Рефетека.ру / Биология и химия

Статья: Построение 3D-моделей циклических молекул в естественных переменных

Е.Г. Атавин, Омский государственный университет, кафедра органической химии

1. Введение

Интерес к геометрическому строению циклических молекул, интенсивно изучаемых как экспериментальными, так и расчетными методами, определяется не только их важнейшей ролью в органической химии и биохимии, но также сложностью и практически неисчерпаемым количеством соответствующих конформационных вариантов, особенно в случае гетероциклических соединений. Для построения модели (т.е. вычисления 3N декартовых координат) N-атомной молекулы в общем случае достаточно задать 3N-6 значений структурных параметров - межъядерных расстояний, валентных углов и углов внутреннего вращения, называющихся также внутренними или естественными переменными и легко оценивающихся по имеющимся эмпирическим закономерностям [1]. Оставшиеся 6 степеней свободы связаны с выбором положения и ориентацией молекулы в пространстве. Тем не менее, число структурных параметров, описывающих строение N-атомных моноциклических молекул, равно 3N (N межъядерных расстояний, N валентных углов и N углов внутреннего вращения). Из этих параметров лишь 3N-6 являются независимыми, и их значения можно выбирать произвольно (в пределах условия замыкания цикла). Оставшиеся 6 параметров называются зависимыми и определяются значениями независимых параметров.

Отметим, что пространственное строение нециклических молекул полностью описывается заданием значений N-1 межъядерных расстояний, N-2 валентных углов и N-3 углов внутреннего вращения. Замыкание цепи атомов в цикл увеличивает на единицу количество независимых межъядерных расстояний. При этом количество независимых угловых переменных уменьшается и становится недостаточным для непосредственного использования ранее рассмотренных алгоритмов построения нециклических молекул [2].

Алгоритмы построения циклических молекул по естественным переменным можно разделить на две группы.

Для итерационных методов (методы "стягивающего потенциала" и Шераги) характерна слабая чувствительность к качеству стартового приближения значений структурных параметров. Однако низкое быстродействие делает их малоэффективными при решении задач, требующих многократного построения модели молекулы (решение обратной задачи при поиске структурных параметров в дифракционных методах исследования, уточнение геометрии в методах молекулярной механики и квантовой химии, конформационный поиск и т.д.).

Алгоритмы построения геометрической модели молекулы неитерационными методами (метод Нордландера) опираются на вспомогательные геометрические построения, отличаются способом выбора 3N-6 назависимых параметров из общего их количества, работают значительно быстрее методов первой группы, однако требуют аккуратного выбора значений независимых геометрических параметров, не противоречащих условию замыкания цикла.

При сравнении алгоритмов полезно иметь в виду, что точность задания структурных параметров на основании эмпирических закономерностей существенно падает в ряду "межъядерные расстояния", "валентные углы", "торсионные углы", и включение в число зависимых параметров максимального количества торсионных углов является предпочтительным.

2. Метод "стягивающего потенциала" [3]

Очевидно, что линейная цепь атомов может быть неотличима от циклической, если подобрать соответствующие значения геометрических параметров. Подбор осуществляется итерационно, так, чтобы расстояние между концами линейной цепочки атомов постепенно приближалось к длине соответствующей химической связи. Для этого к обычному минимизируемому функционалу прибавляется так называемый "стягивающий потенциал", исчезающи по мере приближения расстояния между концами цепи к эталонному значению.

3. Метод Шераги

Авторам [4] удалось включить в набор независимых структурных параметров все N межъядерных расстояний и N валентных углов. Теперь лишь N-6 углов внутреннего вращения требуется задавать во входных данных. Оставшиеся шесть зависимых торсионных углов должны удовлетворять системе из шести уравнений, формулирующих условия замыкания цикла, сводящейся к уравнению с весьма громоздкими коэффициентами, решаемому итерационно.

4. Метод Нордландера [5]

Строится линейная цепь из N-1 атома. Если расстояние между концами этой цепи не превышают суммы длин двух оставшихся связей, то замыкание легко обеспечивается достраиванием последнего атома между этими концами. Метод формально неитерационный, но обеспечить отмеченное требование к стартовому набору структурных параметров практически невозможно без итерационного подбора.

Набор независимых параметров содержит N межъядерных расстояний, N-2 валентных угла и N-4 угла внутреннего вращения.

5. Метод построения пространственных моделей циклических молекул

Недостатки предыдущего метода в конечном итоге вытекают из неудачного выбора замыкающего (одноатомного) фрагмента, предопределяющего жесткие требования к расстоянию между концами основной цепи. В предлагаемом методе роль замыкающего фрагмента играет цепочка, равная примерно половине длины строящегося цикла. Значительно больший диапазон возможных значений расстояний между ее концами, с учетом сопоставимости длин обеих цепочек, обеспечивает построение цикла практически при любых разумных вариациях стартового набора структурных параметров с помощью следующей схемы:

1. Разбиваем цикл на две примерно одинаковые по длине цепи (основную и рабочую), состоящие из M и L атомов соответственно (M + L = N + 2). Строим обе цепочки с помощью одного из алгоритмов построения нециклических молекул [2], обеспечивая их ориентацию относительно оси OX в соответствии с рис. 1а. б.

2. Вычисляем расстояния (R1 и R2) между концами цепей.

