Содержание стр.
Введение
-3-
1. Строение
-4-
2. Номенклатура и изомерия
-6-
3. Физические свойства и нахождение в природе
-7-
4. Химические свойства
-8-
5. Получение
-9-
6. Применение -10-
6.1 Применение сложных эфиров неорганических кислот -10-
6.2 Применение сложных эфиров органических кислот
-12-
Заключение -14-
Использованные источники информации -15-
Приложение -16-
Введение
Среди функциональных производных кислот особое место занимают сложные
эфиры — производные кислот, у которых кислотный водород заменён на
алкильные (или вообще углеводородные) радикалы.
Сложные эфиры делятся в зависимости от того, производной какой кислоты
они являются (неорганической или карбоновой).
Среди сложных эфиров особое место занимают природные эфиры — жиры и
масла, которые образованы трехатомным спиртом глицерином и высшими жирными
кислотами, содержащими четное число углеродных атомов. Жиры входят в состав
растительных и животных организмов и служат одним из источников энергии
живых организмов, которая выделяется при окислении жиров.
Цель моей работы заключается в подробном ознакомлении с таким классом
органических соединений, как сложные эфиры и углублённом рассмотрении
области применения отдельных представителей этого класса.
1. Строение
Общая формула сложных эфиров карбоновых кислот:
[pic]
где R и R' — углеводородные радикалы (в сложных эфиpax муравьиной кислоты R
— атом водорода).
Общая формула жиров:
[pic] где R', R", R"' — углеродные радикалы.
Жиры бывают “простыми” и “смешанными”. В состав простых жиров входят
остатки одинаковых кислот (т. е. R’ = R" = R'"), в состав смешанных —
различных.
В жирах наиболее часто встречаются следующие жирные кислоты:
Алкановые кислоты
1. Масляная кислота СН3 — (CH2)2 — СООН
2. Капроновая кислота СН3 — (CH2)4 — СООН
3. Пальмитиновая кислота СН3 — (CH2)14 — СООН
4. Стеариновая кислота СН3 — (CH2)16 — СООН
Алкеновые кислоты
5. Олеиновая кислота С17Н33СООН
СН3—(СН2)7—СН === СН—(СН2)7—СООН
Алкадиеновые кислоты
6. Линолевая кислота С17Н31СООН
СН3—(СН2)4—СН = СН—СН2—СН = СН—СООН
Алкатриеновые кислоты
7. Линоленовая кислота С17Н29СООН
СН3СН2СН = CHCH2CH == CHCH2CH = СН(СН2)4СООН
2. Номенклатура и изомерия
Названия сложных эфиров производят от названия углеводородного радикала и
названия кислоты, в котором вместо окончания -овая используют суффикс -ат,
например:
[pic]
Для сложных эфиров характерны следующие виды изомерии:
1. Изомерия углеродной цепи начинается по кислотному остатку с бутановой
кислоты, по спиртовому остатку — с пропилового спирта, например,
этилбутирату изомерны этилизобутират, пропилацетат и изопропилацетат.
2. Изомерия положения сложноэфирной группировки —СО—О—. Этот вид изомерии
начинается со сложных эфиров, в молекулах которых содержится не менее 4
атомов углерода, например этилацетат и метилпропионат.
3. Межклассовая изомерия, например, метилацетату изомерна пропановая
кислота.
Для сложных эфиров, содержащих непредельную кислоту или непредельный
спирт, возможны еще два вида изомерии: изомерия положения кратной связи и
цис-, транс-изомерия.
3. Физические свойства и нахождение в природе
Сложные эфиры низших карбоновых кислот и спиртов представляют собой
летучие, нерастворимые в воде жидкости. Многие из них имеют приятный запах.
Так, например, бутилбутират имеет запах ананаса, изоамилацетат — груши и т.
д.
Сложные эфиры высших жирных кислот и спиртов — воскообразные вещества, не имеют запаха, в воде не растворимы.
Приятный аромат цветов, плодов, ягод в значительной степени обусловлен присутствием в них тех или иных сложных эфиров.
Жиры широко распространены в природе. Наряду с углеводородами и белками они входят в состав всех растительных и животных организмов и составляют одну из основных частей нашей пищи.
