Рефетека.ру / Математика

Реферат: Синтез оптимальных уравнений

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Механико-математический факультет

Кафедра теоретической механики и робототехники

Курсовая работа

Тема: Синтез оптимальных уравнений

Студента 3-го курса 13 группы

Павловского Сергея Александровича

Научный руководитель

Лютов Алексей Иванович

Минск 2001г.

ОГЛАВЛЕНИЕ

Г л а в а I. Введение 2
§ 1. Задача об оптимальном быстродействии 2

1.Понятие об оптимальном быстродействии 2

2.Задача управления 3

3.Уравнения движения объекта 5

4.Допустимые управления 6
§ 2. Об основных направлениях в теории оптимальных процессов 7

5.Метод динамического программирования 7

6.Принцип максимума 9
§ 3. Пример. Задача синтеза 12

7.Пример применения принципа максимума 12

8.Проблема синтеза оптимальных управлений 14
Г л а в а II. Линейные оптимальные быстродействия 15
§ 4 Линейная задача оптимального управления 15

9.Формулировка задачи 15

10.Принцип максимума 16

11.Принцип максимума — необходимое и достаточное условие оптимальности 17

12.Основные теоремы о линейных оптимальных быстродействиях 18
§ 5. Решение задачи синтеза для линейных задач второго порядка 18

13.Упрощение уравнений линейного управляемого объекта 18
Г л а в а III. Синтез оптимальных управлений для уравнения второго порядка 20
§ 6. Решение задачи синтеза в случае комплексных собственных значений 20

14.Задача синтеза для малых колебаний маятника 20

Список используемой литературы 23

Г л а в а I
ВВЕДЕНИЕ

Управляемые объекты прочно вошли в нашу повседневную жизнь и стали обиходными, обыденными явлениями. Мы видим их буквально на каждом шагу: автомобиль, самолёт, всевозможные электроприборы, снабжённые регуляторами
(например, электрохолодильник), и т. п. Общим во всех этих случаях является то, что мы можем «управлять» объектом, можем в той или иной степени влиять на его поведение.

Обычно переход управляемого объекта из одного состояния в другое может быть осуществлён многими различными способами. Поэтому возникает вопрос о выборе такого пути, который с некоторой (но вполне определённой) точки зрения окажется наиболее выгодным. Это и есть (несколько расплывчато сформулированная) задача об оптимальном управлении.
§ 1. Задача об оптимальном быстродействии

1. Понятие об управляемых объектах. Рассмотрим прямолинейное движение автомобиля. В каждый момент времени состояние автомобиля можно характеризовать двумя числами: пройденным расстоянием s и скоростью движения v. Эти две величины меняются с течением времени, но не самопроизвольно, а сообразно воле водителя, который может по своему желанию управлять работой двигателя, увеличивая или уменьшая развиваемую этим двигателем силу F. Таким образом, мы имеем три связанных между собой параметра: s, v, F, показанных на схеме (рис.

1). Величины s, v, характеризующие состояние автомобиля, называют его фазовыми координатами, а величину F – управляющим параметром.

Если мы будем рассматривать движение автомобиля по плоскости (а не по прямой), то фазовых координат будет четыре (две «географические» координаты и две компоненты скорости), а управляющих параметров – два (например, сила тяги двигателя и угол поворота руля). У летящего самолёта можно рассматривать шесть фазовых координат (три пространственные координаты и три компоненты скорости) и несколько управляющих параметров (тяга двигателя, величины, характеризующие положение рулей высоты и направления, элеронов).

Разумеется, в проводимом ниже математическом исследовании мы будем иметь дело не с самими реальными объектами, а с некоторой математической моделью.
Сказанное выше делает естественным следующее математическое описание управляемого объекта. Состояние объекта задаётся (в каждый момент времени) n числами x1, x2,…,xn, которые называются фазовыми координатами объекта.
Движение объекта заключается с математической точки зрения в том, что его состояние с течением времени изменяется, т. е. x1,x2,…,xn являются переменными величинами (функциями времени). Движение объекта происходит не самопроизвольно. Им можно управлять; для этого объект снабжён «рулями», положение которых характеризуется (в каждый момент времени) r числами u1,u2,…,ur; эти числа называются управляющими параметрами. Рулями можно
«манипулировать», т. е. по своему желанию менять (конечно, в допустимых пределах) управляющие параметры u1,u2,…,ur. Иначе говоря, мы можем по желанию выбрать функции u1(t),u2(t),…,ur(t), описывающие изменение управляющих параметров с течением времени. Мы будем предполагать (как это обычно и бывает), что, зная фазовое состояние объекта в начальный момент времени и выбрав управляющие функции u1(t),u2(t),…,ur(t) (для t>t0), мы можем точно и однозначно рассчитать поведение объекта для всех t>t0, т. е. можем найти функции x1(t),x2(t),…,xn(t), характеризующие изменение фазовых координат с течением времени. Таким образом, изменение фазовых координат x1,x2,…,xn уже не зависит непосредственно от нашего желания, но на движение объекта мы всё же можем в той или иной мере воздействовать, выбирая по своему желанию управляющие функции u1(t),u2(t),…,ur(t).

