Рефетека.ру / Математика

Контрольная работа: Высшая математика в экономике

Задание 1

Задание 2

Задание 3

Задание 4

Задание 5

Задание 6

Задача 7

Задание 8

Литература


Задание 1


Мебельной фабрике для изготовления комплектов корпусной мебели необходимо изготовить их составные части - книжный шкаф, шифоньер, тумба для аппаратуры. Эти данные представлены в таблице:


Наименование составных частей Виды комплектов корпусной мебели

1 2 3 4
Книжный шкаф 1 1 1 1
Шифоньер 1 1 1 1
Пенал 0 0 1 1
Тумба 0 1 0 1

В свою очередь, для изготовления этих составных частей необходимы три вида сырья - стекло (в кв. м), ДСП (в кв. м), ДВП (в кв. м), потребности в котором отражены в следующей таблице:


Вид сырья Составные элементы

Кн. шкаф Шифоньер Пенал Тумба
Стекло 0,9 0 0,2 1,2
ДСП 6 6,5 6 2,5
ДВП 2,9 1,7 1,4 0,6

Требуется:

1) определить потребности в сырье для выполнения плана по изготовлению стенок первого, второго, третьего и четвертого вида в количестве соответственно x1, x2, x3 и x4 штук;

2) провести подсчеты для значений x1 = 50, x2 = 30, x3 = 120 и x4=80.

Решение: составим условия для определения числа составных частей в зависимости от числа и вида комплектов мебели. Пусть n1, n2, n3 и n4 - число шкафов, шифоньеров, пеналов и тумб, соответственно.

Тогда условия будут выглядеть следующим образом:


n1 = x1 + x2

n2 = x1 + x2 + x4

n3 = x1 + x2 + x3

n4 = x1 + x2 + x3 + x4


Составим условия определяющие потребности в сырье в зависимости от вида деталей. Пусть y1, y2 и y3 - потребности в стекле, ДВП и ДСП, соответственно:


y1 = 0,9n1 + 0,2n3 + 1,2n4

y2 = 6n1 + 6,5n2 + 6n3 + 2,5n4

y3 = 2,9n1 + 1,7n2 + 1,4n3 + 0,6n4


Теперь подставим вместо ni - полученные ранее равенства.


y1 = 0,9· (x1 + x2) + 0,2· (x1 + x2 + x3) + 1,2· (x1 + x2 + x3 + x4)

y2 = 6· (x1 + x2) + 6,5· (x1 + x2 + x4) + 6· (x1 + x2 + x3) + 2,5· (x1 + x2 + x3 + x4)

y3 = 2,9· (x1 + x2) + 1,7· (x1 + x2 + x4) + 1,4· (x1 + x2 + x3) + 0,6· (x1 + x2 + x3 + x4)


Приведем подобные


y1 = 2,3x1 + 2,3x2 + 1,4x3 + 1,2x4, y2 = 21x1 + 21x2 + 8,5x3 + 9x4

y3 = 6,6x1 + 6,6x2 + 2x3 + 2,3x4


Проведем подсчеты для значений


x1 = 50, x2 = 30, x3 = 120 и x4 = 80

y1 = 2,3 * 50 + 2,3 * 30 + 1,4 * 120 + 1,2 * 80 = 448 кв. м.

y2 = 21 * 50 + 21 * 30 + 8,5 * 120 + 9 * 80 = 3420 кв. м.

y3 = 6,6 * 50 + 6,6 * 30 + 2 * 120 + 2,3 * 80 = 952 кв. м.

Задание 2


Пусть aij - количество продукции j, произведенной предприятием i, а bi - стоимость всей продукции предприятия i исследуемой отрасли. Значения aij и bi заданы матрицами A и В соответственно. Требуется определить цену единицы продукции каждого вида, производимой предприятиями отрасли. В ходе выполнения задания необходимо составить систему уравнений, соответствующую условиям, и решить ее тремя способами (матричный метод, метод Крамера, метод Гаусса).


Высшая математика в экономике, Высшая математика в экономике


Решение:

Составим систему уравнений:


Высшая математика в экономике


Матричное уравнение выглядит следующим образом:


A · X = B


Домножим слева каждую из частей уравнения на матрицу A-1


A-1 · A · X = A-1 · B;

E · X = A-1 · B;

X = A-1 · B


Найдем обратную матрицу A-1


Δ = 4 * 12 * 4 + 12 * 7 * 13 + 14 * 7 * 9 - 9 * 12 * 7 - 12 * 14 * 4 - 4 * 7 * 13 = 374

Высшая математика в экономике;

Высшая математика в экономике

Высшая математика в экономике

X =Высшая математика в экономике·Высшая математика в экономике = Высшая математика в экономике = Высшая математика в экономике


