ВВЕДЕНИЕ
Грузоподъемные машины являются составной частью каждого производства и играют важную роль в механизации погрузочных работ.
Курсовое проектирование грузоподъемных машин – первая самостоятельная разработка машины в целом с взаимосвязанными механизмами, способствующая дальнейшему развитию у студентов конструкторских навыков. При работе над проектом возникает много вопросов по выбору схемы и параметров механизмов, их компоновки, последовательности расчета и т.д. В методических указаниях приведены необходимые рекомендации и нормативные данные, некоторые справочные материалы и последовательность расчета.
Расчетную часть проекта выполняют в виде пояснительной записки, которая должна содержать: задание на проект; введение; схемы механизмов тележки с описанием их назначения, устройства и особенностей; расчет механизмов, узлов и деталей с приведением расчетных схем и обоснованием принятых параметров и допускаемых напряжений (расчеты сопровождают ссылками на литературу); список использованной литературы; оглавление, содержащее наименование всех основных разделов записки (помещают в конце ее).
Пояснительную записку выполняют на листах писчей бумаги формата А4 (297 . 210) в соответствии с ЕСКД. Текст пишут чернилами, схемы и эскизы выполняют в карандаше под линейку с проставлением всех размеров и обозначений. При использовании стандартных и нормализованных узлов в записке приводят их характеристику.
В аналитических расчетах сначала записывают формулу в буквенных выражениях, а затем подставляют числовые значения и записывают результаты. Промежуточные вычисления не приводят. Все символы, входящие в формулы, должны иметь объяснения в тексте. Ссылки на литературные источники, стандарты и нормали заключают в квадратные скобки, эти ссылки должны соответствовать прилагаемому в конце записки списку литературы.
МЕХАНИЗМ ПОДЪЕМА
Последовательность расчета
Принять схему механизма, вычертить его с заданным типом крюковой подвески (приложения, рис П.1), привести его описание.
Выбрать канат, блоки, барабан, крюк, упорный подшипник (устанавливается под гайку крюка).
Составить эскиз крюковой подвески и рассчитать ее элементы – траверсу, ось блоков, подшипники блоков и серьгу (рис. П.2).
Выполнить кинематический и силовой расчет привода механизма: выбрать двигатель, редуктор, тормоз, муфты, проверить двигатель на нагрев по среднеквадратичному моменту с учетом графика загрузки механизма (рис. П.5) и двигателя (рис. П.6).
Определить размеры барабана и проверить на прочность его элементы.
Методика расчета
Задано: грузоподъемность (т), высота подъема (м), скорость подъема (м . с-1), количество ветвей полиспаста , режим работы, тип крюковой подвески.
Схема механизма1 (рис.1)
Электродвигатель 4 переменного тока соединяется через вал – вставку 3 с помощью зубчатых муфт с двухступенчатым редуктором 1. Редукторная полумуфта 2 вала вставки используется как тормозной шкив нормально замкнутого колодочного тормоза. Выходной вал редуктора соединятся с барабаном 5 также зубчатой муфтой, у которой одна из полумуфт выполняется как одно целое с валом редуктора, а вторая – крепится непосредственно к барабану. На барабан навивается канат со сдвоенного полиспаста.
Кратность полиспаста
где - количество канатов полиспаста, наматываемых на барабан; для сдвоенного полиспаста .
КПД полиспаста1
,
где - КПД блока; принимаем = [1, табл.2.1.].
Максимальное натяжение каната
Расчетная разрывная сила
,
где - коэффициент запаса прочности; по правилам2 Госгортехнадзора [1, табл. 2.3] при режиме работы. Выбираем канат [1, табл. ] типа конструкции ГОСТ : диаметр каната = мм, разрывная сила = при маркировочной группе .
Условное обозначение: канат [1, с. 56].
Диаметр блока (барабана)
,
где - коэффициент долговечности каната; принимаем [1,табл.2.7] при режиме работы.
Выбираем [ , табл. П.1] диаметр блока по дну ручья , при длине ступицы мм.
Выбираем1 диаметр барабана (по дну канавок) мм [ ].
Для номинальной грузоподъемности т и режиме работы выбираем [ , табл.П.2] однорогий крюк по ГОСТ с размерами: , , , , мм, резьба .
Высота гайки крюка из
условия прочности на смятие резьбы
=
где и - параметры резьбы; - допускаемое2 напряжение; для резьбы , , мм [2, табл.14], = МПа [];
конструктивных1 соображений =
принимаем = мм [3]
Наружный диаметр гайки
принимаем мм [3]
Расчетная нагрузка на упорный подшипник
,
где - коэффициент безопасности, принимаем2
Выбираем3 [2, табл. 15] шарикоподшипник упорный одинарный ГОСТ 6874-75: , , мм, кН.
