Рефетека.ру / Биология и химия

Реферат: Исторический обзор основных этапов развития химии

Исторический обзор основных этапов развития химии

2006

Введение

Содержательный подход к истории химии основывается на изучении того, как изменялись со временем теоретические основы науки. Вследствие изменений в теориях на всём протяжении существования химии постоянно менялось её определение. Химия зарождается как "искусство превращения неблагородных металлов в благородные"; Менделеев в 1882 г. определяет её как "учение об элементах и их соединениях". Определение из современного школьного учебника в свою очередь значительно отличается от менделеевского: "Химия – наука о веществах, их составе, строении, свойствах, взаимных превращениях и законах этих превращений".[1]

Следует отметить, что изучение структуры науки мало способствует созданию представления о путях развития химии в целом: общепринятое деление химии на разделы основано на целом ряде различных принципов. Деление химии на органическую и неорганическую произведено по различию их предметов.

Выделение физической химии основано на её близости к физике, аналитическая химия выделена по признаку используемого метода исследования. В целом общепринятое деление химии на разделы является в значительной степени данью исторической традиции; каждый раздел в той или иной степени пересекается со всеми остальными.

Основной задачей содержательного подхода к истории химии является, говоря словами Д. И. Менделеева, выделение "неизменного и общего в изменяемом и частном". Таким неизменным и общим для химических знаний всех исторических периодов является цель химии. Именно цель науки – не только теоретический, но и исторический её стержень.

Целью химии на всех этапах её развития является получение вещества с заданными свойствами. Эта цель, иногда именуемая основной проблемой химии, включает в себя две важнейших задачи – практическую и теоретическую, которые не могут быть решены отдельно друг от друга. Получение вещества с заданными свойствами не может быть осуществлено без выявления способов управления свойствами вещества, или, что то же самое, без понимания причин происхождения и обусловленности свойств вещества. Таким образом, химия есть одновременно и цель и средство, и теория и практика

Таким образом, в рамках содержательного подхода история химии может быть рассмотрена как история возникновения и развития концептуальных систем, каждая из которых представляет собой принципиально новый способ решения основной задачи химии. [2]

1. Основные этапы развития химии

При изучении истории развития химии возможны два взаимно дополняющих подхода: хронологический и содержательный.

При хронологическом подходе историю химии принято подразделять на несколько периодов. Следует учитывать, что периодизация истории химии, будучи достаточно условной и относительной, имеет скорее дидактический смысл.

При этом на поздних этапах развития науки в связи с её дифференциацией неизбежны отступления от хронологического порядка изложения, поскольку приходится отдельно рассматривать развитие каждого из основных разделов науки.

Как правило, большинство историков химии выделяют следующие основные этапы её развития:[3]

1. Предалхимический период: до III в. н.э.

В предалхимическом периоде теоретический и практический аспекты знаний о веществе развиваются относительно независимо друг от друга. Происхождение свойств вещества рассматривает античная натурфилософия, практические операции с веществом являются прерогативой ремесленной химии.

2. Алхимический период: III – XVI вв.

Алхимический период, в свою очередь, разделяется на три подпериода:[4]

александрийскую,

арабскую

европейскую алхимию.

Алхимический период – это время поисков философского камня, считавшегося необходимым для осуществления трансмутации металлов.

В этом периоде происходит зарождение экспериментальной химии и накопление запаса знаний о веществе; алхимическая теория, основанная на античных философских представлениях об элементах, тесно связана с астрологией и мистикой. Наряду с химико-техническим "златоделием" алхимический период примечателен также и созданием уникальной системы мистической философии.

3. Период становления (объединения): XVII – XVIII вв.

В период становления химии как науки происходит её полная рационализация. Химия освобождается от натурфилософских и алхимических взглядов на элементы как на носители определённых качеств. Наряду с расширением практических знаний о веществе начинает вырабатываться единый взгляд на химические процессы и в полной мере использоваться экспериментальный метод. Завершающая этот период химическая революция окончательно придаёт химии вид самостоятельной науки, занимающейся экспериментальным изучением состава тел.

4. Период количественных законов (атомно-молекулярной теории): 1789 – 1860 гг.

