Э. Г. Бeлага
Ну, начнём! Когда мы доберёмся до конца этой истории, будем знать больше, чем теперь.
Г. X. Андерсен
В необозримом царстве функций многочлены занимают, на первый взгляд, очень скромное место. Однако это первое впечатление обманчиво.
Многочлены, действительно, предельно просты: алгебраическая запись
f(x) = xn + a1xn–1 + a2xn–2 + ... + an–1x + an |
(1) |
является одновременно и формулой для вычисления значений многочлена1 . Хотя выражения типа cosx, 5√x, 10x, log2x намного лаконичнее, с вычислительной точки зрения они бессодержательны: для вычисления, скажем чисел cos17°, 5√2, 100,13 или log27 нужны специальные приближённые формулы (или таблицы, составленные с помощью тех же формул). Как правило, в таких формулах появляются многочлены: например,
cos x » 1 – |
x2 2! |
+ |
x4 4! |
– |
x6 6! |
+ |
x8 8! |
(ошибка в интервале 0≤x≤π/4 меньше одной десятимиллионной!).
А ведь тригонометрические, степенные и т.п. (элементарные) функции — это самые простые из функций анализа, изучаемых и используемых математиками, физиками, инженерами. Известный математик-вычислитель Р.В.Хемминг в своей книге «Численные методы» (М., «Наука», 1972) пишет: «Поскольку с многочленами легко обращаться, большая часть классического численного анализа основывается на приближении многочленами».
Так как вычислять многочлены приходится часто, то важно научиться делать это как можно проще. Мы расскажем об эволюции методов вычисления значений многочленов с момента зарождения (XVIIвек). Впрочем, слово «эволюция» здесь не вполне уместно: история этих методов — скорее очень длинный роман с интересной, но краткой завязкой, однообразным действием и неожиданной развязкой.
По правде говоря, здесь возникает сомнение, или вернее вопрос, которого миновать нельзя, не поставив его и на него не ответив.
А. Данте. Пир (1303 г.)
Общепринятый сейчас способ вычисления многочленов восходит к Ньютону и называется схемой Горнера. Эта универсальная (то есть применимая к любому многочлену) схема предельно проста и изящна. Она получается из формулы (1) вынесением за скобки x всюду, где это возможно:
f(x) = (...(((x + a1)·x + a2)·x + a3)...)·x + an. |
(2) |
Порядок действии при вычислении f(x) определяется скобками в (2): сначала сложение внутри самой внутренней пары скобок (его результат обозначим через p1), затем умножение и сложение внутри следующей пары скобок (результат p2) и т.д.:
|
(3) |
всего n–1 умножений и n сложений2 .
Схема Горнера настолько совершенна, что вопрос о возможности её улучшения не возникал два с половиной века и был задан «вслух» впервые лишь в 1954году! Постановка этого вопроса (ответ на него предполагался отрицательным) имела важные и неожиданные последствия.
— Вы позволите мне записать эту романтическую историю, сэр? — спросил потрясенный мистер Снодграсс.
— Сколько угодно, сэр, сколько угодно, ещё пятьдесят таких, если они вам по вкусу.
Ч. Диккенс
Уже в курсе школьной алгебры мы встречаемся с примерами многочленов, для которых существуют необычайно экономные схемы; единственный их недостаток — они не универсальны.
Сравнивая разные схемы по числу операций, мы будем объединять операции сложения и вычитания в группу «(+,–)-операций», а гораздо более трудоёмкие операции умножения и деления — в группу «(×,:)-операций».3
Примеры.
(а) Многочлен f(x) = x2^k можно вычислить за k умножений (а не за 2k по Горнеру):
p1 = x·x = x2, p2 = p1·p1 = x4, ..., pk = pk–1·pk–1, f(x) = pk. |
(б) Многочлен f(x) = x15 можно вычислить за пять (×,:)-операций, так как f(x) = x15 = x16 : x = x2^4 : x.