Решим систему методом Крамера


Δ = 374

Δ1 = Высшая математика в экономике= 97 * 12 * 4 + 129 * 7 * 13 + 14 * 7 * 109 - 109 * 12 * 7 - 129 * 14 * 4 - 97 * 7 * 13 = 1870

Δ2 = Высшая математика в экономике= 4 * 129 * 4 + 12 * 7 * 109 + 97 * 7 * 9 - 9 * 129 * 7 - 12 * 97 * 4 - 4 * 7 * 109 = 1496

Δ3 = Высшая математика в экономике= 4 * 12 * 109 + 12 * 97 * 13 + 14 * 129 * 9 - 9 * 12 * 97 - 12 * 14 * 109 - 4 * 129 * 13 = 1122

x1 = Δ1/Δ = 1870/374 = 5, x2 = Δ2/Δ = 1496/374 = 4

x3 = Δ3/Δ = 1122/374 = 3


Решим систему методом Гаусса


Высшая математика в экономике => Высшая математика в экономике =>

Высшая математика в экономике Высшая математика в экономике =>Высшая математика в экономике

=>Высшая математика в экономике => Высшая математика в экономике


Задание 3


Найти частные производные первого и второго порядков заданной функции:


Высшая математика в экономике


Решение:


Высшая математика в экономике

Высшая математика в экономике

Высшая математика в экономике

Высшая математика в экономике

Высшая математика в экономике


Задание 4


Задана функция спроса Высшая математика в экономике, где p1, p2 - цены на первый и второй товары соответственно.

Основываясь на свойствах функции спроса, определить: какой товар является исследуемым, а какой альтернативным и эластичность спроса по ценам исследуемого и альтернативного товаров.

В процессе решения отметить, какими являются данные товары - взаимозаменяемыми или взаимодополняемыми.


Высшая математика в экономике


Решение:

Эластичность спроса по цене равна первой производной от функции спроса:


Высшая математика в экономике


эластичность отрицательная, следовательно, первый товар - исследуемый.


Высшая математика в экономике


эластичность отрицательная.

Товары являются товарами дополнителями, т.к рост цен на второй товар, как и рост цен на первый товар приводит к снижению спроса.


Задание 5


В таблице приведены данные о товарообороте магазина за прошедший год (по месяцам). Провести выравнивание данных по прямой с помощью метода наименьших квадратов. Воспользовавшись найденным уравнением прямой, сделать прогноз о величине товарооборота через полгода и год. Сопроводить задачу чертежом, на котором необходимо построить ломаную эмпирических данных и полученную прямую. Проанализировав чертеж, сделайте выводы.


Месяц 1 2 3 4 5 6 7 8 9 10 11 12
Товарооборот, (тыс. р) 22 4,4 37 57,4 55,4 72 91,6 78,4 58 59 42 37,6

Решение:

Рассчитаем параметры уравнения линейной парной регрессии.

Для расчета параметров a и b уравнения линейной регрессии у = а + bx решим систему нормальных уравнений относительно а и b (она вытекает из метода наименьших квадратов):


Высшая математика в экономике


По исходным данным рассчитываем Sх, Sу, Sух, Sх2, Sу2.


t y x yx x2 y2

Высшая математика в экономике

1 22,0 1 22,0 1 484,00 36,688
2 4,4 2 8,8 4 19,36 39,332
3 37,0 3 111,0 9 1369,00 41,976
4 57,4 4 229,6 16 3294,76 44,62
5 55,4 5 277,0 25 3069,16 47,264
6 72,0 6 432,0 36 5184,00 49,908
7 91,6 7 641,2 49 8390,56 52,552
8 78,4 8 627,2 64 6146,56 55, 196
9 58,0 9 522,0 81 3364,00 57,84
10 59,0 10 590,0 100 3481,00 60,484
11 42,0 11 462,0 121 1764,00 63,128
12 37,6 12 451,2 144 1413,76 65,772
Итого 614,8 78 4374 650 37980,16 614,76

Высшая математика в экономике; Высшая математика в экономике; Высшая математика в экономике;

Высшая математика в экономике; Высшая математика в экономике


Уравнение регрессии: Высшая математика в экономике= 34,06 + 2,642 · х


Рассчитаем по данному уравнению значения для Высшая математика в экономике и запишем их в дополнительный столбец исходных данных. Найдем прогноз на полгода вперед:


Высшая математика в экономике= 34,06 + 2,642 * 18 = 81,636 тыс. руб.


Найдем прогноз на год вперед:


Высшая математика в экономике= 34,06 + 2,642 * 24 = 97,5 тыс. руб.


Высшая математика в экономике


Полученные графики говорят о плохом отражении исходных данных уравнением прямой. Возможно это связанно с наличием сезонности в товарообороте. Тогда прямая линия является уравнением тренда.