Период количественных законов, ознаменовавшийся открытием главных количественных закономерностей химии – стехиометрических законов, и формированием атомно-молекулярной теории, окончательно завершает превращение химии в точную науку, основанную не только на наблюдении, но и на измерении.

5. Период классической химии: 1860 г. – конец XIX в.

Период классической химии характеризуется стремительным развитием науки: создаётся периодическая система элементов, теория валентности и химического строения молекул, стереохимия, химическая термодинамика и химическая кинетика; блестящих успехов достигают прикладная неорганическая химия и органический синтез. В связи с ростом объёма знаний о веществе и его свойствах начинается дифференциация химии – выделение её отдельных ветвей, приобретающих черты самостоятельных наук.

2. Алхимия как феномен средневековой культуры

Алхимия складывалась в эпоху эллинизма на основе слияния прикладной химии египтян с греческой натурфилософией, мистикой и астрологией (золото соотносили с Солнцем, серебро - с Луной, медь - с Венерой, и т.д.) (II-VI вв.) в александрийской культурной традиции, представляя собой форму ритуально-магического искусства. [5]

Алхимия - это самозабвенная попытка найти способ получения благородных металлов. Алхимики считали, что ртуть и сера разной чистоты, соединяясь в различных пропорциях, дают начало металлам, в том числе и благородным. В реализации алхимического рецепта предполагалось участие священных или мистических сил, а средством обращения к этим силам было слово - необходимая сторона ритуала. Поэтому алхимический рецепт выступал одновременно и как действие, и как священнодействие.[6]

В средневековой алхимии выделялись две тенденции.

Первая - это мистифицированная алхимия, ориентированная на химические превращения (в частности, ртути в золото) и, в конечном счете, на доказательство возможности человеческими усилиями осуществлять космические превращения. В русле этой тенденции арабские алхимики сформулировали идею «философского камня» - гипотетического вещества, ускорявшего «созревание» золота в недрах земли; это вещество заодно трактовалось и как эликсир жизни, исцеляющий болезни и дающий бессмертие.

Вторая тенденция была больше ориентирована на конкретную практическую технохимию. В этой области достижения алхимии несомненны. К ним следует отнести: открытие способов получения серной, соляной, азотной кислот, селитры, сплавов ртути с металлами, многих лекарственных веществ, создание химической посуды и др.

3. Возникновение и развитие научной химии

§ 3.1. Истоки химии

Химия древности. Химия, наука о составе веществ и их превращениях, начинается с открытия человеком способности огня изменять природные материалы. По-видимому, люди умели выплавлять медь и бронзу, обжигать глиняные изделия, получать стекло еще за 4000 лет до н.э.[7] К 7 в. до н.э. Египет и Месопотамия стали центрами производства красителей; там же получали в чистом виде золото, серебро и другие металлы. Примерно с 1500 до 350 до н.э. для производства красителей использовали перегонку, а металлы выплавляли из руд, смешивая их с древесным углем и продувая через горящую смесь воздух. Самим процедурам превращения природных материалов придавали мистический смысл.

Греческая натурфилософия. Эти мифологические идеи проникли в Грецию через Фалеса Милетского, который возводил все многообразие явлений и вещей к единой первостихии – воде. Однако греческих философов интересовали не способы получения веществ и их практическое использование, а главным образом суть происходящих в мире процессов. Так, древнегреческий философ Анаксимен утверждал, что первооснова Вселенной – воздух: при разрежении воздух превращается в огонь, а по мере сгущения становится водой, затем землей и, наконец, камнем. Гераклит Эфесский пытался объяснить явления природы, постулируя в качестве первоэлемента огонь.

Четыре первоэлемента. Эти представления были объединены в натурфилософии Эмпедокла из Агригента – создателя теории четырех начал мироздания.[8] В различных вариантах его теория властвовала над умами людей более двух тысячелетий. Согласно Эмпедоклу, все материальные объекты образуются при соединении вечных и неизменных элементов-стихий – воды, воздуха, земли и огня – под действием космических сил любви и ненависти. Теорию элементов Эмпедокла приняли и развили сначала Платон, уточнивший, что нематериальные силы добра и зла могут превращать эти элементы один в другой, а затем Аристотель.

