmail.com