3. Поворотом правой ветви рабочей цепи вокруг оси OX на угол добиваемся, чтобы расстояния между концами цепей совпали. Это возможно при двух значениях угла  (1 и 2):

1 = Arcsin(C/) - Arcsin(B/),

2 =  - Arcsin(C/) - Arcsin(B/),

где  = Sign(A) * sqrt(A2 + B2)

A = y1 * zm - z1 * ym

B = y1 * ym + z1 * zm

C = (R22 - R21) / 2 + B.

Построение 3D-моделей циклических молекул в естественных переменных

Рис. 1. Ориентация основной (а) и рабочей (б) цепей.

Знак параметра A совпадает со знаком вспомогательного торсионного угла F1,J,J+1,M . В случае, если в исходной цепи четыре атома 1,J,J+1,M попадают в плоскость (то есть F = 0,p), параметр A обращается в ноль. При этом y1 = -y2. Однако при смене знака параметра A решения скачком меняются местами. При этом малые изменения структурных параметров приведут к большим изменениям геометрии молекулы, в частности, возможен самопроизвольный переход от одного оптического размера к другому. Анализ показывает, что избежать зависимости результата от выбора стартового приближения и обеспечить непрерывное изменение геометрии можно, если выбирать окончательное решение следующим образом:

f = {

y1, если sgn1 * Sign(A) > 0

y2, если sgn1 * Sign(A) < 0

Параметр sgn1 введен для управлением выбором нужного решения. Значение sgn1 = 1 приводит к конформации цикла, наиболее близкой к стартовой в том смысле, что вспомогательный торсионный угол F при построении цикла не будет менять знак. Значение sgn1 = -1 изменит знак F и приведет к конформеру, отвечающему тому же набору независимых параметров, но с другими значениями зависимых параметров.

В случае abs(C/r) > 1 построение цикла с заданным набором параметров невозможно, поскольку значение R1 не попадает в интервал [Rmin , Rmax] изменения расстояния R2. Для корректировки вводимых значений структурных параметров полезно иметь в виду, что если C < 0, то R1 > Rmax, а если C > 0, то R1 < Rmin.

4. Цепочки соединяются концами (рис. 2).

Построение 3D-моделей циклических молекул в естественных переменных

Рис. 2. Замыкание цикла.

5. Цикл перегибается по линии соединения до придания независимому валентному углу a 21N заданного значения. Соответствующий угол f 21MN может быть вычислен по формулам пункта (3), если в качестве параметров R1 и R2 взять легко вычисляемое конечное и исходное значения межъядерного расстояния R2,N. При этом также возникает два варианта решения, для выбора из которых необходимо ввести второй знаковый параметр sgn2. Если заданный угол a несовместим с условием замыкания цикла (при этом abs(C/r) > 1), то его следует увеличить, если C > 0, или уменьшить, если C < 0.

Пошаговый перебор значений независимых торсионных углов для всех четырех комбинаций знаковых параметров sgn1 и sgn2 позволит получить полный набор конформеров исследуемой циклической системы.

Отметим также, что, в отличие от предыдущего метода, содержащего два зависимых валентных угла, предлагаемый алгоритм использует лишь один зависимый валентный угол M-1,M,M+1. Следовательно, в наборе независимых параметров содержится на один труднооцениваемый торсионный угол меньше. Это уменьшает на единицу размерность пространства перебора структур и значительно ускоряет конформационный поиск.

Предлагаемый алгоритм формально применим к карбо- и гетероциклам, начиная с пятичленного, однако его достоинства (быстродействие и работоспособность в относительно широком диапазоне заданных значений независимых параметров) в наибольшей степени проявляются для макроциклических систем.

Список литературы

Mastryukov V.S., Simonsen S.H. Empirical correlations in structural chemistry // Molecular Structure Research 1996. V.2. P.163-189.

Атавин Е.Г., Тихоненко В.О. Построение 3D-моделей нециклических молекул в естественных переменных // Вестник Омского университета. 1998. №2. С.35-37.

Дашевский В.Г. Конформационный анализ органических молекул. М.: Химия, 1982.

Go N., Scheraga H.A. Ring closure and local conformational deformation of chain molecules. Macromolecules. Vol.3. N2. P.178-187. 1969.

Nordlander J.E., Bond A.F., Bader M. Atcoor: a program for calculation and utilization of molecular atomic coordinates from bond parameters // Computers & Chemistry. 1985. V.3. P.209-235.

Для подготовки данной работы были использованы материалы с сайта http://www.omsu.omskreg.ru/


Похожие работы:

  1. • Построение 3D-моделей нециклических молекул в ...
  2. • Организация автоматизированного рабочего места 3D ...
  3. • Регрессионный анализ
  4. • Использование возможностей приложения Google Earth в ...
  5. • Разработка 3D модели балки с применением "SolidWorks"
  6. • Технологии 3D-видео
  7. • Моделирование FLOW-3D
  8. • Возможности графических карт. 3D графика
  9. • Восстановление эталона циклических сигналов на основе ...
  10. • 3D моделирование, анимация, виртуальные миры
  11. • Построение порождающего полинома циклического ...
  12. • Автоматизация квазидинамического расчёта напряженно ...
  13. • Решение оптимизационных управленческих задач на ...
  14. • Множественная регрессия и корреляция
  15. • Кружок по 3D моделированию как способ развития ...
  16. • Тепловой режим грунтов. Покой растений. Фитоценоз
  17. • Построение чертежа детали в среде Компас-3D V8
  18. • Світ 3D ефектів
  19. • 3D-модель и сборочный чертёж с применением ...
Рефетека ру refoteka@gmail.com