Крюковая подвеска1
Нормальная подвеска состоит из блоков 2, оси блоков 1, траверсы 4 и серег 3 (рис. 2).
3.1 Конструктивные размеры2:
Ширина траверсы
где - наружный диаметр упорного подшипника
принимаем мм [3]
диаметр3 отверстия
принимаем мм
длина4 траверсы
принимаем = мм
пролет траверсы
,
где - толщина серьги; принимаем = мм [табл. П.3]
принимаем = мм
длина консоли
принимаем = мм.
Расстояния
принимаем , мм
3.2 Траверса
Для изготовления выбираем сталь по ГОСТ : , , МПа (табл.4)
Допускаемое напряжение изгиба при пульсирующем цикле изменения напряжений
,
где К – коэффициент концентрации напряжений; - запас прочности; принимаем1 К= [2, табл. 15], (табл. П.5)
Реакции опор
Изгибающие моменты в сечении
АА
ББ
Высота траверсы из расчета на изгиб
принимаем мм [3]
Диаметр цапфы из расчета на
изгиб
смятие ,
где - допускаемое напряжение; принимаем1 = МПа.
принимаем2 = мм.
3.3 Ось блоков
Для изготовления применяем3 сталь по ГОСТ := , , МПа (табл.П.4).
Реакции опор Н.
Изгибающие моменты1
Диаметр2 оси
принимаем = мм
Подшипники блоков
Радиальная нагрузка на подшипник
,
где - число блоков подвески; = .
Эквивалентная нагрузка
где - нагрузки, соответствующие времени их действия за весь срок службы подшипника ; принимаем , , , (рис. П.2).
Приведенная нагрузка
,
где - коэффициент радиальной нагрузки, - кинематический коэффициент вращения, - температурный коэффициент; принимаем при действии только радиальной нагрузки , при вращении наружного кольца подшипника , при температуре
Частота1 вращения блоков
, мин-1
Требуемая2 динамическая грузоподъемность шарикового однорядного подшипника
,
где - срок3 службы подшипника; [1, с.19].
Выбираем4 шарикоподшипник радиальный однорядный : , , мм, С = кН [2].
3.4 Серьга
Для изготовления серьги выбираем5 сталь по ГОСТ : , , МПа (табл. П.4.).
Допускаемое напряжение на растяжение
Допускаемое напряжение на смятие МПа
ширина серьги ;
принимаем мм [3]
высота проушины ;
принимаем мм [3]
Напряжение растяжения
,
что меньше (больше) МПа.
Напряжение в проушине1
,
где - давление в зоне контакта2 (оси, цапфы) и серьги; принимаем МПа.
4.1 Двигатель
Расчетная мощность
,
где - КПД механизма; принимаем1 [1, табл.1.18].
Выбираем2 электродвигатель ; номинальная мощность при ПВ = % кВт, частота вращения мин-1, момент инерции ротора = кгЧм2, максимальный (пусковой) момент , размер , диаметр вала мм [].
Условное обозначение: двигатель [1, с. 38].
4.2 Редуктор
Частота вращения барабана3
, мин-1
Передаточное отношение
Минимально возможное суммарное межосевое расстояние редуктора
,
где - габаритный размер барабана с учетом узла крепления каната на барабане; принимаем при = = мм [1, табл.ІІІ. 2.1].
Выбираем1 редуктор : межосевое расстояние мм, передаточное число , мощность на быстроходном валу при режиме работы и частоте вращения мин-1 кВт, диаметр быстроходного вала мм [ ], размеры выходного вала с зубчатым венцом , , , модуль мм, число зубьев = [2, табл.6].
Условное обозначение: редуктор [1, с.41].
Предельно допустимый момент редуктора
где к – коэффициент режима работы; принимаем при режиме работы к = [1, с.41].
Средний пусковой момент двигателя
,
где - номинальный момент двигателя; , Н . м
Таким образом, принятый редуктор1 условиям перегрузки в период пуска
Фактическая скорость подъема груза
,
Отклонение2 от заданной скорости
4.3 Тормоз
Статический момент при торможении
Тормозной момент
,
где - коэффициент запаса торможения; принимаем = при режиме работы [1, табл.2.9].
Выбираем3 тормоз с тормозным моментом НЧм [ ].
4.4 Муфты вала – вставки
Расчетный момент
,
где - коэффициенты, учитывающие соответственно степень ответственности механизма и режима работы, - номинальный момент на валу двигателя; принимаем [1, табл.1.35] для механизма подъема , при режиме работы .