(в) Многочлен f(x) = xn + xn–1 + ... + x + 1 вычисляется по формуле геометрической прогрессии: f(x) = (xn+1 – 1) : (x – 1).
(г) Многочлен
f(x) = xn + |
( |
n 1 |
) |
xn–1 + ... + |
( |
n n–1 |
) |
x + 1; |
есть бином Ньютона: f(x) = (x + 1)n.
Число примеров можно, конечно, увеличить.
Тогда я решил тем же способом разделаться и с остальными медведями.
Э. Распэ. Мюнхаузен среди белых медведей.
А что если для каждого многочлена существует своя схема, гораздо более экономная, чем схема Горнера?
Такие схемы можно было бы искать либо исходя из особенностей отдельного многочлена (искусно комбинируя его коэффициенты), либо сконструировав универсальный метод построения схем, намного более экономных, чем схема Горнера, но, возможно, для некоторых многочленов не наилучших. Недостаток первого подхода в том, что для каждого многочлена придется придумывать свои приёмы, и нет никакой гарантии, что нам это всегда удастся; позже (в §10) мы увидим, что второй путь надёжнее во всех отношениях.
Само собой разумеется, что оба эти метода уместны лишь в тех случаях, когда конкретный многочлен приходится вычислять так часто, что стоит потратить и время, и усилия, чтобы построить для него хорошую схему. Многочлены же «разового пользования» проще вычислять, скажем, по схеме Горнера.
Возможно, подобные рассуждения и привели в 1955году к открытию универсальной схемы совершенно нового типа для многочлена шестой степени. Мы проиллюстрируем основную идею этой схемы на примере более простой схемы — для многочленов степени4. Пусть
f(x) = x4 + ax3 + bx2 + cx + d; |
(4) |
положим
|
(5) |
где A, B, C и D — параметры.
Пример. Многочлен x4 + 3x3 + 6x2 + 3x + 2 можно вычислять по схеме: p1 = x(x + A), f(x) = (p1 – 1)(p1 + x + 5) + 7, содержащей два умножения (вместо трёх по Горнеру) и пять (вместо четырёх) (+,–)-операций; здесь A=1, B=–1, C=5, D=7.
Выпишем явное выражение для p2(x):
p2(x) = x4 + (2A + 1)·x3 + (A2 + A + B + C)·x2 +
+ (AB + B + AC)·x + BC + D;
приравняв коэффициенты f(x) и p2(x), выразим параметры, входящие в формулу(5), через коэффициенты(4):
|
(6) |
Из этих формул ясно, что схема (5) универсальна.
Операции (6) мы будем называть предварительной обработкой коэффициентов многочлена; разумеется, они не включаются в число операций схемы: ведь для каждого данного многочлена они выполняются лишь однажды, а наша задача — научиться быстро считать значения произвольного, но фиксированного многочлена при разных x.
— Я думаю, — сказал глубокомысленно Пятачок, — что если бы Иа встал под деревом, а Пух встал к нему на спину, а я встал на плечи Пуха...
— И если бы спина Иа-Иа неожиданно треснула, то мы бы все здорово посмеялись, — сказал Иа.
А. А. Милн. Винни Пух
В 1958 году была найдена общая универсальная схема с предварительной обработкой коэффициентов. Структура этой схемы для многочлена чётной степени (n=2k) напоминает пирамиду — в основании лежит схема(5) (в её «прочности» мы уже убедились), содержащаяся в схеме степени6, которая содержится в схеме степени8 и т.д.:
|
(7.k) |
схема (7.2) — это и есть схема (5). Результат схемы (7.k) — многочлен pk(x) степени n=2k; многочлен же нечётной степени n=2k+1 можно представить в таком виде:
f(x) = x(x2k + a1x2k–1 + ... + a2k) + a2k+1; |
(8) |
многочлен в круглых скобках вычисляется по схеме (7.k). В итоге схема содержит k умножений и 2k+1 сложений для многочлена чётной степени n=2k и k+1 умножений и 2k+2 сложений для многочлена нечётной степени n=2k+1 (с учётом (7.k) и (8) ).
