Операція піднесення до нульового степеня та цілий від'ємний степінь. Введення поняття степеня з ірраціональним показником. Означення поняття степеня з ірраціональним показником, узагальнення поняття степеня. Дві послідовності, що обирають поняття степеня....
Дослідження системи лінійних алгебраїчних рівнянь на стійкість. Одержання характеристичного многочлена методом Левур’є, в основу якого покладено обчислювання слідів степенів матриці А. Приклад перевірки на стійкість систему Аx=B за допомогою програми....
Биография И.Р. Шафаревича. Основные вехи жизненного пути ученого. Методология И.Р. Шафаревича. Труды по алгебре, теории алгебраических чисел и алгебраической геометрии. Спорные моменты в его работах. Президент Московского математического общества....
Основные положения теории принятия решений, разработанной на основе математических методов и формальной логики, классификация управленческих решений. Некорректно поставленные задачи и регуляризирующие (робастные) алгоритмы: адаптивные, инвариантные....
Основные понятия теории графов. Маршруты и связность. Задача о кёнигсбергских мостах. Эйлеровы графы. Оценка числа эйлеровых графов. Алгоритм построения эйлеровой цепи в данном эйлеровом графе. Практическое применение теории графов в науке....
Основные понятия теории рядов. Методы суммирования расходящихся рядов. Суть метода степенных рядов, теоремы Абеля и Таубера. Метод средних арифметических, взаимоотношение между методами Пуассона-Абеля и Чезаро. Основные методы обобщенного суммирования....
Проверка выполнимости теоремы Бернулли на примере вероятности прохождения тока по цепи. Моделирование дискретной случайной величины, имеющей закон распределения Пуассона. Подтверждение гипотезы данного закона распределения с помощью критерия Колмогорова....
Биография немецкого математика А. Гурвица. Основные положения теоремы Ферма. Обзор систем "чисел", которые можно построить, исходя из действительных чисел, путем добавления рядя "мнимых единиц". Приложение теоремы Гурвица: теоремы Фробениуса и Лагранжа....
Формулировка и доказательство теоремы о простых числах в арифметической прогрессии (теорема Дирихле). Определение и основные свойства характеров. Суммы характеров и соотношение ортогональности. Характеры, L-функция Дирихле. Доказательство основных лемм....
Получены другие формулы для решений уравнения Пифагора x^2+y^2=z^2, отличные от формул древних индусов, и делающие возможным доказательство для всех нечётных значений показателя n тем же способом бесконечного спуска Ферма, что и для n=4. Доказательство....
Построение графика непрерывной функции. Определение множителя Лагранжа. Критические точки - значения аргумента из области определения функции, при которых производная функции обращается в нуль. Наибольшее и наименьшее значения функции на отрезке....
Великая (большая и последняя) теорема Ферма, ее доказательство для простых показателей. Целочисленные решение уравнения Пифагора в "Арифметике" Диофанта. Формулы для решения уравнения Пифагора в виде взаимно простых чисел. Преобразование уравнения Ферма....
Классы групп с заданными решетками подгрупповых функторов. Бинарная алгебраическая операция. Группа с коммутативной операцией. Основная теорема о гомоморфизме. Определения и основные примеры подгрупповых функторов. Решетки подгрупповых функторов....
Решение системы трех уравнений с тремя неизвестными при помощи определителей. Исследование системы на совместность, составление канонического уравнения эллипса. Изучение функции методами дифференциального исчисления, поиск точки разрыва функции....
Рассмотрение понятия тождественного (единичного) оператора. Анализ методов решения линейных однородного и неоднородного уравнений. Ознакомление с определением эрмитовости оператора. Доказательство теоремы о свойствах ортогональности собственных функций....
Понятие "задача" в начальном курсе математики и её решения в начальных классах. Различные подходы к обучению младших школьников решению текстовых задач. Методические приёмы обучения решению простых задач. Разработка фрагментов уроков по данной проблеме....
Происхождение Неевклидовой геометрии. Возникновение "геометрии Лобачевского". Аксиоматика планиметрии Лобачевского. Три модели геометрии Лобачевского. Модель Пуанкаре и Клейна. Отображение геометрии Лобачевского на псевдосфере (интерпретация Бельтрами)....
Основа физики – геометрия. Она определяет способы задания координат. Преобразования их единственны и это преобразования Лоренца внутри изотропного конуса. На поверхности изотропного конуса эти преобразования не обладают единственностью. Расстояние света....
Изучение человеческого мозга. История изучения и создания нейронных сетей. Биологический и искусственный нейрон. Выбор структуры нейросети. Грамотное обучение искусственных нейронных сетей и их применение, программные модели искусственных нейросетей....
Определение линейного оператора. Норма линейного оператора. Обратные операторы. Абстрактные функции. Аналитические абстрактные функции и ряды Тейлора. Метод малого параметра в простейшем случае. Метод малого параметра в общем случае....