Согласно Аристотелю, элементы-стихии – это не материальные субстанции, а носители определенных качеств – тепла, холода, сухости и влажности. Этот взгляд трансформировался в идею четырех «соков» Галена и господствовал в науке вплоть до 17 в.

Другим важным вопросом, занимавшим греческих натурфилософов, был вопрос о делимости материи. Родоначальниками концепции, получившей впоследствии название «атомистической», были Левкипп, его ученик Демокрит и Эпикур.

Согласно их учению, существуют только пустота и атомы – неделимые материальные элементы, вечные, неразрушимые, непроницаемые, различающиеся формой, положением в пустоте и величиной; из их «вихря» образуются все тела.

Атомистическая теория оставалась непопулярной в течение двух тысячелетий после Демокрита, но не исчезла полностью. Одним из ее приверженцев стал древнегреческий поэт Тит Лукреций Кар , изложивший взгляды Демокрита и Эпикура в поэме «О природе вещей» (De Rerum Natura).[9]

§ 3.2. Лавуазье: революция в химии

Центральная проблема химии XVIII в. - проблема горения. Вопрос состоял в следующем: что случается с горючими веществами, когда они сгорают в воздухе? Для объяснения процессов горения немецкими химиками И. Бехером и его учеником Г. Э. Шталем была предложена теория флогистона. Флогистон - это некоторая невесомая субстанция, которую содержат все горючие тела и которую они утрачивают при горении. Тела, содержащие большое количество флогистона, горят хорошо; тела, которые не загораются, являются дефлогистированными. Эта теория позволяла объяснять многие химические процессы и предсказывать новые химические явления. В течение почти всего XVIII в. она прочно удерживала свои позиции, пока французский химик А. Л. Лавуазье в конце XVIII в. не разработал кислородную теорию горения.

Лавуазье показал, что все явления в химии, прежде считавшиеся хаотическими, могут быть систематизированы и сведены в закон сочетания элементов, старых и новых. К уже установленному до него списку элементов он добавил новые - кислород, который вместе с водородом входит в состав воды, а также и другой компонент воздуха - азот. В соответствии с новой системой химические соединения делились в основном на три категории: кислоты, основания, соли. Лавуазье рационализировал химию и объяснил причину большого разнообразия химических явлений: она заключается в различии химических элементов и их соединений.

§ 3.3. Победа атомно-молекулярного учения

Следующий важный шаг в развитии научной химии был сделан Дж. Дальтоном, ткачом и школьным учителем из Манчестера. Изучая химический состав газов, он исследовал весовые количества кислорода, приходящиеся на одно и то же весовое количество вещества в различных по количественному составу окислах, и установил кратность этих количеств. Например, в пяти окислах азота количество кислорода относится на одно и то же весовое количество азота как 1 : 2 : 3 : 4 : 5. [10] Так был открыт закон кратных отношений.

Дальтон правильно объяснил этот закон атомным строением вещества и способностью атомов одного вещества соединяться с различным количеством атомов другого вещества. При этом он ввел в химию понятие атомного веса.

И, тем не менее, в начале XIX в. атомно-молекулярное учение в химии с трудом пробивало себе дорогу. Понадобилось еще полстолетия для его окончательной победы. На этом пути был сформулирован ряд количественных законов, которые получали объяснение с позиций атомно-молекулярных представлений. Для экспериментального обоснования атомистики и ее внедрения в химию много усилий приложил Й.Я. Берцелиус. Окончательную победу атомно-молекулярное учение одержало на 1-м Международном конгрессе химиков.

В 1850-1870-е гг. на основе учения о валентности химической связи была разработана теория химического строения, которая обусловила огромный успех органического синтеза и возникновение новых отраслей химической промышленности, а в теоретическом плане открыла путь теории пространственного строения органических соединений - стереохимии.