Выбираем1 муфту зубчатую с тормозным шкивом (табл.П.6.): момент [Т] = НЧм, диаметр тормозного шкива , диаметр отверстия шкива , диаметр отверстия полумуфты мм, момент инерции .
Условное обозначение: муфта зубчатая с тормозным шкивом [1, с.41…43].
Выбираем2 муфту зубчатую типа МЗП (табл.П.7) по ГОСТ : момент , диаметр отверстия , мм, момент инерции .
Условное обозначение: муфта зубчатая МЗП [1, с.41…43].
4.5 Проверка электродвигателя на нагрев
4.5.1 Кран работает с грузовым электромагнитом. В этом случае подъемная сила электромагнита
Выбираем1 грузовой электромагнит типа [табл. П.8]: подъемная сила кН, масса = т.
Полезная номинальная грузоподъемность
В соответствии с графиком загрузки механизма подъема (рис. П.5)
,
где - относительная2 масса груза; для режимаработы , , .
КПД3 механизма [1, рис. 1.2]
при
при
Угловая скорость вала двигателя
Статический момент1 на валу двигателя при подъеме груза
,
При опускании груза
,
Момент инерции движущихся масс, приведенный к валу двигателя,
,
где - коэффициент, учитывающий моменты инерции масс механизма, вращающихся медленнее, чем вал двигателя; принимаем2 .
Время пуска3 при
подъеме груза
опускании груза
Результаты расчета сведены в таблицу
Показатель | Обозначение | Единица | Результаты при массе, кг | ||
КПД | - | ||||
Момент при подъеме | |||||
Момент инерции | |||||
Время пуска при подъеме | С | ||||
Момент при опускании | |||||
Время пуска при опускании | С |
Среднеквадратичный момент
,
где - суммарное время пуска в течении одного цикла, - время установившегося движения, - коэффициент, учитывающий ухудшение условий охлаждения двигателя при пуске, - общее время установившегося движения; принимаем для закрытого двигателя [1, с.36], (здесь Н – высота подъема груза), с учетом графика загрузки электродвигателя (рис. П.6)
,
,
Эквивалентная мощность1, кВт
, кВт
Ускорение2 при пуске, м . с-2
,
Время3 торможения при опускании номинального груза
, с
Путь торможения [1, табл. 1.22]
Замедление при торможении
,
4.5.2 Кран работает без магнита. В этом случае и , , , .
Далее расчет выполнить по приведенной выше методике (П.4.5.1.).
Размеры:
диаметр1 по дну канавок мм.
шаг нарезки мм [1, табл. 2.8.].
длина участка барабана для узла крепления конца каната 3
длина нарезки на половине барабана
.
Принимаем мм.
длина2 участка между нарезками =
Расчетная длина барабана
.
Принимаем3 мм.
Свободные участки по краям барабана
5.1 Сварной барабан
Изготовляем из стали ГОСТ : , МПа (табл. П.4.)
Толщина1 стенки из расчета на сжатие
,
где - допускаемое напряжение; [1, с.62].
Толщина стенки из конструктивных соображений
принимаем2 мм [3].
5.1.1 Эскизная3 компановка (рис. 3)
По диаметру расточки мм (табл.П.9) выходного вала редуктора выбираем4 радиальный сферический двухрядный подшипник [2, табл.] : , , , мм, , кН. Совмещаем на общей оси середину подшипника, зубчатого венца вала редуктора 2 и венца 1 барабана [2, табл.13]. Торец барабана оказывается на расстоянии мм [1, табл. ІІІ.2.1] от этой оси.
Основные размеры5
Принимаем мм
Из компоновки
5.1.2 Прочность барабана
Рассматриваем барабан как балочку на шарнирно-подвижных опорах А и В, к которой приложены силы1 .
Реакции опор (по уравнениям статики)
Проверка
Изгибающие моменты
Крутящие моменты .
Эквивалентный момент
Эквивалентное напряжение2 в стенке
,
где - эквивалентный момент сопротивления поперечного сечения барабана изгибу
Здесь
5.1.3 Прочность полуоси
Выполняем для правой (по рис.3) полуоси, имеющей большие осевые размеры. Выбираем материал сталь ГОСТ с пределом текучести МПа (табл. П.4.)
Изгибающий момент в сечении АА
Напряжение изгиба
5.1.4 Прочность сварного шва
где - катет шва; принимаем .
5.1.5 Долговечность опор
Проверяем для опоры В, т.к. этот подшипник вращается1.
Частота вращения2 барабана
, мин-1
Требуемая динамическая грузоподъемность
кН
где - см. п. 3.4.
5.1.6 Крепление конца каната
Выполняем прижимной планкой с полукруглой канавкой [2, табл. 8] для каната диаметром мм. Планка крепится винтом М из стали ( МПа.)
