Из тела находящегося в плоском напряженном состоянии, выделена пластина, толщина которой 1 см, размеры в плане 20х20 см.
Схема закрепления пластины.
Задаваясь функцией напряжений, общий вид которой
Ф (х,у)=а1х3у+а2х3+а3х2у+а4х2+а5ху+а6у2+а7ху2+а8у3+а9ху3
Принять два коэффициента функции согласно таблиц 1 и 2, остальные шесть коэффициентов принять равными нулю. В этих же таблицах даны значения модуля упругости Е и коэффициента Пуассона для материала пластины.
Найти общие выражения для напряжений ?х, ?у, ?ху (объемные силы не учитывать) и построить эпюры этих напряжений для контура пластины.
Определить выражения для перемещений U и V. Показать графически(на миллиметровке) перемещение пластины в результате деформирования, определив компоненты перемещений U и V в девяти точках, указанных на схеме. Для наглядности изображения для перемещений выбрать более крупный масштаб, чем масштаб длин. Значение U и V свести в таблицу.
удовлетворяется, т.е. пластина находится в равновесии.
5.Для точки А с координатами (5,-5) найти величины главных напряжений и положение главных осей для точки А.
В этой точке напряжения в основных площадках. ?х=0, ?у=-1,33, ?ху=3,33,
Найдем главное напряжение по формуле:
=-0,665?3,396 кгс/см2
?max=?I=2,731 МПа
?min=?II= -4,061 МПа
Находим направление главных осей.
?I=39,36o
?II=-50,64o
6.Определяем компоненты деформации
7.Находим компоненты перемещений
Интегрируем полученные выражения
?(у), ?(х) –некоторые функции интегрирования
или
После интегрирования получим
где с1 и с2 – постоянные интегрирования
С учетом получения выражений для ?(у) и ?(х) компоненты перемещений имеет вид
Постоянные с1, с2, и с определяем из условий закрепления пластины:
1) v =0 или
2) v =0 или
3) u =0 или
Окончательные выражения для функций перемещений u и v
Покажем деформированное состояние пластины определив для этого перемещение в 9-ти точках.