По агрегатному состоянию при комнатной температуре жиры делятся на жидкие и твердые. Твердые жиры, как правило, образованы предельными кислотами, жидкие жиры (их часто называют маслами) — непредельными. Жиры растворимы в органических растворителях и нерастворимы в воде.
4. Химические свойства
1. Реакция гидролиза, или омыления. Так, как реакция этерификации является
обратимой, поэтому в присутствии кислот протекает обратная реакция
гидролиза:
[pic]
Реакция гидролиза катализируется и щелочами; в этом случае гидролиз
необратим, так как получающаяся кислота со щелочью образует соль:
[pic]
2. Реакция присоединения. Сложные эфиры, имеющие в своем составе
непредельную кислоту или спирт, способны к реакциям присоединения.
3. Реакция восстановления. Восстановление сложных эфиров водородом
приводит к образованию двух спиртов:
[pic]
4. Реакция образования амидов. Под действием аммиака сложные эфиры
превращаются в амиды кислот и спирты:
[pic][pic]
5. Получение
1. Реакция этерификации:
Спирты вступают в реакции с минеральными и органическими кислотами, образуя
сложные эфиры. Реакция обратима (обратный процесс – гидролиз сложных
эфиров).
[pic]
[pic]
[pic]
Реакционная способность одноатомных спиртов в этих реакциях убывает от
первичных к третичным.
2. Взаимодействием ангидридов кислот со спиртами:
[pic]
3. Взаимодействием галоидангидридов кислот со спиртами:
[pic]
6. Применение
6.1 Применение сложных эфиров неорганических кислот
Эфиры борной кислоты — триалкилбораты — легко получаются нагреванием
спирта и борной кислоты с добавкой концентрированной серной кислоты.
Борнометиловый эфир (триметилборат) кипит при 65° С, борноэтиловый
(триэтилборат) — при 119° С. Эфиры борной кислоты легко гидролизуются
водой.
Реакция с борной кислотой служит для установления конфигурации многоатомных спиртов и была неоднократно использована при изучении Сахаров.
Ортокремневые эфиры — жидкости. Метиловый эфир кипит при 122° С,
этиловый при 156° С. Гидролиз водой проходит легко уже на холоду, но идет
постепенно и при недостатке воды приводит к образованию высокомолекулярных
ангидридных форм, в которых атомы кремния соединены друг с другом через
кислород (силоксановые группировки):
[pic] Эти высокомолекулярные вещества (полиалкоксисилоксаны) находят
применение в качестве связующих, выдерживающих довольно высокую
температуру, в частности для покрытия поверхности форм для точной отливки
металла.
Аналогично SiCl4 реагируют диалкилдихлорсиланы, например ((СН3)2SiCl2, образуя диалкоксильные производные:
[pic]
Их гидролиз при недостатке воды дает так называемые полиалкилсилоксаны:
[pic]
Они обладают разным (но очень значительным) молекулярным весом и представляют собой вязкие жидкости, используемые в качестве термостойких смазок, а при еще более длинных силоксановых скелетах — термостойкие электроизоляционные смолы и каучуки.
Эфиры ортотитановой кислоты. Их получают аналогично ортокремневым эфирам по реакции:
[pic]
Это жидкости, легко гидролизующиеся до метилового спирта и TiO2 применяются для пропитки тканей с целью придания им водонепроницаемости.
Эфиры азотной кислоты. Их получают действием на спирты смеси азотной и концентрированной серной кислот. Метилнитрат СН3ONO2, (т. кип. 60° С) и этилнитрат C2H5ONO2 (т. кип. 87° С) при осторожной работе можно перегнать, но при нагревании выше температуры кипения или при детонации они очень сильно взрывают.
[pic]
Нитраты этиленгликоля и глицерина, неправильно называемые нитрогликолем и нитроглицерином, применяются в качестве взрывчатых веществ. Сам нитроглицерин (тяжелая жидкость) неудобен и опасен в обращении.
Пентрит — тетранитрат пентаэритрита С(CH2ONO2)4, получаемый обработкой пентаэритрита смесью азотной и серной кислот, — тоже сильное взрывчатое вещество бризантного действия.
Нитрат глицерина и нитрат пентаэритрита обладают сосудорасширяющим эффектом и применяются как симптоматические средства при стенокардии.