Натяжение каната в месте крепления3
,
где - коэффициент трения между канатом и барабаном, - угол обхвата барабана неприкосновенными витками; принимаем , [1, с.63].
Сила затяжки винта
,
где - число болтов в креплении, - коэффициент трения между канатом и планкой, - угол обхвата барабана витком крепления каната; принимаем1 , , [1, с.63].
Сила, изгибающая винт,
Суммарное напряжение в каждом винте2
,
где - коэффициент надежности крепления, - расстояние от головки винта до барабана, - внутренний диаметр резьбы винта; принимаем , мм, .
5.2 Литой барабан
Изготавливаем из серого чугуна ГОСТ (табл. П.4) с пределом прочности сжатия МПа.
Толщина стенки из расчета на сжатие
,
где - допускаемое напряжение; для чугуна .
Толщина1 стенки из условия технологии изготовления литых барабанов
Принимаем2 мм [3].
5.2.1 Эскизная компановка3 (рис. ).
По диаметру расточки мм (табл.П.9) выходного вала редуктора4 выбираем5 : , , , мм, , кН. Совмещаем на общей оси середину подшипника, зубчатого венца 1 вала редуктора и венца 2 барабана [2, табл.13].
Основные размеры6
принимаем мм.
Из компоновки , = , , , мм.
5.2.2 Прочность барабана
Рассматриваем барабан как балочку на шарнирно-подвижных опорах А и В, расположенных по середине ступиц барабана.
Реакции опор
Проверка
Изгибающие моменты
Крутящие моменты
Эквивалентные моменты
Эквивалентное напряжение1 в стенке
,
где - эквивалентный момент сопротивления поперечного сечения барабана изгибу
,
где
5.2.3 Прочность оси
Для изготовления принимаем сталь ГОСТ с пределом текучести МПа [ ].
Реакции опор
Проверка
Изгибающие моменты
Расчетное напряжение2
т ,
где - диаметр оси.
МЕХАНИЗМ ПЕРЕДВИЖЕНИЯ ТЕЛЕЖКИ
Последовательность расчета
Выбор схемы механизма, ее описание.
Выбор массы тележки, ходовых колес и определение сопротивления передвижению.
Выбор электродвигателя, редуктора, муфт, тормоза.
Проверка двигателя на пусковой режим и устойчивость процесса пуска.
Проверка двигателя на нагрев.
Расчет ходовых колес.
Если по условиям пуска получаются неприемлемые время пуска и ускорение, принять более мощный двигатель, проверить пригодность ранее принятых редуктора (по и ) и тормоза (по ).
Методика расчета
Задано: грузоподъемность (т), скорость передвижения (), режим работы.
Схема1 механизма (рис.4).
Электродвигатель через муфту соединен с вертикальным редуктором ВК. Выходной вал редуктора муфтами и промежуточными валами соединен с ходовыми колесами.
Масса тележки [1. с. 13].
Наибольшая нагрузка на одно колесо
где - количество колес тележки; принимаем = 4.
Выбираем1 [1, табл.III.2.3] при заданной скорости передвижения и режиме работы колесо : диаметр мм, допускаемая нагрузка кН, тип рельса . В опорах колеса установлены подшипники2 (табл.П.10) с внутренним диаметром мм; диаметр реборд мм (табл.П.10).
Сопротивление передвижению с номинальным грузом
, кН,
где - коэффициент трения в опорах колеса, - коэффициент трения качения колеса по рельсу, - коэффициент, учитывающий трение реборд о рельс, - уклон пути; принимаем [1, с.33], мм при мм и рельсе1 с головкой [1, табл.1.28], при подшипниках качения [1, с.33], [1, табл. 2.10].
3.1 Электродвигатель
Статическая мощность привода
, кВт ,
где - КПД механизма передвижения; принимаем [1, табл. 1.18]. Выбираем1 [1, табл.ІІІ.3.5] двигатель : номинальная мощность при ПВ = % кВт, частота вращения мин-1, максимальный (пусковой) момент , момент инерции редуктора , мощность при ПВ = 25% кВт, диаметр вала , высота центров мм [1, табл. ІІІ.3.6].
Условное обозначение: [1, с.38].
3.2. Редуктор
Частота вращения ходовых колес
, мин-1
Передаточное отношение привода
Минимально возможное суммарное межосевое расстояние редуктора
Выбираем1 [ ] редуктор : передающая мощность кВт при режиме работы, частота вращения мин-1. передаточное число , диаметр входного вала мм [ ], диаметр выходного вала мм [ ].
Фактическая скорость передвижения
,
3.3 Муфта на быстроходном валу
Номинальный момент на валу
Расчетный момент
,
где - коэффициент, учитывающий степень ответственности механизма, - коэффициент, учитывающий режим работы; принимаем [1, табл.1.35] , .
