Для иллюстраций условий и решений многих задач люди пользуются графиками. По своей сути графики являются набором из множества точек и отрезков прямых соединяющих эти точки. Возникает вопрос: подчиняются ли графики каким-либо законам и обладают ли они какими-нибудь свойствами? Этот вопрос был поставлен Д. Кенигом, который впервые объединил все схематические изображения, состоящие из совокупности точек и линий, общим термином “граф” и рассмотрел граф как самостоятельный математический объект. Теория графов нашла свое применение в решении целого ряда задач. В моем курсовом проекте будет рассмотрен раздел теории графов посвященный максимальным полным подграфам, тоесть кликам. Целью проекта является написание программы на языке программирования, которая из заданного графа выделяла бы клику с заданным числом вершин.
Допустим задан граф G=(Х,Г). Довольно часто возникает задача поиска таких подмножеств множества вершин Х графа G, которые обладают определенным, наперед заданным свойством. Например, какова максимально возможная мощность такого подмножества S Í Х, для которого порожденный подграф S является полным? Ответ на этот вопрос дает кликовое число графа G. Это число и связанное с ним подмножество вершин описывает важные струтурные свойства графа и имеет непосредственные приложения при проведение проектного планирования исследовательских работ, в кластерном анализе и численных методах таксономии, паралельных вычмслениях на ЭВМ, при размещении предприятий обслуживания, а также источников и потребителей в энергосистемах.
Часть 1. Теоретическая часть к курсовому проекту
Графом G(X,U) называется совокупность двух объектов некоторого множества X и отображения этого множества в себя Г.
При геометрическом представлении графа элементы множества Х изображаются точками плоскости и называются вершинами графа. Линии, соединяющие любые пары точек x и y, из которых у является отображением х, называются дугами графа. Дуги графа имеют направление, обозначаемое стрелкой, которая направлена острием от элемента х к его отображению у.
Две вершины А и В являются граничными вершинами дуги, если А- начало дуги, а В ее конец.
Смежными называются различные дуги, имеющие общую граничную точку. Две вершины х и у смежны, если они различны и существует дуга, идущая от одной из них к другой .
Вершина называется изолированной, если она не соединена дугами с другими вершинами графа.
Если дуга U исходит из вершины х или заходит в х, то дуга U называется инцидентной вершине х, а вершины х инцидентной дуге U. Общее число дуг, инцидентной вершине х, являются степенью вершины х Р(х). Вершины, степень которых Р(х)>2, называются узлом, а со степенью Р(х)