Рефетека.ру / Математика

Статья: Единое электродинамическое поле и его распространение в виде плоских волн

Сидоренков В.В., МГТУ им. Н.Э. Баумана

Рассматриваются структура и характеристики распространения векторного четырехкомпонентного единого электродинамического поля, реализующего своим существованием функционально связанные между собой составляющие его поля: электромагнитное поле с векторными компонентами электрической и магнитной напряженности, поле электромагнитного векторного потенциала, состоящего из электрической и магнитной компонент, электрическое поле с компонентами электрической напряженности и электрического векторного потенциала, магнитное поле с компонентами магнитной напряженности и магнитного векторного потенциала.

В настоящее время установлено [1, 2], что в отношении полноты охвата явлений электромагнетизма, наряду с системой уравнений электродинамики Максвелла электромагнитного (ЭМ) поля с компонентами электрической Единое электродинамическое поле и его распространение в виде плоских волн и магнитной Единое электродинамическое поле и его распространение в виде плоских волн напряженности:

(a) Единое электродинамическое поле и его распространение в виде плоских волн,          (b) Единое электродинамическое поле и его распространение в виде плоских волн,              (1)   

(c) Единое электродинамическое поле и его распространение в виде плоских волн,   (d) Единое электродинамическое поле и его распространение в виде плоских волн,     

существуют и другие системы полевых уравнений, концептуально необходимые для анализа и адекватного физико-математического моделирования электродинамических процессов в материальных средах. Здесь Единое электродинамическое поле и его распространение в виде плоских волн и Единое электродинамическое поле и его распространение в виде плоских волн - электрическая и магнитная постоянные, Единое электродинамическое поле и его распространение в виде плоских волн, Единое электродинамическое поле и его распространение в виде плоских волн и Единое электродинамическое поле и его распространение в виде плоских волн - удельная электропроводность и относительные диэлектрическая и магнитная проницаемости среды, соответственно, Единое электродинамическое поле и его распространение в виде плоских волн - объемная плотность стороннего электрического заряда; Единое электродинамическое поле и его распространение в виде плоских волн - постоянная времени релаксации заряда в среде за счет электропроводности.

Уравнения в этих других системах рассматривают области пространства, где присутствуют либо только поле ЭМ векторного потенциала с электрической Единое электродинамическое поле и его распространение в виде плоских волн и магнитной Единое электродинамическое поле и его распространение в виде плоских волн компонентами:

(a) Единое электродинамическое поле и его распространение в виде плоских волн,             (b) Единое электродинамическое поле и его распространение в виде плоских волн,           (2)   

(c) Единое электродинамическое поле и его распространение в виде плоских волн,   (d) Единое электродинамическое поле и его распространение в виде плоских волн;    

либо электрическое поле с компонентами Единое электродинамическое поле и его распространение в виде плоских волн и Единое электродинамическое поле и его распространение в виде плоских волн:

(a) Единое электродинамическое поле и его распространение в виде плоских волн,    (b) Единое электродинамическое поле и его распространение в виде плоских волн,            (3)             (c) Единое электродинамическое поле и его распространение в виде плоских волн,                (d) Единое электродинамическое поле и его распространение в виде плоских волн;                   

либо, наконец, магнитное поле с компонентами Единое электродинамическое поле и его распространение в виде плоских волн и Единое электродинамическое поле и его распространение в виде плоских волн:

(a) Единое электродинамическое поле и его распространение в виде плоских волн,    (b) Единое электродинамическое поле и его распространение в виде плоских волн,           (4)    

(c) Единое электродинамическое поле и его распространение в виде плоских волн,                 (d) Единое электродинамическое поле и его распространение в виде плоских волн.     

Основная и отличительная особенность уравнений систем (2) – (4) в сравнении с традиционными уравнениями Максвелла ЭМ поля (1) с физической точки зрения состоит в том, что именно они, используя представления о поле ЭМ векторного потенциала, способны последовательно описать многообразие электродинамических явлений нетепловой природы в материальных средах, определяемых электрической или магнитной поляризацией и передачей среде момента ЭМ импульса, в частности, реализуемых в процессе электрической проводимости [3] .