5. Докажите индукцией по k≥2 универсальность схемы (7.k).
Решение
Пусть f(x) = x2k + a1x2k–1 + ... + a2k.
Нам нужно по коэффициентам a1, ..., a2k многочлена f(x) найти параметры b1, ..., b2k, превращающие последнюю строку схемы (7.k) в тождество.
Параметр b1 — единственный, для которого существует формула, причём простая.
Лемма 1. Справедливо соотношение
a1 = kb1 + 1. |
(I) |
Доказательство проводится индукцией по k≥2.
Если k=2, то a1 = kb1 + 1 согласно (6) (роль b1 играет в (6) параметр A).
Пусть k≥3, и пусть в схеме (7.k)
pk–1(x) = x2k–2 + αx2k–3 + ... ;
тогда
pk = pk–1(p1 + b2k–1) + b2k =
= (x2k–2 + αx2k–3 + ...)(x2 + b1x + b2k–1) + b2k =
= x2k + (α + b1)x2k–1 + ... ,
так что, если по предположению индукции α = (k – 1)b1 + 1, то a1 = α + b1 = kb1 + 1.
Возможность вычисления значении остальных параметров по значениям коэффициентов также доказывается индукцией по k≥2.
База индукции. k=2, n=4. Схема (5), формулы (6).
Посылка индукции. Пусть при некотором j=k–1≥2 схема (7.k–1) универсальна, то есть любому набору чисел A1, A2, ..., A2k–2 соответствуют значения b1, b2, ..., b2k–2 параметров, подставив которые в схему (7.k–1), мы получим многочлен
pk–1(x) = x2k–2 + A1x2k–3 + ... + A2k–2. |
(II) |
Шаг индукции. Тогда схема (7.k) также универсальна. Выпишем предпоследнюю строку этой схемы:
pk(x) = pk–1(x)·(x2 + b1x + b2k–1) + b2k. |
(III) |
Согласно нашему предположению (посылка индукции), для нахождения значений параметров b1, b2, ..., b2k, превращающих многочлен pk(x) из (7.k) в многочлен f(x) с данными коэффициентами a1, a2, ..., a2k нам достаточно найти такой многочлен pk–1(x) (точнее, его коэффициенты A1, A2, ..., A2k–2 — см. (II)) и такие значения параметров b2k–1, b2k, чтобы после их подстановки в (III) выполнялось тождество pk(x) = f(x). Перемножив многочлены в правой части равенства (III) и приравняв коэффициенты полученного многочлена и многочлена f(x) = xk + a1xk–1 + ... + a2k, мы сможем выписать систему 2k уравнений с неизвестными A1, A2, ..., A2k–2, b2k–1, b2k, (a1, ..., a2k заданы, b1 находится из равенства (I)); чтобы сократить запись формул, заменим параметр b2k–1 символом b:
a1 = A1 + b1, a2 = A2 + b1·A1 + b, a3 = A3 + b1·A2 + b·A1, . . . . . . . . . . a2k–2 = A2k–2 + b1·A2k–3 + b·A2k–4, a2k–1 = b1·A2k–2 + b·A2k–3, a2k = b1·A2k–2 + b2k. |
(IV) |
Условимся обозначать уравнение системы (IV) с номером j (1≤j≤2k) через (IV)-j. Тогда процесс решения системы (IV) можно описать в нескольких словах: A1 выражается через a1 из (IV)-1 и (I), A2 выражается через a1, a2 и b из (IV)-2, A3 выражается через a1, a2, a3 и b из (IV)-3 и т.д. Последним из уравнения (IV)-(2k–2) мы выразим неизвестное A2k–2; затем, подставив в уравнение (IV)-(2k–1) найденные выражения для A2k–2 и A2k–3, мы получим уравнение относительно b.