Выбираем1 муфту [ ]: номинальный момент , момент инерции , диаметр отверстий и мм.
3.4 Муфта на тихоходном валу
Расчетный момент
,
где - момент на валу редуктора.
,
где - КПД редуктора; принимаем . [1, табл. 1.18]
Выбираем муфту [ ] ; , , , мм.
3.5 Тормоз
Максимально допустимое замедление при движении тележки без груза
где - число приводимых колес, - коэффициент сцепления ходовых колес с рельсами; принимаем , [1, с.33].
Время торможения
Сопротивление1 передвижению тележки без груза при торможении
Тормозной момент при движении без груза
Выбираем2 тормоз с тормозным моментом , который следует отрегулировать до .
Рекомендуемая длина пути торможения [1, табл. 1.23],
где .
Фактическая длина пути торможения
Максимально допустимое ускорение при пуске
где - минимально допустимое значение коэффициента запаса сцепления; принимаем [1, табл. 1.27].
Наименьшее допускаемое время пуска
Средний пусковой момент двигателя
где - минимальная кратность пускового момента; принимаем = [1, с.35].
Сопротивление передвижению при работе без груза
Статический момент при работе без груза
Момент инерции вращающихся масс привода
Фактическое время1 пуска при работе без груза
Фактическое ускорение2 при пуске и работе без груза
Фактический запас3 сцепления приводных колес с рельсами при работе без груза
Проверка1 двигателя на нагрев
Статический момент на валу двигателя при номинальной нагрузке
Коэффициент перегрузки двигателя
Перегрузочная способность двигателя
Момент инерции движущихся масс, приведенный к валу двигателя
Время пуска
где - относительное время пуска2; принимаем при и [ ], .
Среднее время рабочей операции
,
где - средний путь1 передвижения тележки.
Расчетный коэффициент .
Эквивалентная по нагреву мощность2 при ПВ = 25%.
где - коэффициент, учитывающий относительную продолжительность включения, - коэффициент3 влияния пускового момента на эквивалентную мощность; принимаем [1, табл. 1.32] при режиме работы, при [1, рис. 1.6, кривая ].
Нагрузка1 на одно колесо
Расчетная нагрузка
где - коэффициент режима работы, - коэффициент, учитывающий переменность нагрузки; принимаем [5, табл. 34],
Напряжение смятия [5, с. 116]
Подшипники опор2.
СПИСОК ЛИТЕРАТУРЫ
Кузьмин А.В., Марон Ф.Л. Справочник по расчетам механизмов подъемно-транспортных машин.-Мн.: Высшая школа, 1983-350 с., ил.
Погорелов С.В. Методические указания по конструктированию узлов тележки электромостового крана – Запорожье: ЗИИ, 1990-72 с., ил.
ГОСТ 6636-69 «Нормальные линейные размеры».
Перель Л.Я. Подшипники качения. Справочник – М.: Машиностроение, 1983-543 с., ил.
Расчеты грузоподъемных и транспортирующих машин. Иванченко Ф.К. и др. – К.: Выща школа, 1978-576 с., ил.
ПРИЛОЖЕНИЕ
Таблица П.1
Размеры канатных блоков, мм
Диаметр каната | Диаметр по дну канавки | Длина ступицы | Диаметр каната | Диаметр по дну канавки | Длина ступицы |
От 11 до 14 |
320-400 450 |
60 70 |
Свыше 14 до 20 |
320, 400, 450 500, 560, 630 |
70 80 |
Таблица П.2
Крюки однорогие (ГОСТ 6627-74)
Номер заготовки крюка | Грузоподъемность для режимов, т | Размеры, мм | |||||||
Легкого, среднего | тяжелого | ||||||||
13 | 5.0 | 4.0 | 75 | 48 | 75 | М42 | 45 | 10 | 37.129 |
14 | 6.3 | 5.0 | 85 | 54 | 32 | М48 | 50 | 12 | 42.587 |
15 | 8.0 | 6.3 | 95 | 60 | 90 | М52 | 55 | 13 | 46.587 |
16 | 10.0 | 8.0 | 110 | 65 | 100 | М56 | 60 | 13 | 50.046 |
17 | 12.5 | 10.0 | 120 | 75 | 115 | М64 | 70 | 14 | 57.505 |
18 | 16.0 | 12.5 | 130 | 80 | 130 | Трап 70Х10 | 80 | 16 | 59.0 |
19 | 20.0 | 16.0 | 150 | 90 | 150 |
Трап 80Х10 |
90 | 18 | 69.0 |
20 | 25.0 | 20.0 | 170 | 102 | 164 | Трап 89Х12 | 100 | 20 | 77.0 |
21 | 32.0 | 25.0 | 190 | 115 | 184 | Трап 100Х12 | 110 | 23 | 87.0 |
Таблица П.3
Толщина серьги
Грузоподъемность , т |
5.0 | 6.3 | 8.0 | 10.0 | 12.5 | 16.0 | 20 | 25 |
Толщина серьги , мм |
10 | 12 | 14 | 16 | 16 | 18 | 20 | 24 |
Таблица П.4
Механические свойства материалов, МПа
Материал |
Предел прочности |
Предел текучести |
Предел выносливости |
СЧ 15-32 | 150 | - | - |
СЧ 18-36 | 180 | - | - |
ГОСТ 1050-74 | |||
20 | 420…500 | 250 | 170…220 |
45 | 610…750 | 360 | 250…340 |
ГОСТ 4543-61 | |||
40 | 730…1050 | 650…900 | 320…480 |
ГОСТ 380-60 | |||
Ст 3 | 380…470 | 210…240 | - |
Ст 5 | 500…620 | 260…280 | - |
Таблица П.5
Запас прочности .