Принципиально и существенно то, что все эти системы электродинамических уравнений, в том числе, и система (1) для локально электронейтральных сред (Единое электродинамическое поле и его распространение в виде плоских волн), являются непосредственным следствием фундаментальных исходных соотношений функциональной первичной взаимосвязи ЭМ поля и поля ЭМ векторного потенциала [1, 2]:

(a) Единое электродинамическое поле и его распространение в виде плоских волн,   (b) Единое электродинамическое поле и его распространение в виде плоских волн,                                     (5)    

(c) Единое электродинамическое поле и его распространение в виде плоских волн,      (d) Единое электродинамическое поле и его распространение в виде плоских волн.  

Очевидно, что данная система соотношений может служить основой для интерпретации физического смысла поля ЭМ векторного потенциала [4], выяснения его роли и места в явлениях электромагнетизма. Однако самое главное и интересное в них то, что они представляют собой систему дифференциальных уравнений, описывающих свойства необычного вихревого векторного поля, состоящего их четырех полевых векторных компонент Единое электродинамическое поле и его распространение в виде плоских волн, Единое электродинамическое поле и его распространение в виде плоских волн, Единое электродинамическое поле и его распространение в виде плоских волн и Единое электродинамическое поле и его распространение в виде плоских волн, которое назовем единое электродинамическое поле.

Объективность существования указанного единого поля однозначно иллюстрируется указанными системами уравнений (1) – (4) и получаемыми из них соотношениями баланса:

для потока ЭМ энергии из уравнений системы (1)

Единое электродинамическое поле и его распространение в виде плоских волн,              (6)

для потока момента ЭМ импульса из уравнений системы (2)

Единое электродинамическое поле и его распространение в виде плоских волн                 (7)

для потока электрической энергии из уравнений системы (3)

Единое электродинамическое поле и его распространение в виде плоских волн ,                    (8)

и для потока магнитной энергии из уравнений системы (4)

Единое электродинамическое поле и его распространение в виде плоских волн.                   (9)

Как видим, соотношения (5) действительно фундаментальны и их следует считать уравнениями единого электродинамического поля, базирующегося на исходной своей составляющей - поле ЭМ векторного потенциала, состоящего из двух взаимно ортогональных электрической Единое электродинамическое поле и его распространение в виде плоских волн и магнитной Единое электродинамическое поле и его распространение в виде плоских волн векторных полевых компонент. При этом поле ЭМ векторного потенциала своим существованием реализует функционально связанные с ним другие составляющие единого поля: ЭМ поле с векторными компонентами Единое электродинамическое поле и его распространение в виде плоских волн и Единое электродинамическое поле и его распространение в виде плоских волн, электрическое поле с компонентами Единое электродинамическое поле и его распространение в виде плоских волн и Единое электродинамическое поле и его распространение в виде плоских волн, магнитное поле с компонентами Единое электродинамическое поле и его распространение в виде плоских волн и Единое электродинамическое поле и его распространение в виде плоских волн.

Отмеченная здесь структура и взаимосвязь составляющих единого электродинамического поля сохраняется и в статической асимптотике. Логика построения систем полевых уравнений для стационарных составляющих единого поля и анализ физического содержания таких уравнений изложены, например, в работе [5].

Таким образом, имеем очевидное обобщение и серьезное развитие представлений классической электродинамики. В частности, показано, что, так же как и в случае ЭМ поля, в Природе нет электрического, магнитного или другой составляющей единого электродинамического поля с одной полевой компонентой. Структура обсуждаемых составляющих единого электродинамического поля из двух векторных взаимно ортогональных полевых компонент – это объективно необходимый способ их реального существования, принципиальная и единственная возможность распространения конкретной составляющей в виде потока соответствующей физической величины, в случае динамических полей - посредством поперечных волн.

Форма представленных систем уравнений (1) – (4) говорит о существовании волновых уравнений как для компонент ЭМ поля Единое электродинамическое поле и его распространение в виде плоских волн и Единое электродинамическое поле и его распространение в виде плоских волн, так и для компонент поля ЭМ векторного потенциала Единое электродинамическое поле и его распространение в виде плоских волн и Единое электродинамическое поле и его распространение в виде плоских волн. В этом можно убедиться, взяв, как обычно, ротор от одного из роторных уравнений любой системы, и после чего подставить в него другое роторное уравнение той же системы. Например, в качестве иллюстрации получим для системы (2) волновое уравнение относительно Единое электродинамическое поле и его распространение в виде плоских волн:

Единое электродинамическое поле и его распространение в виде плоских волн .