Во второй половине XIX в. складываются физическая химия, химическая кинетика - учение о скоростях химических реакций, теория электролитической диссоциации, химическая термодинамика. Таким образом, в химии XIX в. сложился новый общий теоретический подход - определение свойств химических веществ в зависимости не только от состава, но и от структуры.[11]

Развитие атомно-молекулярного учения привело к идее о сложном строении не только молекулы, но и атома. В начале ХГХ в. эту мысль высказал английский ученый У. Праут на основе результатов измерений, показывавших, что атомные веса элементов кратны атомному весу водорода. Праут предложил гипотезу, согласно которой атомы всех элементов состоят из атомов водорода. Новый толчок для развития идеи о сложном строении атома дало великое открытие Д. И. Менделеевым периодической системы элементов, которая наталкивала на мысль о том, что атомы не являются неделимыми, что они обладают структурой и их нельзя считать первичными материальными образованиями.

4. Зарождение современной химии и ее проблемы в 21 веке

Конец средних веков отмечен постепенным отходом от оккультизма, спадом интереса к алхимии и распространением механистического взгляда на устройство природы.

Ятрохимия. Совершенно иных взглядов на цели алхимии придерживался Парацельс. Под таким выбранным им самим именем вошел в историю швейцарский врач Филипп фон Гогенгейм. Парацельс, как и Авиценна, считал, что основная задача алхимии – не поиски способов получения золота, а изготовление лекарственных средств. Он заимствовал из алхимической традиции учение о том, что существуют три основные части материи – ртуть, сера, соль, которым соответствуют свойства летучести, горючести и твердости. Эти три элемента составляют основу макрокосма и связаны с микрокосмом, образованным духом, душой и телом. Переходя к определению причин болезней, Парацельс утверждал, что лихорадка и чума происходят от избытка в организме серы, при избытке ртути наступает паралич и т.д. Принцип, которого придерживались все ятрохимики, состоял в том, что медицина есть дело химии, и все зависит от способности врача выделять чистые начала из нечистых субстанций. В рамках этой схемы все функции организма сводились к химическим процессам, и задача алхимика заключалась в нахождении и приготовлении химических веществ для медицинских нужд.

Основными представителями ятрохимического направления были Ян Гельмонт, по профессии врач; Франциск Сильвий, пользовавшийся как медик большой славой и устранивший из ятрохимического учения «духовные» начала; Андреас Либавий, врач из Ротенбурга.[12]

Их исследования во многом способствовали формированию химии как самостоятельной науки.

Механистическая философия. С уменьшением влияния ятрохимии натурфилософы вновь обратились к учениям древних о природе. На первый план в 17 в. вышли атомистические воззрения. Одним из виднейших ученых – авторов корпускулярной теории – был философ и математик Рене Декарт. Свои взгляды он изложил в 1637 в сочинении Рассуждение о методе. Декарт полагал, что все тела «состоят из многочисленных мелких частиц различной формы и размеров, которые не настолько точно прилегают друг к другу, чтобы вокруг них не оставалось промежутков; эти промежутки не пустые, а наполнены... разреженной материей». Свои «маленькие частички» Декарт не считал атомами, т.е. неделимыми; он стоял на точке зрения бесконечной делимости материи и отрицал существование пустоты.

Одним из виднейших противников Декарта был французский физик и философ Пьер Гассенди.

Атомистика Гассенди была по существу пересказом учения Эпикура, однако, в отличие от последнего, Гассенди признавал сотворение атомов Богом; он считал, что Бог создал определенное число неделимых и непроницаемых атомов, из которых и состоят все тела; между атомами должна быть абсолютная пустота.

В развитии химии 17 в. особая роль принадлежит ирландскому ученому Роберту Бойлю.[13] Бойль не принимал утверждения древних философов, считавших, что элементы мироздания можно установить умозрительно; это и нашло отражение в названии его книги Химик-скептик. Будучи сторонником экспериментального подхода к определению химических элементов, он не знал о существовании реальных элементов, хотя один из них – фосфор – едва не открыл сам. Обычно Бойлю приписывают заслугу введения в химию термина «анализ». В своих опытах по качественному анализу он применял различные индикаторы, ввел понятие химического сродства. Основываясь на трудах Галилео Галилея Эванджелиста Торричелли, а также Отто Герике , демонстрировавшего в 1654 «магдебургские полушария», Бойль описал сконструированный им воздушный насос и опыты по определению упругости воздуха при помощи U-образной трубки. В результате этих опытов был сформулирован известный закон об обратной пропорциональности объема и давления воздуха. В 1668 Бойль стал деятельным членом только что организованного Лондонского королевского общества, а в 1680 был избран его президентом.