Эфиры фосфорной кислоты — высококипящие жидкости, лишь очень медленно гидролизуемые водой, быстрее щелочами и разбавленными кислотами. Эфиры, образованные этерификацией высших спиртов (и фенолов), находят применение как пластификаторы пластмасс и для извлечения солей уранила из водных растворов.
Известны эфиры типа (RO)2S-O, но они не имеют практического значения.
Из алкилсульфатов — солей сложных эфиров высших спиртов и серной кислоты
производят моющие средства. В общем виде образование таких солей можно
изобразить уравнениями:
[pic]
Эти соли содержат в молекуле от 12 до 14 углеродных атомов и обладают очень хорошими моющими свойствами. Кальциевые и магниевые соли растворимы в воде, а потому такие мыла моют и в жесткой воде. Алкилсульфаты содержатся во многих стиральных порошках.
Они и обладают прекрасными моющими способностями. Принцип их действия тот же, что и у обычного мыла, только кислотный остаток серной кислоты лучше адсорбируется частицами загрязнения, а кальцевые соли алкилсерной кислоты растворимы в воде, поэтому это моющее средство стирает и в жесткой, и в морской воде.
6.2 Применение сложных эфиров органических кислот
Наибольшее применение в качестве растворителей получили эфиры уксусной кислоты - ацетаты. Прочие эфиры (кислот молочной - лактаты, масляной - бутираты, муравьиной - формиаты) нашли ограниченное применение. Формиаты из- за сильной омыляемости и высокой токсичности в настоящее время не используются. Определенный интерес представляют растворители на основе изобутилового спирта и синтетических жирных кислот, а также алкиленкарбонаты. Физико-химические свойства наиболее распространенных сложных эфиров приведены в таблице (см. приложение).
Метилацетат СН3СООСН3. Отечественной промышленностью технический метилацетат выпускается в виде древесно-спиртового растворителя, в котором содержится 50% (масс.) основного продукта. Метилацетат также образуется в виде побочного продукта при производстве поливинилового спирта. По растворяющей способности метилацетат аналогичен ацетону и применяется в ряде случаев как его заменитель. Однако он обладает большей токсичностью, чем ацетон.
Этилацетат С2Н5СООСН3. Получают методом этерификации на лесохимических предприятиях при переработке синтетической и лесохимической уксусной кислоты, гидролизного и синтетического этилового спирта или конденсацией ацетальдегида. За рубежом разработан процесс получения этилацетата на основе метилового спирта.
Этилацетат подобно ацетону растворяет большинство полимеров. По
сравнению с ацетоном его преимущество в более высокой температуре кипения
(меньшей летучести). Добавка 15-20 % этилового спирта повышает растворяющую
способность этилацетата в отношении эфиров целлюлозы, особенно
ацетилцеллюлозы.
Пропилацетат СН3СООСН2СН2СН3. По растворяющей способности подобен этилацетату.
Изопропилацетат СН3СООСН(СН3)2. По свойствам занимает промежуточное
положение между этил- и пропилацетат.
Амилацетат CH3COOCH2CH2CH2CH2CH3, т. кип. 148° С, иногда называют
«банановым маслом» (которое он напоминает по запаху). Он образуется в
реакции между амиловым спиртом (часто – сивушным маслом) и уксусной
кислотой в присутствии катализатора. Амилацетат широко применяется как
растворитель для лаков, поскольку он испаряется медленнее, чем этилацетат.
Фруктовые эфиры. Характер многих фруктовых запахов, таких, как запахи малины, вишни, винограда и рома, отчасти обусловлен летучими эфирами, например этиловым и изоамиловым эфирами муравьиной, уксусной, масляной и валериановой кислот. Имеющиеся в продаже эссенции, имитирующие эти запахи, содержат подобные эфиры.
Винилацетат CH2=CHOOCCH3, образуется при взаимодействии уксусной кислоты
с ацетиленом в присутствии катализатора. Это важный мономер для
приготовления поливинилацетатных смол, клеев и красок.
Мыла — это соли высших карбоновых кислот. Обычные мыла состоят главным
образом из смеси солей пальмитиновой, стеариновой и олеиновой кислот.
Натриевые соли образуют твердые мыла, калиевые соли — жидкие мыла.