Лемма 2. Неизвестные A2j–1 и A2j выражаются из системы (IV) через параметр b и коэффициенты a1, a2, ..., a2k–2; согласно формулам (b1 выражается через a1 согласно (I))
A2j–1 = (–1)j–1[(k – j)b1 + 1]bj–1 + + S1,j(a1, a2, a3)bj–2 + ... + Sj–1,j(a1, a2, ..., a2j–1), |
(V) |
A2j = (–1)jbj + T1,j(a1, a2)bj–1 + ... + Tj,j(a1, a2, ..., a2j). |
(VI) |
Доказательство. База индукции: j=1, A1 = a1 – b1 = [(k – 1)b1 + 1]b, A2 = –b + T1,1(a1, a2).
Посылка индукции — формулы (V), (VI) при 1≤j0 всегда имеет хотя бы один корень. Несмотря на то, что при n≥5 формул для нахождения этого корня и не существует, разработаны методы нахождения всех корней многочлена с любой точностью.
Начиная с третьей строки, схема (7.k) очень напоминает схему Горнера(3); разница лишь в том, что теперь после каждого умножения степень увеличивается не на единицу, а на два.
Итак, нам удалось уменьшить число умножений по сравнению со схемой Горнера вдвое. Какой ценой? Из решения упражнения 5 видно, что процесс вычисления параметров b1, b2, ..., b2n по коэффициентам a1, a2, ..., a2n очень сложен, — он включает в себя решение серии уравнений с одним неизвестным степени k–1, k–2, ... Это означает, в частности, что при k≥6 (n≥12) формул вычисления параметров нет4 , хотя, разумеется, их значения могут быть найдены приближёнными методами с любой степенью точности.
Здесь возникает ещё одно затруднение, оказавшееся, правда, преодолимым. До сих пор мы не уточняли, значения каких — действительных или комплексных — многочленов мы вычисляем. Схема Горнера применима и в том, и в другом случае, схема же (7.k) преимущественно «комплексная» — действительным коэффициентам могут соответствовать комплексные параметры. Появление комплексных чисел при вычислении действительных многочленов намного увеличивает число арифметических операций5 . К счастью, в 1960году схему (7.k) небольшим усложнением удалось превратить в действительную; однако полные доказательства в этом случае уже очень непросты.
— Минуточку, минуточку — раздались протестующие голоса. — Избегайте, пожалуйста, научных терминов, объясняйте популярно...
— Верно! — подтвердили остальные. — Говорите понятнее... Что такое лес?
Я. Осенка. Загородная прогулка в 2050 году
Пришло время спросить, нет ли схем, более экономных, чем схема (7.k)? Но тогда неизбежен и вопрос — что такое схема?
Определение. (I). Схема с предварительной обработкой коэффициентов — это последовательность арифметических операций, в которых участвуют переменная x, параметры b1, b2, ..., bm и результаты предшествующих операций. Результат последней операции назовем результатом схемы. (II). Если при некотором наборе значений параметров b1, ..., bm результат схемы есть данный многочлен степени n, то мы скажем, что схема представляет этот многочлен. (III). Если схема представляет многочлен, то процесс вычисления по его коэффициентам соответствующего набора значений параметров назовем предварительной обработкой коэффициентов. (IV). Схема называется универсальной степени n, если она представляет любой многочлен степени n вида (1).
Примеры. 1. Схема (7.k) — универсальная (степени n=2k); то же верно и для схемы Горнера (параметры — сами коэффициенты).
2. Схема p(x) = (xn+1 – b1)/(x – b2) представляет многочлен (в) §3 при b1 = b2 = 1.
Упражнение6. Докажите, что общее число SN схем (всех степеней), содержащих не более N операций, конечно и не превосходит числа6 [(3N – 1)!/(2N – 1)!]2.