Биохимия. Эта научная дисциплина, занимающаяся изучением химических свойств биологических веществ, сначала была одним из разделов органической химии. В самостоятельную область она выделилась в последнее десятилетие 19 в. в результате исследований химических свойств веществ растительного и животного происхождения. Одним из первых биохимиков был немецкий ученый Эмиль Фишер. Он синтезировал такие вещества, как кофеин, фенобарбитал, глюкоза, многие углеводороды, внес большой вклад в науку о ферментах – белковых катализаторах, впервые выделенных в 1878. Формированию биохимии как науки способствовало создание новых аналитических методов.

В 1923 шведский химик Теодор Сведберг сконструировал ультрацентрифугу и разработал седиментационный метод определения молекулярной массы макромолекул, главным образом белков. Ассистент Сведберга Арне Тизелиус в том же году создал метод электрофореза – более совершенный метод разделения гигантских молекул, основанный на различии в скорости миграции заряженных молекул в электрическом поле. В начале 20 в. русский химик Михаил Семенович Цвет описал метод разделения растительных пигментов при прохождении их смеси через трубку, заполненную адсорбентом. Метод был назван хроматографией.[14]

В 1944 английские химики Арчер Мартини Ричард Синг предложили новый вариант метода: они заменили трубку с адсорбентом на фильтровальную бумагу. Так появилась бумажная хроматография – один из самых распространенных в химии, биологии и медицине аналитических методов, с помощью которого в конце 1940-х – начале 1950-х годов удалось проанализировать смеси аминокислот, получающиеся при расщеплении разных белков, и определить состав белков. В результате кропотливых исследований был установлен порядок расположения аминокислот в молекуле инсулина, а к 1964 этот белок удалось синтезировать. Сейчас методами биохимического синтеза получают многие гормоны, лекарственные средства, витамины.

Квантовая химия. Для того, чтобы объяснить устойчивость атома, Нильс Бор соединил в своей модели классические и квантовые представления о движении электрона. Однако искусственность такого соединения была очевидна с самого начала. Развитие квантовой теории привело к изменению классических представлений о структуре материи, движении, причинности, пространстве, времени и т.д., что способствовало коренному преобразованию картины мира.

В конце 20-х – начале 30-х годов XX века на основе квантовой теории формируются принципиально новые представления о строении атома и природе химической связи.[15]

После создания Альбертом Эйнштейном фотонной теории света (1905) и выведения им статистических законов электронных переходов в атоме (1917) в физике обостряется проблема волна-частица.

Если в XVIII-XIX веках имелись расхождения между различными учеными, которые для объяснения одних и тех же явлений в оптике привлекали либо волновую, либо корпускулярную теорию, то теперь противоречие приобрело принципиальный характер: одни явления интерпретировались с волновых позиций, а другие – с корпускулярных. Разрешение этого противоречия предложил в 1924 г. французский физик Луи Виктор Пьер Раймон де Бройль, приписавший волновые свойства частице.

Исходя из идеи де Бройля о волнах материи, немецкий физик Эрвин Шрёдингер в 1926 г. вывел основное уравнение т.н. волновой механики, содержащее волновую функцию и позволяющее определить возможные состояния квантовой системы и их изменение во времени. Шредингер дал общее правило преобразования классических уравнений в волновые. В рамках волновой механики атом можно было представить в виде ядра, окруженного стационарной волной материи. Волновая функция определяла плотность вероятности нахождения электрона в данной точке.

В том же 1926 г. другой немецкий физик Вернер Гейзенберг разрабатывает свой вариант квантовой теории атома в виде матричной механики, отталкиваясь при этом от сформулированного Бором принципа соответствия.

Согласно принципу соответствия, законы квантовой физики должны переходить в классические законы, когда квантовая дискретность стремится к нулю при увеличении квантового числа. В более общем виде принцип соответствия можно сформулировать следующим образом: новая теория, которая претендует на более широкую область применимости по сравнению со старой, должна включать в себя последнюю как частный случай. Квантовая механика Гейзенберга позволяла объяснить существование стационарных квантованных энергетических состояний и рассчитать энергетические уровни различных систем.