Управляемый объект, о котором только что шла речь, в теории автоматического управления принято изображать так, как это показано на рис.
2. Величины u1,u2,…,ur (управляющие параметры) часто называют также
«входными переменными», а величины x1, x2,…,xn (фазовые координаты) –
«выходными переменными». Говорят ещё, что «на вход» объекта поданы величины u1,u2,…,ur, а «на выходе» мы получаем величины x1, x2,…,xn. Разумеется, на рис. 2 показано лишь условное обозначение управляемого объекта и никак не отражено его «внутреннее устройство», знание которого необходимо, чтобы выяснить, каким образом, зная управляющие функции u1(t),u2(t),…,ur(t), можно вычислить изменение фазовых координат x1(t),x2(t),…,xn(t).

Величины u1,u2,…,ur удобно считать координатами некоторого вектора u=(u1,u2,…,ur), также называемого управляющим параметром (векторным). Точно так же величины x1, x2,…,xn удобно рассматривать как координаты некоторого вектора (или точки) x=(x1, x2,…,xn) в n – мерном пространстве с координатами x1, x2,…,xn. Эту точку называют фазовым состоянием объекта, а n – мерное пространство, в котором в виде точек изображаются фазовые состояния, называется фазовым пространством рассматриваемого объекта. Если объект таков, что его фазовое состояние характеризуется только двумя фазовыми координатами x1, x2 (см. рис. 1), то мы будем говорить о фазовой плоскости. В этом случае фазовые состояния объекта изображаются особенно наглядно.

Итак, в векторных обозначениях рассматриваемый управляемый объект можно изобразить так, как показано на рис. 3. Входящая величина u=(u1,u2,…,ur) представляет собой управляющий параметр, а выходная величина x=(x1, x2,…,xn) представляет собой точку фазового пространства (или, иначе, фазовое состояние объекта).

Как сказано выше, чтобы полностью задать движение объекта, надо задать его фазовое состояние x0=(x01, x02,…, x0n) в начальный момент времени t0 и выбрать управляющие функции u1(t), u2(t),…, ur(t) (для t>t0), т. е. выбрать векторную функцию u(t)= u1(t),u2(t),…,ur(t)). Эту функцию u(t) мы будем называть управлением. Задание начального фазового состояния x0 и управления u(t) однозначно определяет дальнейшее движение объекта. Это движение заключается в том, что фазовая точка x(t)=(x1(t),x2(t),…,xn(t)), изображающая состояние объекта, с течением времени перемещается, описывая в фазовом пространстве некоторую линию, называемую фазовой траекторией рассматриваемого движение объекта (случай n=2 изображён на рис. 4).
Очевидно, что эта линия исходит из точки x0, поскольку x(t0)= x0.

Пару векторных функций (u(t), x(t)), т. е. управление u(t) и соответствующую фазовую траекторию x(t), мы будем называть в дальнейшем процессом управления или просто процессом.

Итак, резюмируем. Состояние управляемого объекта в каждый момент времени характеризуется фазовой точкой x=(x1, x2,…,xn). На движение объекта можно воздействовать при помощи управляющего параметра u=(u1,u2,…,ur). Изменение величин u, x с течением времени мы называем процессом; процесс (u(t), x(t)) составляется из управления u(t) и фазовой траектории x(t). Процесс полностью определяется, если задано управление u(t) (при t>t0) и начальное фазовое состояние x0=x(t0).