Решение
Так как в каждой операции участвует не более двух параметров, то общее число параметров в схеме с N операциями не больше 2N–1 (хотя бы в одной операции должна участвовать переменная x). В первой операции участвуют два числа. Каждое из них есть либо x, либо один из не более чем 2N–1 параметров; всего не более (2N)2 возможностей. Во второй операции могут участвовать те же числа и результат первой операции; всего не более (2N+1)2 возможностей, и так далее. Наконец, в последней операции могут участвовать не более 3N–1 чисел (в том числе N–1 результат предыдущих операций); всего не более (3N–1)2 возможностей. Общее число различных вариантов не больше произведения этих чисел, то есть
SN ≤ (2N)2 (2N + 1)2 ... (3N – 1)2 = [(3N – 1)!/(2N – 1)!]2.
Положение, в котором мы находимся, заставляет нас прибегать ко всестороннему изучению предмета.
Платон
Теперь наш вопрос о наилучших схемах степени n приобрёл точный смысл, и можно дать на него точный ответ: схема из §5 почти наилучшая — любая универсальная схема степени n содержит не менее ½(n–1) (×,:)-операций и не менее n–1 (+,–)-операций.
Справедливость этого утверждения можно вывести из двух важных свойств схем:
число m параметров универсальной схемы степени n не меньше числа коэффициентов, то есть m≥n;
в промежутке между двумя (×,:)-операциями любой (не обязательно универсальной) схемы может появиться не более двух по-настоящему новых параметров (все остальные будут «лишними»), а между двумя (+,–)-операциями — не более одного.
Второе свойство стоит сформулировать более строго: если схема содержит r (×,:)-операций (или s (+,–)-операций), то число m параметров либо сразу не больше 2r+1 (соответственно s+1), либо без ущерба для свойств схемы может быть уменьшено до 2r+1 (соответственно, s+1), то есть m ≤ 2r + 1 и m ≤ s + 1.
Итак, n ≤ m ≤ 2r + 1 и n ≤ m ≤ s + 1, отсюда ½(n – 1) ≤ r и n – 1 ≤ s.
— Но вы совсем забыли о схеме Горнера! — прервёт нас читатель, которому больше по душе классическая ясность схем без предварительной возни с коэффициентами. — Ведь она не зря кажется предельно экономной!
— Схема Горнера действительно наилучшая среди схем, в которых параметрами являются сами коэффициенты. Недостаток места не позволяет нам изложить красивое, но не очень простое доказательство этого факта, найденное в 1960году.
А теперь займёмся двумя сформулированными выше свойствами схем, сначала вторым.
Дама сдавала в багаж
диван, чемодан, саквояж,
картину, корзину, картонку
и маленькую собачонку.
С. Я. Маршак
Наше определение схемы не накладывало никаких ограничений на форму её записи. Мы назовём элементарной запись схемы типа «одна строка — одна операция», когда запоминается (и обозначается своим символом) результат каждой операции схемы; примеры: эпиграф (хотя это и не схема, а скорее багажная квитанция), схема для многочлена x2^k (§3) — в ней каждый результат используется больше одного раза и потому нуждается в запоминании.
Не для всех схем элементарная форма записи является единственной: если результат какой-то операции используется лишь однажды, то эту операцию можно сразу включить в ту строку, в которой участвует её результат. (Примеры: каждая строка схемы (3), начиная со второй, включает две операции, а схемы (7.k) — не менее трёх.) Интересно, что схема (7.k) не допускает записи меньше, чем в две строки, так как результат первого умножения используется многократно, а схема (3) — допускает (формула (2) ).
Переходя к доказательству свойства 2), рассмотрим элементарную форму записи схемы и обозначим через q1, ..., qr результаты (×,:)-операций. Перепишем схему в «(×,:)-форме»: «одна строка — одна (×,:)-операция». При этом число (+,–)-операций может заметно возрасти — мы ведь не запоминаем их результаты; но сейчас нас интересует только число (×,:)-операций, а оно остаётся прежним. Первые r строк схемы в «(×,:)-форме» имеют вид
qj = (Aj ± Bj ± ...) × : (Cj ± Dj ± ...), 1 ≤ j ≤ r, |
(9) |
где Aj, Bj, ..., Cj, Dj, ... — это либо bi, либо x, либо qs, где s