Фридрих Хунд, Роберт Сандерсон Малликен и Джон Эдвард Леннард-Джонс в 1929 г. создают основы метода молекулярных орбиталей. В основу ММО заложено представление о полной потере индивидуальности атомов, соединившихся в молекулу. Молекула, таким образом, состоит не из атомов, а представляет собой новую систему, образованную несколькими атомными ядрами и движущимися в их поле электронами. Хундом создаётся также современная классификация химических связей; в 1931 г. он приходит к выводу о существовании двух основных типов химических связей – простой, или σ-связи, и π-связи. Эрих Хюккель распространяет метод МО на органические соединения, сформулировав в 1931 г. правило ароматической стабильности (4n+2), устанавливающее принадлежность вещества к ароматическому ряду.[16]

Таким образом, в квантовой химии сразу выделяются два различных подхода к пониманию химической связи: метод молекулярных орбиталей и метод валентных связей.

Благодаря квантовой механике к 30-м годам XX века в основном был выяснен способ образования связи между атомами. Кроме того, в рамках квантово-механического подхода получило корректную физическую интерпретацию менделеевское учение о периодичности.

Вероятно, наиболее важным этапом в развитии современной химии было создание различных исследовательских центров, занимавшихся, помимо фундаментальных, также прикладными исследованиями.

В начале 20 в. ряд промышленных корпораций создали первые промышленные исследовательские лаборатории. В США была основана химическая лаборатория «Дюпон», лаборатория фирмы «Белл». После открытия и синтеза в 1940-х годах пенициллина, а затем и других антибиотиков появились крупные фармацевтические фирмы, в которых работали профессиональные химики. Большое прикладное значение имели работы в области химии высокомолекулярных соединений.

Одним из ее основоположников был немецкий химик Герман Штаудингер, разработавший теорию строения полимеров. Интенсивные поиски способов получения линейных полимеров привели в 1953 к синтезу полиэтилена, а затем других полимеров с заданными свойствами. Сегодня производство полимеров – крупнейшая отрасль химической промышленности.

Не все достижения химии оказались благом для человека. При производстве красок, мыла, текстиля использовали соляную кислоту и серу, представлявшие большую опасность для окружающей среды. В 21 в. производство многих органических и неорганических материалов увеличится за счет вторичной переработки использованных веществ, а также за счет переработки химических отходов, которые представляют опасность для здоровья человека и окружающей среды.

Заключение

К середине 30-х годов XX века химическая теория приобретает вполне современный вид. Хотя основные концепции химии в дальнейшем стремительно развивались, принципиальных изменений в теории больше не происходило.

Установление делимости атома, квантовой природы излучения, создание теории относительности и квантовой механики представляли собой революционный переворот в понимании окружающих человека физических явлений. Этот переворот коснулся прежде всего микро- и мегамира, что к химии в классическом смысле, казалось бы, не имеет прямого отношения. Однако в этом и заключается одна из особенностей химии XX века: для понимания причин, которыми обусловлены фундаментальные химические законы, потребовалось выйти за пределы предмета химии. Ныне теоретическая химия в значительной степени представляет собой физику, "адаптированную" для решения химических задач. В значительной степени именно достижения физики сделали возможными огромные успехи теоретической и прикладной химии в XX столетии.

Объём химических знаний стал настолько велик, что составление краткого, в несколько страниц, очерка новейшей истории химии представляет собой сложнейшую задачу, взяться за которую автор настоящей работы не считает для себя возможным.

Еще одной особенностью химии в ХХ веке стало появление большого числа новых аналитических методов, прежде всего физических и физико-химических. Широкое распространение получили рентгеновская, электронная и инфракрасная спектроскопия, магнетохимия и масс-спектрометрия, спектроскопия ЭПР и ЯМР, рентгеноструктурный анализ и т.п.; список используемых методов чрезвычайно обширен. Новые данные, полученные с помощью физико-химических методов, заставили пересмотреть целый ряд фундаментальных понятий и представлений химии. Сегодня ни одно химическое исследование не обходится без привлечения физических методов, которые позволяют определять состав исследуемых объектов, устанавливать мельчайшие детали строения молекул, отслеживать протекание сложнейших химических процессов.