Задание 6


Исследовать на экстремум следующую функцию:


Высшая математика в экономике;


Решение:

Найдем первые частные производные и определим точки потенциальных экстремумов (там где производные равны нулю).


Высшая математика в экономике= 2x + y - 4; Высшая математика в экономике= 4y + x - 2;

Высшая математика в экономике; Высшая математика в экономике; Высшая математика в экономике; Высшая математика в экономике; Высшая математика в экономике


Найдем вторые производные и их значения в точке (2; 0)


Высшая математика в экономике= 2 = А, Высшая математика в экономике= 1 = B

Высшая математика в экономике= 4 = C, Δ = AC - B2 = 2 * 4 - 1 = 7


Т.е. в точке (2; 0) имеется экстремум.

Т.к. А > 0, то точка (2; 0) минимум функции.


Задача 7


Пусть функция полезности задана как


Высшая математика в экономике


где x и y - количество товаров А и В, приобретаемых потребителем, а значения функции полезности численно выражают меру удовлетворения покупателя. При данной стоимости единицы товаров А и В, общая сумма, выделяемая покупателем на их покупку, составляет 140 рублей. При каком количестве товаров А и В полезность для потребителя максимальна. А = 11, В = 17.

Решение:

Полезность максимальна при равенстве первых производных:


Высшая математика в экономике= Высшая математика в экономике; Высшая математика в экономике= Высшая математика в экономике; Высшая математика в экономике = Высшая математика в экономике; Высшая математика в экономике = Высшая математика в экономике


Ограничение стоимости задается неравенством 11x + 17y ≤ 140


Составим систему.


Высшая математика в экономике; Высшая математика в экономике; Высшая математика в экономике; Высшая математика в экономике


Максимальная полезность будет достигнута при потреблении 4,46 ед. А и 5,35 ед.в.


Задание 8


Заданы функции спроса и предложения в зависимости от количества товара Q: Высшая математика в экономике и Высшая математика в экономике. Под функциями спроса и предложения будем понимать функциональную зависимость цены от количества товара на рынке. Определить излишки потребителя и излишки производителя при равновесном состоянии спроса и предложения.


Высшая математика в экономике и Высшая математика в экономике,


Решение: найдем равновесное состояние спроса и предложения:


D (Q) = S (Q); Высшая математика в экономике = Высшая математика в экономике; Высшая математика в экономике; - Высшая математика в экономикеt2 - 10t + 200 = 0

t1 = - 34,685 и t2 = 12,685, t1 - не удовлетворяет условию

Высшая математика в экономике=12,685; Q = 160,9 ед.

При этом цена составит: Р = 10 * 12,685 = 126,85 ден. ед.


Излишки потребителя равны площади фигуры ограниченной сверху кривой спроса, снизу равновесной ценой и слева нулевым выпуском. Найдем излишки потребителя:


Sпотр = Высшая математика в экономике- 126,85 · 160,9 = Высшая математика в экономике- 20410,165 =

= 200 * 160,9 - 5/22 * 160,9 - 20410,165 = 11733,27 ден. ед.


Излишки производителя равны площади фигуры ограниченной сверху равновесной ценой, слева нулевым выпуском и снизу кривой предложения. Найдем излишки производителя:


Sпроизв = 126,85 · 160,9 - Высшая математика в экономике = 20410,165 - Высшая математика в экономике=

= 20410,165 - 5 * 12,6853 = 10204,5 ден. ед.

Литература


Н.Ш. Кремер. Высшая математика для экономистов. - М.: Банки и биржи, ЮНИТИ, 1997.

Н.Ш. Кремер. Практикум по высшей математике для экономистов. - М.: ЮНИТИ-ДАНА, 2007.

И.А. Зайцев. Высшая математика. -М.: Высшая школа, 1998.

Математический анализ и линейная алгебра. Учебное методическое пособие. Под ред. Н.Ш. Кремера. - ВЗФЭИ, 2006.

Похожие работы:

  1. • Математические методы в экономике
  2. • Психологические аспекты экономических решений
  3. • Голод 1932-1933 гг. в Украине
  4. • Социологические обследования и исследования
  5. • Высшая математика в профессиональной деятельности ...
  6. • Методические материалы по учебной дисциплине "Высшая ...
  7. • Применение методов дискретной математики в экономике
  8. • О воспитательном эффекте уроков математики
  9. • Очерк развития математики
  10. • К вопросу об использовании компьютерного тестирования в ...
  11. • Основы высшей математики
  12. • Преподавание математики в школе
  13. •  ... обоснование внеклассной работы по математике
  14. • Женщины-математики
  15. • Философия математики
  16. • Профессиональная подготовка учителя математики: стандарты ...
  17. • История математики
  18. • Общий курс высшей математики
  19. •  ... как основа управления процессом обучения математике
Рефетека ру refoteka@gmail.com