Тип крана | Режим работы | ||
Легкий | Средний | Тяжелый | |
Крюковой | 1.4 | 1.6 | 1.7 |
Магнитный | 1.3 | 1.5 | 1.6 |
Таблица П.6
Муфты зубчатые с тормозным шкивом
Параметры | Диаметр тормозного шкива, мм | |||
200 | 300 | 400 | 500 | |
Предельный момент [Т], Нм | 700 | 3150 | 5600 | 8000 |
Момент инерции , кг м2 |
0.0763 | 0.471 | 1.375 | 3.56 |
Диаметр отверстия, мм шкива полумуфты |
50…69.5 40…55 |
50…69.5 40…55 |
60…89.5 55 |
90 65 |
Таблица П.7
Муфта зубчатая типа МЗП ГОСТ 5006-55
Номер муфты | Диаметр отверстия полумуфты, не более, мм |
Предельный момент [Т], Н . м |
Момент инерции кг . м2 |
|
Зубчатой |
||||
1 | 40 | 60 | 700 | 0.061 |
2 | 50 | 70 | 1400 | 0.1195 |
3 | 60 | 90 | 3150 | 0.2215 |
4 | 75 | 100 | 5600 | 0.458 |
5 | 90 | 120 | 8000 | 0.891 |
Таблица П.8
Масса и подъемная сила электромагнитов
Тип электромагнита |
Масса , т |
Подъемная сила , кН |
М22 | 0.55 | 60.0 |
М42 | 1.56 | 160.0 |
М62 | 5.20 | 300.0 |
М62 Б | 3.50 | 200.0 |
ПМ 15 | 1.55 | 100.0 |
Таблица П.9
Диаметр и предельная консольная нагрузка выходного вала редуктора типа Ц2
Суммарное межосевое расстояние , мм |
Диаметр , мм |
Консольная нагрузка ’ (кН) при режиме работы |
||
Легкий | средний | тяжелый | ||
250 | 75 | 12 | 18 | 12.5 |
300 | 80 | 20 | 22.5 | 14 |
350 | 110 | 32 | 25 | 18 |
400 | 110 | 32 | 25 | 20 |
500 | 150 | 50 | 40 | 25 |
650 | 160 | 63 | 71 | 45 |
750 | 200 | 100 | 125 | 63 |
Таблица П.10
Подшипники радиальные сферические двухрядные опор ходовых колес
Диаметр колеса |
160 | 200 | 250 | 320 | 400 | 500 | 560 | 630 |
Подшипник | 1607 | 1609 | 3610 | 3612 | 3616 | 3620 | 3622 | 3624 |
Диаметр реборд колеса , мм |
190 | 230 | 290 | 360 | 450 | 550 | 600 | 680 |
Таблица П.11
Редуктор типа ВКН
Типоразмер редуктора | Диаметр быстроходного вала | Передаточное число |
Максимальная мощность (кВт) на быстроходном валу при разных режимах работы |
|||||
мин-1 |
мин-1 |
|||||||
л | с | т | л | с | Т | |||
ВКН-280 | 25 | 10 | 4.3 | 2.0 | 1.8 | 6.0 | 2.0 | 1.9 |
16 | 3.0 | 1.4 | 1.2 | 4.0 | 1.7 | 1.5 | ||
31.5 | 1.4 | 1.0 | 0.9 | 1.9 | 1.0 | 0.9 | ||
50 | 0.9 | 0.7 | 0.6 | 1.0 | 0.8 | 0.7 | ||
ВКН-320 | 25 | 12.5 | 6.5 | 3.1 | 2.7 | 8.1 | 3.4 | 3.0 |
20 | 3.6 | 2.4 | 1.8 | 5.6 | 2.8 | 2.2 | ||
40 | 2.5 | 1.7 | 1.2 | 2.8 | 1.8 | 1.2 | ||
63 | 1.2 | 0.9 | 0.7 | 1.7 | 1.1 | 0.7 | ||
ВКН-420 | 25 | 16 | 7.8 | 5.0 | 4.8 | 9.1 | 6.0 | 6.5 |
25 | 5.0 | 3.5 | 3.0 | 6.1 | 4.9 | 4.4 | ||
50 | 2.8 | 2.1 | 1.6 | 3.5 | 2.8 | 2.2 | ||
80 | 2.3 | 1.8 | 1.3 | 3.1 | 2.2 | 1.7 | ||
125 | 1.6 | 1.2 | 1.0 | 1.7 | 1.4 | 1.2 | ||
ВКН-480 | 30 | 20 | 11.7 | 7.3 | 4.8 | 14.4 | 9.0 | 6.3 |
31.5 | 8.3 | 5.0 | 4.0 | 10.3 | 6.6 | 4.8 | ||