Для современной химии также стало очень характерным всё более тесное взаимодействие с другими естественными науками. Физическая и биологическая химия стали важнейшими разделами химии наряду с классическими – неорганической, органической и аналитической. Пожалуй, именно биохимия со второй половины ХХ столетия занимает лидирующее положение в естествознании.[17]

Список литературы

Азимов А. Краткая история химии. Развитие идей и представлений в химии. – М.: Мир, 1983.

Джуа М. История химии. – М.: Мир, 1996.

Рабинович В.Л. Алхимия как феномен средневековой культуры. М., 1979. Ч. 1. Гл. 1.

Соловьев Ю.И. История химии. Развитие химии с древнейших времён до конца XIX века. – М.: Просвещение, 1983.

Соловьев Ю.И., Трифонов Д.Н., Шамин А.Н. История химии. Развитие основных направлений современной химии. – М.: Просвещение, 1984.

Фигуровский Н.А. История химии. – М.: Просвещение, 1979.

Для подготовки данной работы были использованы материалы с сайта http://ref.com.ua

[1] Азимов А. Краткая история химии. Развитие идей и представлений в химии. – М.: Мир, 1983.

[2] Азимов А. Краткая история химии. Развитие идей и представлений в химии. – М.: Мир, 1983.

[3] Соловьев Ю.И. История химии. Развитие химии с древнейших времён до конца XIX века. – М.: Просвещение, 1983.

[4] Соловьев Ю.И. История химии. Развитие химии с древнейших времён до конца XIX века. – М.: Просвещение, 1983.

[5] Фигуровский Н.А. История химии. – М.: Просвещение, 1979.

[6] Рабинович В.Л. Алхимия как феномен средневековой культуры. М., 1979. Ч. 1. Гл. 1.

[7] Фигуровский Н.А. История химии. – М.: Просвещение, 1979.

[8] Фигуровский Н.А. История химии. – М.: Просвещение, 1979.

[9] Фигуровский Н.А. История химии. – М.: Просвещение, 1979.

[10] Азимов А. Краткая история химии. Развитие идей и представлений в химии. – М.: Мир, 1983.

[11] Азимов А. Краткая история химии. Развитие идей и представлений в химии. – М.: Мир, 1983.

[12] Фигуровский Н.А. История химии. – М.: Просвещение, 1979.

[13] Соловьев Ю.И. История химии. Развитие химии с древнейших времён до конца XIX века. – М.: Просвещение, 1983.

[14] Соловьев Ю.И. История химии. Развитие химии с древнейших времён до конца XIX века. – М.: Просвещение, 1983.

[15] Азимов А. Краткая история химии. Развитие идей и представлений в химии. – М.: Мир, 1983.

[16] Азимов А. Краткая история химии. Развитие идей и представлений в химии. – М.: Мир, 1983.

[17] Азимов А. Краткая история химии. Развитие идей и представлений в химии. – М.: Мир, 1983.


Похожие работы:

  1. • Основные этапы развития химии
  2. • Задачи исторической геологии и основные этапы ее развития
  3. • Предмет аналитической химии и основные этапы её развития
  4. • Основные этапы исторического развития естествознания
  5. • Роль химии в естествознании
  6. • Основные этапы развития фармацевтической химии и ...
  7. • Новые научные направления современной химии и их ...
  8. • Химия жизни
  9. • Становление и основные этапы исторического развития ...
  10. • Химия как отрасль естествознания
  11. • Супрамолекулярная химия
  12. • Супрамолекулярная химия
  13. • Психология как наука. Возникновение, развитие, обзор основных ...
  14. • Исторические этапы развития системы городских поселений
  15. • Химия сегодня
  16. • Основные этапы становления и развития исторической геологии
  17. • Эволюция теоретических проблем химии
  18. • Формирование философского мышления
  19. • Рождение современной химии
Рефетека ру refoteka@gmail.com