Рефетека.ру / Математика

Реферат: Центральная предельная теорема и ее доказательство через ряды Тейлора


Прежде чем приступить к рассмотрению центральной предельной теоремы, я считаю нужным сказать о слабой сходимости.

Пусть задана последовательность случайных величин (далее с. в.) [pic], задано некоторое распределение [pic]с функцией распределения [pic]и
[pic] — произвольная с. в., имеющая распределение [pic].

Определение.

Говорят, что последовательность с. в. [pic]при [pic]сходится слабо или по распределению к с. в. [pic] и пишут: [pic], или [pic], или [pic],

если для любого [pic]такого, что функция распределения [pic]непрерывна в точке [pic], имеет место сходимость [pic] при [pic].

Иначе говоря, слабая сходимость — это поточечная сходимость функций распределения во всех точках непрерывности предельной функции распределения.

Свойство 1.

Если [pic], и функция распределения [pic]непрерывна в точках [pic]и [pic], то

[pic] и т.д. (продолжить ряд).

Наоборот, если во всех точках [pic]и [pic]непрерывности функции распределения [pic]имеет место, например, сходимость [pic], то [pic].

Следующее важное свойство уточняет отношения между сходимостями.

Свойство 2.

1. Если [pic], то [pic].

2. Если [pic], то [pic].

Свойство 3.

1. Если [pic]и [pic], то [pic].

2. Если [pic]и [pic], то [pic].

Несколько содержательных примеров слабой сходимости я рассмотрю ниже. Но основной источник слабо сходящихся последовательностей и необычайно мощное и универсальное средство для асимптотического анализа распределений сумм независимых и одинаково распределенных случайных величин предоставляет нам центральная предельная теорема.

Я буду называть следующее утверждение «ЦПТ Ляпунова» (А. М. Ляпунов: 1901), но сформулирую и докажу теорему Ляпунова только в частном случае, т.е. для последовательности независимых и одинаково распределенных случайных величин.

Центральная предельная теорема.

Пусть [pic] — независимые и одинаково распределенные случайные величины с конечной и ненулевой дисперсией: [pic]. Обозначим через [pic]сумму первых
[pic]случайных величин: [pic].

Тогда последовательность случайных величин [pic] слабо сходится к стандартному нормальному распределению.

Доказательство.

Пусть [pic] — последовательность независимых и одинаково распределенных случайных величин с конечной и ненулевой дисперсией. Обозначим через
[pic]математическое ожидание [pic]и через [pic] — дисперсию [pic].
Требуется доказать, что

[pic]

Введем стандартизированные случайные величины [pic] — независимые с.в. с нулевыми математическими ожиданиями и единичными дисперсиями. Пусть
[pic]есть их сумма [pic]. Требуется доказать, что

[pic]

Характеристическая функция величины [pic]равна

[pic]

Характеристическую функцию с.в. [pic]можно разложить в ряд Тейлора, в коэффициентах которого использовать известные моменты [pic], [pic]. Получим

[pic]

Подставим это разложение, взятое в точке [pic], в равенство и устремим
[pic]к бесконечности. Еще раз воспользуемся замечательным пределом:

[pic]

В пределе получили характеристическую функцию стандартного нормального закона. По теореме о непрерывном соответствии можно сделать вывод о слабой сходимости :

[pic]

распределений стандартизованных сумм к стандартному нормальному распределению, что и утверждается в ЦПТ.

Пользуясь определением и свойствами слабой сходимости, и заметив, что функция распределения [pic]любого нормального закона непрерывна всюду на
[pic], утверждение ЦПТ можно сформулировать любым из следующих способов:
Следствие.

Пусть [pic] — независимые и одинаково распределенные случайные величины с конечной и ненулевой дисперсией. Следующие утверждения эквивалентны друг другу и равносильны утверждению ЦПТ.

. Для любых вещественных [pic]при [pic]имеет место сходимость

[pic]

. Для любых вещественных [pic]при [pic]имеет место сходимость

[pic]

. Для любых вещественных [pic]при [pic]имеет место сходимость

[pic]

. Если [pic] — произвольная с. в. со стандартным нормальным распределением, то

[pic]

Следствием из ЦПТ является предельная теорема Муавра-Лапласа.