2. Задача управления. Часто встречается следующая задача, связанная с управляемыми объектами. В начальный момент времени t0 объект находится в фазовом состоянии x0; требуется выбрать такое управление u(t), которое переведёт объект в заранее заданное конечное фазовое состояние x1 (отличное от x0; рис. 5). При этом нередко бывает, что начальное состояние x0 заранее не известно. Рассмотрим один из наиболее типичных примеров. Объект должен устойчиво работать в некотором режиме (т. е. находиться в некотором фазовом состоянии x1). В результате тех или иных причин (например, под воздействием неожиданного толчка) объект может выйти из рабочего состояния x1 и оказаться в некотором другом состоянии x0. При этом точка x0, в которую может попасть объект, заранее не известна, и мы должны уметь так управлять объектом, чтобы из любой точки x0 (или хотя бы из точек x0 достаточно близких к x1) вернуть его в рабочее состояние x1 (рис. 6).

Такое управление часто осуществляется человеком (оператором), который следит за приборами и старается выбирать управление, поддерживающее объект в требуемом рабочем режиме.

Однако в современных условиях высокого развития техники оператор зачастую не может успешно справиться с этой задачей ввиду сложности поведения объекта, большой быстроты протекания процессов и т. п. Поэтому чрезвычайно важно создать такие приборы, которые сами, без участия человека, управляли бы работой объекта (например, в случае выхода объекта из рабочего состояния возвращали бы его в это рабочее состояние). Такие приборы («регуляторы»,
«автоматические управляющие устройства» и т. п.) сейчас очень распространены в технике, их изучением занимается теория автоматического управления.

Первым устройством этого рода был центробежный регулятор Уатта, сконструированный для управления работой паровой машины (см. рис. 9). Схема этого регулятора показана на рис. 7. В общем случае (рис. 8) на вход регулятора подаются фазовые координаты объекта.

Обычно требуется, чтобы переходный процесс (т. е. процесс перехода из начального фазового состояния x0 в предписанное состояние x1, рис. 5) был в определённом смысле «наилучшим», например, чтобы время перехода было наименьшим или чтобы энергия, затраченная в течение переходного процесса, была минимальной и т. п. Такой «наилучший» переходный процесс называется оптимальным процессом. Термин «оптимальный процесс» требует уточнения, т. к. необходимо разъяснить, в каком смысле понимается оптимальность. Если речь идёт о наименьшем времени перехода, то такие процессы называются оптимальными в смысле быстродействия. Иначе говоря, процесс, в результате которого объект переходит из точки x0 в точку x1 (рис. 5), называется оптимальным в смысле быстродействия, если не существует процесса, переводящего объект из x0 в x1 за меньшее время (здесь и далее предполагается, что x1? x0). Разумеется, желательно, чтобы регулятор не просто возвращал объект в рабочее состояние, а делал это наилучшим образом, например, в смысле быстродействия (т. е. возвращал объект в рабочее состояние за кратчайшее время). В связи с этим в теории автоматического управления рассматриваются весьма различные регуляторы. Рассмотрение регуляторов приводит к тому, что уменьшение времени переходного процесса связано с усложнением конструкции регулятора; поэтому, усложняя конструкцию регулятора, можно лишь приближаться к «идеальному», «оптимальному» регулятору, который во всех случаях осуществляет переходный процесс за кратчайшее время. В точности же «оптимального» регулятора, по-видимому, осуществить нельзя. Однако такой вывод является ошибочным, т. к. сейчас уже создали математический аппарат, рассчитывающий такие регуляторы. Можно предполагать, что оптимальные регуляторы будут играть важную роль в технике будущего.

3. Уравнения движения объекта. Начнём с рассмотрения одного простого примера. Пусть G – тело, которое может совершать прямолинейное движение (рис. 10). Массу этого тела будем предполагать постоянной и равной m, а его размерами будем пренебрегать (т. е. будем считать G материальной точкой.) Координату тела G (отсчитываемую от некоторой точки O той прямой, по которой оно движется) будем обозначать через x1. При движении тела G его координата x1 меняется с течением времени.

Производная [pic]представляет собой скорость движения тела G. Будем предполагать, что на тело G действуют две внешние силы: сила трения

-[pic]и упругая сила - kx1 и что, кроме того, тело G снабжено двигателем. Развиваемую двигателем силу воздействия на тело G обозначим через u. Таким образом, по второму закону Ньютона движение тела G с течением времени будет описываться дифференциальным уравнением

[pic]

Обозначив скорость движения через x2 (т. е. положив [pic]), мы сможем записать этот закон движения в виде следующей системы дифференциальных уравнений:
[pic] (1.1)
Здесь величины x1, x2 являются фазовыми координатами тела G, а величина u – управляющим параметром, т. е. мы имеем объект, схематически изображённый на рис. 11.
Уравнения (1.1) представляют собой закон изменения фазовых координат с течением времени (с учётом воздействия управляющего параметра), т. е. представляют собой закон движения фазовой точки в фазовой плоскости.