63 | 4.7 | 3.4 | 2.5 | 5.9 | 4.1 | 3.0 | ||
100 | 3.3 | 3.3 | 2.2 | 4.1 | 3.0 | 2.7 | ||
ВНК-560 | 35 | 20 | 19.9 | 13.3 | 9.7 | 23.1 | 16.6 | 12.1 |
25 | 15.5 | 10.6 | 8.2 | 21.9 | 14.1 | 10.3 | ||
40 | 10.7 | 7.8 | 6.5 | 13.9 | 10.0 | 7.9 | ||
50 | 8.8 | 6.5 | 5.5 | 12.1 | 8.6 | 6.7 | ||
50 | 5.9 | 4.4 | 3.9 | 7.8 | 5.5 | 4.8 |
Рисунок П.2 Эскизная компоновка подвески (а), расчетные схемы (б, в, г) и схемы подвесок типа 1 (А), 2 (Б), 3 (В), 4 (Г): 1-ось блоков, 2-блок, 3-серьга, 4-траверса.
Рисунок П.5 Типовые графики загрузки механизма подъема груза: а, б, в – соответственно для легкого, среднего и тяжелого режимов работы
Рисунок П.6 График загрузки электродвигателя механизма подъема в течении цикла
Рисунок П.7 Механизмы передвижения тележки с центральным расположением редуктора типа ВК (а) и ВКН (б): 1-электродвигателб, 2-муфта с тормозным шкивом, 3-вертикальный редуктор, 4-муфта, 5-ходовое колесо, 6-рельс, 7-тормозной шкив.
1 В схеме на рис. 1 показать свой вариант полиспаста. Схема механизма подъема и варианты полиспастов приведены на рис. П.1.
1 Эта формула справедлива при . При других значениях количество слагаемых в числителе равно кратности полиспаста.
2 Указать, при каком режиме работы. Выбрать канат по условию желательно при маркировочных группах 1568 и 1764 МПа.
1 Выбрать из ряда 260, 335, 400 и 510 мм, по условию
2 Для стали по стали МПа
1 Для метрической резьбы из конструктивных соображений
2 Для механизма подъема , передвижения
3 Выбрать по условиям (крюка),
1 На рис. 2 показать свой вариант подвески (рис.П.2), расчетные схемы элементов и эпюры механизмов
2 Рассчитать для заданной подвески. Размеры принять по ГОСТ 6636-69 [3]
3 Здесь - диаметр шейки крюка
4 Длина зависит от типа крюковой подвески (рис.2): с одной стороны , с другой для третьего и четвертого типа подвесок здесь надо разместить блоки; принимать зазор между блоками , между блоками и серьгой мм.
1 Указать для какого крана принимаем «»
1 При отсутствии заедания = 60…65 МПа
2 Принять большее значение [3]. Для подвески II типа – кратное «5».
3 Можно применять тот же материал, что для траверсы. Если принята другая сталь, привести расчет
1 Рассчитать для заданного типа подвески. Привести расчетную схему.
2 Расчет выполнить для наибольшего момента; результат округлить до кратного пяти.
1 Согласовать размерность скорости и диаметров
2 Если мин-1, расчет выполнить при 10 мин-1.
3 Указать при каком режиме работы и сроке службы в часах
4 Выбрать при условиях . Или d=dц для подвески II типа.
5 См. расчет траверсы
1 Здесь - больше из и
2 Указать, что находится в контакте с серьгой
1 Указать при каких подшипниках.