Предельная теорема Муавра — Лапласа.

Пусть [pic] — событие, которое может произойти в любом из [pic]независимых испытаний с одной и той же вероятностью [pic]. Пусть [pic] — число осуществлений события [pic]в [pic]испытаниях. Тогда [pic].

Иначе говоря, для любых вещественных [pic]при [pic]имеет место сходимость

[pic]

Доказательство.

По-прежнему [pic]есть сумма независимых, одинаково распределенных с. в., имеющих распределение Бернулли с параметром, равным вероятности успеха
[pic]:

[pic]

[pic]

Осталось воспользоваться ЦПТ.

Ниже я рассмотрю примеры использования ЦПТ.

Пример 1.

З а д а ч а. Монета подбрасывается 10000 раз. Оценить вероятность того, что частота выпадения герба отличается от вероятности более чем на одну сотую.

Р е ш е н и е. Требуется найти [pic], где [pic], [pic] — число выпадений герба, а [pic] — независимые с. в., имеющие одно и то же распределение
Бернулли с параметром 1/2. Домножим обе части неравенства под знаком вероятности на [pic]и поделим на корень из дисперсии [pic]одного слагаемого.

[pic]

Согласно ЦПТ или предельной теореме Муавра — Лапласа, последовательность

[pic]

слабо сходится к стандартному нормальному распределению. Рассмотрим произвольную с. в. [pic], имеющую распределение [pic].

[pic]

Пример 2.

Прекрасным примером ЦПТ в экономике может служить ее использование в страховом деле. В большинстве случаев конкретный вид распределения потерь
(размеров отдельных требований о выплате страховых сумм) не играет существенной роли, поскольку сумма исков, предъявляемых страховщику
(величина суммарного иска), обычно зависит только от средней величины и дисперсии убытка. Дело в том, что если количество страховых случаев значительно превышает единицу, то в силу центральной предельной теоремы распределение суммарного иска является нормальным распределением. Обозначив его дисперсию как DZ, а математическое ожидание (среднее значение суммарного иска) как =

- где , - среднее значение числа страховых случаев и величины страховой выплаты, получаем следующее выражение для рисковой надбавки Тr:

Тr = [(Т0(()/(()](((DQ + 2(DN) 0.5
- где DQ и DN -дисперсии величины страховой выплаты и количества страховых случаев.
В простейшем случае, когда все выплаты одинаковы (а, следовательно, их дисперсия равна нулю), имеем:

Тr = (Т0(()/N0.5
Эта формула также дает неплохое приближение, если коэффициент вариации уровня страховых выплат значительно меньше единицы.
При включении в страховой полис нескольких независимых рисков ожидаемая величина страховых выплат в соответствии с теоремой о сложении вероятностей представляет собой сумму ожидаемых страховых выплат по каждому риску в отдельности, а рисковая надбавка вычисляется как среднеквадратичная величина всех рисковых надбавок.

Похожие работы:

  1. • Предельные теоремы. Характеристические функции
  2. • Распределение Гаусса. Центральная предельная теорема теории ...
  3. • Распределение Гаусса. Центральная предельная теорема теории ...
  4. • Теория вероятностей
  5. • Законы больших чисел
  6. • Способ доказательства теоремы Ферма в общем виде с ...
  7. • Теорема Пифагора и способы ее доказательства
  8. • История доказательства Великой теоремы Ферма
  9. • Элементарное доказательство великой теоремы Ферма
  10. • Теория вероятностей и математическая статистика
  11. • Теорема Ферма: история и доказательства
  12. • Теория вероятностей. От Паскаля до Колмогорова
  13. • Статистический анализ числовых величин (непараметрическая ...
  14. • Концепция культуры Э.Б. Тейлора
  15. • Курс лекций по теории вероятностей
  16. • Теорема Пифагора
  17. • Великая теорема Ферма
  18. • Трехмерность бытия и теоремы Ферма и Пифагора
  19. • Сущность метода Монте-Карло и моделирование случайных ...
Рефетека ру refoteka@gmail.com