Здесь, согласно (2c), Единое электродинамическое поле и его распространение в виде плоских волн, Единое электродинамическое поле и его распространение в виде плоских волн - оператор Лапласа, а Единое электродинамическое поле и его распространение в виде плоских волн- фазовая скорость поля волны в отсутствие поглощения. Следовательно, указанные волновые уравнения описывают волны конкретной составляющей единого электродинамического поля в виде одной из парных комбинаций этих четырех волновых уравнений. В итоге возникает физически очевидный вопрос, что это за волны, и каковы характеристики распространения таких волн?

Ввиду того, что уравнения систем (1) и (2) математически структурно тождественны, а волновые решения уравнений (1) широко известны [6], то далее анализ характеристик распространения составляющих единого электродинамического поля, например, в виде плоских волн в однородных изотропных материальных средах проведем, прежде всего, для уравнений (3) электрического поля и уравнений (4) магнитного поля. Их необычные структуры между собой также математически тождественны, а волновые решения систем этих уравнений, как будет показано ниже, физически нетривиальны.

Итак, рассмотрим волновой пакет плоской линейно поляризованной электрической волны, распространяющейся вдоль оси 0X с компонентами Единое электродинамическое поле и его распространение в виде плоских волн и Единое электродинамическое поле и его распространение в виде плоских волн для системы (3) либо магнитной волны с компонентами Единое электродинамическое поле и его распространение в виде плоских волн и Единое электродинамическое поле и его распространение в виде плоских волн для системы (4), которые представим комплексными спектральными интегралами. Здесь, согласно соотношениям (5с) и (5d), учтена функциональная взаимосвязь обсуждаемых волн в виде единого процесса и взаимная коллинеарность векторов Единое электродинамическое поле и его распространение в виде плоских волн и Единое электродинамическое поле и его распространение в виде плоских волн (эти векторы антипараллельны), Единое электродинамическое поле и его распространение в виде плоских волн и Единое электродинамическое поле и его распространение в виде плоских волн компонент полей. Тогда, например, для уравнений электрического поля указанные интегралы имеют вид:

Единое электродинамическое поле и его распространение в виде плоских волн и  Единое электродинамическое поле и его распространение в виде плоских волн,

где Единое электродинамическое поле и его распространение в виде плоских волн и Единое электродинамическое поле и его распространение в виде плоских волн - комплексные амплитуды.

Подставляя их в уравнения (3a) и (3c), приходим к соотношениям Единое электродинамическое поле и его распространение в виде плоских волн и Единое электродинамическое поле и его распространение в виде плоских волн. Соответствующая подстановка интегралов Единое электродинамическое поле и его распространение в виде плоских волн и Единое электродинамическое поле и его распространение в виде плоских волн в уравнения (4а) и (4c) дает Единое электродинамическое поле и его распространение в виде плоских волн и Единое электродинамическое поле и его распространение в виде плоских волн. В итоге для обеих систем получаем общее для них выражение: Единое электродинамическое поле и его распространение в виде плоских волн

В конкретном случае среды идеального диэлектрика (Единое электродинамическое поле и его распространение в виде плоских волн) с учетом формулы Единое электродинамическое поле и его распространение в виде плоских волн из Единое электродинамическое поле и его распространение в виде плоских волн следует для обеих систем обычное дисперсионное соотношение Единое электродинамическое поле и его распространение в виде плоских волн [6], описывающее однородные плоские волны электрического или магнитного полей. При этом связь комплексных амплитуд компонент указанных волновых полей имеет специфический вид:

Единое электродинамическое поле и его распространение в виде плоских волн в системе (3) и

Единое электродинамическое поле и его распространение в виде плоских волн в системе (4),

то есть при распространении в диэлектрической среде компоненты поля сдвинуты между собой по фазе на π/2. Специфика здесь в том, что характер поведения компонент поля такой волны в любой точке пространства аналогичен кинематическим параметрам движения (смещение и скорость) классической частицы в точке устойчивого равновесия поля потенциальных сил. Конечно, математически данный результат очевидно тривиален, поскольку компоненты ЭМ поля и поля ЭМ векторного потенциала связаны между собой посредством производной по времени (см. соотношения (5c) и (5d)). Однако с физической точки зрения этот результат весьма нетривиален и безусловно интересен.