2 Выбрать двигатель MTF [1, табл.ІІІ, 3.5] или МТН [2, табл.2]. По условию (ближайшее меньшее). Для легкого режима принять ПВ = 15, среднего 25, тяжелого 40%
3 Диаметр барабана - см. п.2.5. Согласовать размерности скорости и диаметров.
1 Выбрать редуктор Ц2 [1, табл.ІІІ. 4.2], [2, табл.4] или типа РМ. По условиям , , - ближайшее большее к
1 Если условие не выполняется, принять более мощный редуктор. Здесь указать «удовлетворяет» или «не удовлетворяет».
2 Допускается .
3 Выбрать тормоз ТКГ [1, табл. ІІІ.5.13] или ТКТ [1, табл. ІІІ.5.11]. По условию .
1 Выбрать по условию, диаметр согласовать с диаметром муфты с тормозным шкивом, с валом редуктора.
2 Выбрать по условию , диаметр согласовать с диаметром вала двигателя.
1 Выбирать по условию .
2 Значения относительной массы приведены на оси ординат (рис. П. 5).
3 На рис. 1.2 выбрать кривую, соответствующую .
1 Рассчитать аналогично для масс и , ТП, ТОП, J.
2 Принимать
3 Рассчитать аналогично при и , tП, tОП.
1 Если , двигатель удовлетворяет условию нагрева
2 Сравнить с рекомендуемым [1, табл.1.25]. Для магнитных кранов . Здесь t – меньшее из времени пуска (tП).
3 Значение и - см. п.4.3.
1 Значение , см. п.2
.3 Определяется по осям крайних блоков крюковой подвески
3 Выбрать длину L из ряда 1200, 1300, 1420, 1800 и 2300 мм по условию LіL’
1 Здесь F – см. п.2.
2 Принять большее из двух значений
3 См. рис. П.3. Выполнить в масштабе на миллиметровке.
4 Выбрать шарикоподшипник [2, табл. 9] или роликоподшипник [2, табл. 10].
5 Размеры l3, l9, b2 – см. выбор редуктора, толщина буртика a1=5…15 мм.
1 1 См. п. 2
2 Определяется по наибольшему
1 Эквивалентная и приведенная нагрузка определяются по методике п. 3.4. Здесь , для роликоподшипника.
2 Согласовать размерности скорости и диаметров.
3 Здесь - см. п.2.
1 Число планок не менее двух .
2 Принять - см. рис. 2.5. [1]. Если , увеличить число планок .
1 В этом случае толщина д.б. не менее 12 мм
2 Принять большее из двух значений
3 Компоновку выполнить в масштабе. Эскиз барабана – см. рис. П.4
4 Указать тип редуктора (см. п.4.2)
5 Выбрать шарико- или роликоподшипник [2, табл. 9 или 10].
6 Размеры и - см. выбор редуктора, зазор мм, С – см. [2, табл. 12].
1 Определяется по большему .
2 Здесь М – большее значение из и .
1 Здесь рассматривается механизм с редуктором ВК (см. рис. П.7, а). Можно применить механизм с редуктором ВКН (навесного типа) – см. рис. П.7, б.
1 Выбрать при скорости .
2 Указать вид подшипника.
1 Указать, с плоской или выпуклой головкой
1 Выбрать по условию
1 Выбрать в зависимости от применяемой схемы механизме редуктора ВК [ 5, прил.LXIV] или ВКН (табл.П.11 или [5, прил.LXII] по условиям , - ближайшее к передаточному отношению , диаметр выходного вала [2, табл.27 или 28], [5, прил. LXI или LXIII].
1 Выбрать по условию , диаметры согласовать с диаметрами двигателя и редуктора [1, табл. III.5.6]. (табл. П.6, П.7).
1 Это случай крана с грузовым электромагнитном; для крана без магнита .
2 Можно выбрать тормоз ТКТ [1, табл. ІІІ.5.11] или ТКГ [1, табл. ІІІ.5.13] по условию .
1 Сравнить с рекомендуемым [1, табл. 1.19]. Если результат существенно отличается, принять более мощный двигатель и повторить расчет по п.4. Затем проверить пригодность ранее принятого редуктора и тормоза.
2 Сравнить с .
3 Сравнить с ранее принятым .
1 По методике номинального режима работы [5. с.112]. Можно выполнить по методике, рассмотренной в разделе «Механизм подъема».
2 Выбрать по [1, рис. 1.4 или 1.5].
1 Принимаем м.
2 Сравнить и принятого двигателя. Если , двигатель удовлетворяет условием нагрева.
3 По [1, рис. 1.16] указать по какой кривой определяется .
1 См.п.2
2 Выполнить проверку аналогично п.5.1.5 «Механизм подъема»