Мыла получаются при гидролизе жиров в присутствии щелочей:
[pic]
Обычное мыло плохо стирает в жесткой воде и совсем не стирает в морской
воде, так как содержащиеся в ней ионы кальция и магния дают с высшими
кислотами нерастворимые в воде соли:
Ca2+ + 2C17H35COONa>Ca(C17H35COO)2v + 2Na+
В настоящее время для стирки в быту, для промывки шерсти и тканей в
промышленности используют синтетические моющие средства, которые обладают в
10 раз большей моющей способностью, чем мыла, не портят тканей, не боятся
жесткой и даже морской воды.
Заключение
Исходя из вышесказанного, можно сделать вывод, что сложные эфиры находят
широкое применение, как в быту, так и в промышленности. Некоторые из
сложных эфиров готовятся искусственно и под названием «фруктовых эссенций»
широко применяются в кондитерском деле, в производстве прохладительных
напитков, в парфюмерии и во многих других отраслях. Жиры используют для
многих технических целей. Однако особенно велико их значение как важнейшей
составной части рациона человека и животных, наряду с углеводами и белками.
Прекращение использования пищевых жиров в технике и замена их непищевыми
материалами – одна из важнейших задач народного хозяйства. Эта задача может
быть разрешена только при достаточно основательных знаниях о сложных эфирах
и дальнейшем изучении этого класса органических соединений.
Использованные источники информации
1. Цветков Л.А. Органическая химия: Учебник для 10-11 классов общеобразовательных учебных заведений. - М.: Гуманит. изд. центр
ВЛАДОС, 2001;
2. Несмеянов А. Н., Несмеянов Н. А., Начала органической химии, кн. 1-2,
М.,1969-70.;
3. Глинка Н. Л. Общая химия: Учебное пособие для вузов. – 23-е изд., испр./ Под ред. В. А. Рабиновича. – Л.: Химия, 1983;
4. http://penza.fio.ru
5. http://encycl.yandex.ru
Приложение
Физико-химические свойства сложных эфиров
Название |Давление пара при 20°С, кПа |Молеку- лярная масса |Темпера- тура
кипения при 101,325 кПа. °С |Плотность при 20°С. г/см3 |Показа- тель
перелом- ления n20 |Поверхнос- тное натяжение 20°С. мН/м | |Метилацетат
|23,19 |74,078 |56,324 |0,9390 |1,36193 |24,7625,7 | |Этилацетат |9,86
|88,104 |77,114 |0,90063 |1,37239 |23,75 | |Пропилацетат |3,41 |102,13
|101,548 |0,8867 |1,38442 |20,53 | |Изопропилацетат |8,40 |102,13 |88,2
|0,8718 |1,37730 |22,1022 | |Бутилацетат |2,40 |116,156 |126,114 |0,8813
|1,39406 |25,2 | |Изоиутилацетат |1,71 |116,156 |118 |0,8745 |1,39018 |23,7
| |Втор-Бутилацетат |- |116,156 |112,34 |0,8720 |1,38941 |23,3322,1 |
|Гексилацетат |- |114,21 |169 |0,890 |- |- | |Амилацетат |2,09 |130,182
|149,2 |0,8753 |1,40228 |25,8 | |Изоамилацетат |0,73 |130,182 |142 |0,8719
|1,40535 |24,6221,1 | |Ацетат монометилового эфира этиленгликоля
(метилцеллозольвацетат) |0,49 |118,0 |144,5 |1,007 |1,4019 |- | |Ацетат
моноэтилового эфира этиленгликоля (этилцеллозольвацетат) |0,17 |132,16
|156,4 |0,9748 |1,4030 |- | |Этиленгликольмоноацетат |- |104 |181-182
|1,108-1,109 |- |- | |Этиленгликольдиацетат |0,05 |146 |186-190 |1,106 |- |-
| |Циклогексилацетат |0,97 |142 |175 |0,964 |1,4385 |- | |Этиллактат |0,13
|118,13 |154,5 |1,031 |1,4118 |28,917,3 | |Бутиллактат |0,05 |146,0 |185
|0,97 |- |- | |Пропиленкарбонат |- |102,088 |241,7 |1,206 |1,4189 |- | |