Мы рассмотрели лишь один частный случай, но можно было бы указать целый ряд других примеров, в которых закон движения объекта описывается дифференциальными уравнениями. Чаще всего (см.(1.1)) эти уравнения дают выражения производных от фазовых координат через сами фазовые координаты и управляющие параметры, т. е. имеют вид

[pic] (1.2) где f1, f2,…, fn – некоторые функции, определяемые внутренним устройством объекта.

В дальнейшем мы сосредоточим своё внимание именно на таких объектах (рис.
2), закон движения которых описывается системой дифференциальных уравнений вида (1.2). В векторной форме систему (1.2) можно записать в виде

[pic] (1.3) где x - вектор с координатами x1,…, xn, u – вектор с координатами u1,…, ur и, наконец, f(x, u) – вектор, координатами которого служат правые части системы (1.2).

Разумеется, невозможно решить систему дифференциальных уравнений (1.2)
(т. е. найти закон движения объекта), не зная каким образом будут меняться с течением времени управляющие параметры u1, u2,…, ur. Напротив, зная поведение величин u1, u2,…,ur, т. е. зная управляющие функции u1(t), u2(t),…, ur(t) для t>t0 мы сможем из системы уравнений

[pic] (1.4) или, что то же самое, из векторного уравнения

[pic] (1.5) однозначно определить движение объекта (при t>t0), если нам известно начальное фазовое состояние объекта (в момент t=t0). Иначе говоря, задание управления u(t) и начального фазового состояния x0 однозначно определяет фазовую траекторию x(t) при t>t0, что согласуется со сделанными ранее (стр.
1) предположениями о свойствах объекта.

Тот факт, что задание начального фазового состояния (в момент t=t0) позволяет из системы (1.4) однозначно определить фазовую траекторию x(t), t>t0, вытекает из теоремы о существовании и единственности решений системы дифференциальных уравнений. Предположим, что, зная начальное фазовое состояние x0 и управление u(t)=(u1(t),…, ur(t)), мы определили фазовую траекторию x(t) (с помощью системы (1.4)). Если мы изменим управление u(t)
(сохранив то же начальное состояние x0), то получим некоторую другую траекторию, исходящую из той же точки x0; вновь изменим управление u(t) – получим ещё одну траекторию и т. д. Таким образом, рассматривая различные управления u(t), мы получим много траекторий, исходящих из точки x0 (рис.
12). (Разумеется, это не противоречит теореме единственности в теории дифференциальных уравнений, так как, заменяя функции u1(t),…,ur(t) другими функциями, мы переходим от системы дифференциальных уравнений относительно фазовых координат x1,…, xn.)

Напомним, что задача оптимального быстродействия заключается в отыскании такого управления u(t), для которого фазовая траектория x(t), соответствующая этому управлению в силу уравнения (1.5), проходит через точку x1 и переход из x0 в x1 осуществляется за кратчайшее время. Такое управление u(t) будем называть оптимальным управлением (в смысле быстродействия); точно так же соответствующую траекторию x(t) буде называть оптимальной траекторией.

4. Допустимые управления. Обычно управляющие параметры u1,…,ur не могут принимать совершенно произвольные значения, а подчинены некоторым ограничениям. Так, например, в случае объекта, описанного на стр. 4, естественно предположить, что сила u, развиваемая двигателем, не может быть как угодно большой по величине, а подчинена ограничениям ??u??, где ? и ? – некоторые постоянные, характеризующие двигатель. В частности, при ?=-1, ?=1 мы получаем ограничение -1?u?1, которое означает, что двигатель может развивать силу, направленную вдоль оси x1 как в положительном, так и в отрицательном направлении, но не превосходящую единицы по абсолютной величине.

Для объектов, содержащих r управляющих параметров u1,…,ur, в приложениях часто встречается случай, когда эти параметры могут произвольно меняться в следующих пределах:

?1?u1? ?1, ?2?u2??2,…, ?r?ur??r.
Иначе говоря, каждая из величин u1, u2,…,ur в уравнениях (1.2) представляет собой отдельный управляющий параметр, область изменения которого не зависит от значений остальных

управляющих параметров и задаётся неравенствами

?i?ui??i, i=1,…,r. (1.6)
Заметим, что при r=2 точки u=(u1, u2), координаты которых подчинены неравенствам (1.6), заполняют прямоугольник; при r=3 неравенства (1.6) определяют в пространстве переменных u1,u2,u3 прямоугольный параллелепипед; в случае произвольного r говорят, что неравенства (1.6) определяют r-мерный параллелепипед.