Для проводящей среды (Единое электродинамическое поле и его распространение в виде плоских волн) в асимптотике металлов (Единое электродинамическое поле и его распространение в виде плоских волн) дисперсионное соотношение систем уравнений (3) и (4) имеет обычный в таком случае вид Единое электродинамическое поле и его распространение в виде плоских волн, где Единое электродинамическое поле и его распространение в виде плоских волн [6]. Тогда, например, для уравнений (3) связь комплексных амплитуд компонент Единое электродинамическое поле и его распространение в виде плоских волн и волновые решения запишутся в виде экспоненциально затухающих в пространстве плоских волн со сдвигом начальной фазы между компонентами поля на π/4:

Единое электродинамическое поле и его распространение в виде плоских волн,                   (10) 

Единое электродинамическое поле и его распространение в виде плоских волн.          

Для уравнений системы (4) их волновые решения математически тождественны (10) с заменой Единое электродинамическое поле и его распространение в виде плоских волн на Единое электродинамическое поле и его распространение в виде плоских волн и Единое электродинамическое поле и его распространение в виде плоских волн на Единое электродинамическое поле и его распространение в виде плоских волн при следующем выражении связи комплексных амплитуд:   

Единое электродинамическое поле и его распространение в виде плоских волн.  

Рассмотрим соответствующие рассуждения для аналогичного представленному выше пакету плоской волны теперь для ЭМ поля с компонентами Единое электродинамическое поле и его распространение в виде плоских волн и Единое электродинамическое поле и его распространение в виде плоских волн в системе (1), которые в итоге дают соотношения Единое электродинамическое поле и его распространение в виде плоских волн и Единое электродинамическое поле и его распространение в виде плоских волн. Подобным образом для волны поля ЭМ векторного потенциала с компонентами Единое электродинамическое поле и его распространение в виде плоских волн и Единое электродинамическое поле и его распространение в виде плоских волн в системе (2) имеем соответственно Единое электродинамическое поле и его распространение в виде плоских волн и Единое электродинамическое поле и его распространение в виде плоских волн. Таким образом, для этих двух систем электродинамических уравнений снова получаем стандартное выражение: Единое электродинамическое поле и его распространение в виде плоских волн

В этом случае для диэлектрической среды (Единое электродинамическое поле и его распространение в виде плоских волн)дисперсионное соотношение для волновых решений уравнений систем (1) и (2) будет Единое электродинамическое поле и его распространение в виде плоских волн, что описывает обычный режим волнового распространения компонент ЭМ поля [6] и компонент поля ЭМ векторного потенциала в виде однородных плоских волн. При этом связь комплексных амплитуд волновых решений уравнений систем (1) и (2) имеет следующий вид:

Единое электродинамическое поле и его распространение в виде плоских волн и Единое электродинамическое поле и его распространение в виде плоских волн,

где сами волновые решения описывают указанные волны, компоненты поля которых синфазно распространяются в пространстве. При этом, согласно соотношениям (5c) и (5d), волны ЭМ поля отстают по фазе на π/2 от волн ЭМ векторного потенциала.

Для проводящей среды (Единое электродинамическое поле и его распространение в виде плоских волн) в асимптотике металлов (Единое электродинамическое поле и его распространение в виде плоских волн) рассуждения полностью аналогичны вышеприведенным. Здесь связи комплексных амплитуд для волновых решений уравнений систем (1) и (2) запишутся в виде:

Единое электродинамическое поле и его распространение в виде плоских волн и Единое электродинамическое поле и его распространение в виде плоских волн.

Как видим, распространение волн всех четырех составляющих единого электродинамического поля в асимптотике металлов подчиняется теоретически хорошо изученному закону для плоских волн ЭМ поля в металлах [6].

Подводя окончательный итог проведенным исследованиям, следует отметить, что именно уравнения системы (2) поля ЭМ векторного потенциала описывают волны, переносящие в пространстве поток момента ЭМ импульса, которые еще со времен Пойнтинга безуспешно пытаются описать с помощью уравнений ЭМ поля (1) (см., например, результаты анализа в статье [7]). При этом сами по себе волны ЭМ векторного потенциала принципиально не способны переносить энергию, поскольку в уравнениях (2) поля Единое электродинамическое поле и его распространение в виде плоских волн и Единое электродинамическое поле и его распространение в виде плоских волн отсутствуют. В этой связи укажем на пионерские работы [8], где обсуждаются неэнергетическое (информационное) взаимодействие поля векторного потенциала со средой при передаче в ней таких волн и способ их детектирования посредством эффекта, аналогичного эффекту Ааронова-Бома. Однако, как установлено в настоящей работе, распространение волн ЭМ векторного потенциала в принципе невозможно без присутствия их сопровождающих волн ЭМ поля (см. соотношения (5)) и соответственно наоборот.

Обобщая полученные результаты, приходим к выводу о том, что указанные выше составляющие единого поля, распространяющиеся в свободном пространстве посредством поперечных волн, существуют совместно и одновременно, в неразрывном функциональном единстве. Следовательно, с общей точки зрения совокупность полей, определяемых соотношением (5), действительно является четырехкомпонентным векторным электродинамическим полем, распространяющимся в пространстве в виде единого волнового процесса, а потому с концептуальной точки зрения разделение единого электродинамического поля на составляющие его поля в определенной мере условно. Однако с позиций общепринятых физических представлений и реальной практики аналитического описания явлений Природы разделение указанного единого поля на двухкомпонентные векторные составляющие в виде электрического, магнитного, электромагнитного и ЭМ векторного потенциала полей однозначно необходимо и, безусловно, удобно, поскольку диктуется объективным существованием разного рода конкретных электромагнитных явлений и процессов, реализуемых посредством рассматриваемых здесь полей.

Список литературы

1. Сидоренков В.В. // Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2006. № 1. С. 28-37.

2. Сидоренков В.В. // Материалы IX Международной конференции «Физика в системе современного образования». Санкт-Петербург: РГПУ, 2007. Т. 1. Секция “Профессиональное физическое образование”. С. 127-129.

3. Сидоренков В.В. // Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2005. № 2. С. 35-46.

4. http://www.sciteclibrary.ru/rus/catalog/pages/8781.html .

5. http://www.sciteclibrary.ru/rus/catalog/pages/8834.html .

6. Матвеев А.Н. Электродинамика. М.: Высшая школа, 1980. 383 с.

7. Соколов И.В. // УФН. 1991. Т. 161. № 10. С. 175-190.

8. Чирков А.Г., Агеев А.Н. // ФТТ. 2002. Т. 44. Вып. 1. С. 3-5; 2007. Т. 49. Вып. 7. С. 1217-1221.


Похожие работы:

  1. • О реальной структуре электромагнитного поля и его ...
  2. • О скрытых возможностях физического содержания ...
  3. • Анализ и решение проблемы переноса энергии волнами ...
  4. • О парадоксе существования волн электромагнитного поля и их ...
  5. • Уравнения и характеристики распространения волн реального ...
  6. • Новые реалии в физическом содержании великих уравнений ...
  7. • Экспериментальное наблюдение волн магнитного поля и ...
  8. • О псевдоволнах электромагнитного поля
  9. • Основные характеристики пространственной структуры излучения
  10. • Лекции по оптике
  11. • Упругие волны
  12. • Конец теории единого поля
  13. • Моделирование голограммы, получаемой с помощью ...
  14. • Волны в упругой среде. Волновое уравнение
  15. • Волны де Бройля
  16. • Волны в упругой среде. Волновое уравнение
  17. • Несостоятельность теории электромагнетизма
  18. • Построение инженерно-технической защиты
  19. • Изучение плоских диэлектрических волноводов для ТЕ ...
Рефетека ру refoteka@gmail.com