В общем случае будем считать, что в соответствии с конструкцией объекта и условиями его эксплуатации задано в пространстве переменных u1,…, ur некоторое множество U и управляющие параметры u1, u2,…, ur должны в каждый момент времени принимать лишь такие значения, чтобы точка u=(u1,u2,…,ur) принадлежала множеству U. Иначе говоря, разрешается рассматривать лишь такие управления u(t), что u(t) [pic]U для любого t. Множество U в дальнейшем будем называть областью управления. Область управления U не всегда будет параллелепипедом; она может иметь геометрически более или менее сложный характер, так как в силу конструкции объекта между управляющими параметрами u1, u2,…,ur могут существовать связи, выражаемые, например, уравнениями вида ?(u1, u2,…, ur)=0 или неравенствами ?(u1, u2,…, ur)?0. Так, если параметры u1,u2 характеризуют векторную величину на плоскости, модуль которой не превосходит единицы, а направление произвольно, то эти параметры подчинены только одному условию

(u1)2 +(u2)2 -1?0 (1.7) и область управления U представляет собой круг. В дальнейшем будем предполагать, что указание области управления входит в математическое определение объекта, т. е. что для математического задания управляемого объекта надо указать закон его движения (1.2) и область управления U.

Наконец, сделаем ещё одно, весьма существенное предположение о характере управлений. Именно, будем предполагать, что «рули», положения которых характеризуются управляющими параметрами u1,u2,…,ur, безынерционны, так что мы можем, если нужно, мгновенно переключать эти «рули» из одного положения в другое, т. е. менять скачком значения управляющих параметров u1,u2,…,ur.
В соответствии с этим будем рассматривать не только непрерывные, но и кусочно-непрерывные управления u(t). Кроме того, будем предполагать, что каждое рассматриваемое управление u(t) непрерывно на концах отрезка t0?t?t1, на котором оно задано, т. е. что все точки разрыва, если они есть, расположены на интервале t0t0, находим

[pic]|при [pic]?1. (1.11)

Но производная, указанная в левой части этого неравенства, вычисляется по формуле полной производной [pic] Поэтому согласно (1.9) и (1.10) неравенство (1.11) принимает вид [pic] Точки x0, u0 здесь были произвольными. Таким образом, для любой (отличной от x1) точки x фазового пространства и любой точки u области управления U выполнено соотношение

[pic] (1.12)

Пусть теперь (u(t), x(t)) - оптимальный процесс, переводящий объект из фазового состояния x0 в состояние x1, и t0?t?t1 - отрезок времени, в течение которого это оптимальное движение происходит, так что x(t0)= x0, x(t1)=x1 и t1=t0 + T(x0). Движение по рассматриваемой оптимальной траектории от точки x0 до точки x(t) осуществляется в течение времени t - t0, а движение от точки x(t) до точки x1 - в течение времени T(x0) - (t - t0). Быстрее, чем за время T(x0) - (t - t0), из точки x(t) попасть в точку x1 невозможно. Итак, T(x0) - (t - t0) есть время оптимального движения из точки x(t) в точку x1, т. е. T(x(t))= T(x0) - (t - t0). Заменив здесь T через ?, т. е. ?(x(t))= ?(x0) + t - t0) и взяв производную по t, получаем

[pic] t0?t?t1. (1.13)

Таким образом, для каждого оптимального процесса в течение всего движения выполняется равенство (1.13).

Если мы теперь введём в рассмотрение функцию

B(x, u(t))=[pic], (1.14)
То соотношения (1.12) и (1.13) могут быть записаны следующим образом:

B(x, u)?1 для всех точек x?x1 и u; (1.15)

B(x, u)?1 для любого оптимального процесса (u(t), x(t)).
(1.16)

Итак, справедлива следующая

Т е о р е м а 1.1. Если для управляемого объекта, описываемого уравнением (1.5) и предписанного конечного состояния x1 выполнены гипотезы
1 и 2, то имеют место соотношения (1.15) и (1.16) (оптимальность понимается в смысле быстродействия).

Эта теорема и составляет сущность метода динамического программирования для рассматриваемой задачи. Эту теорему можно сформулировать и несколько иначе. Написав соотношение (1.16)

Для t=t0, получим B(x0, u(t0))=1, т. е. для любой точки x0 (отличной от x1) найдётся в U такая точка u (а именно u=u(t0)), что B(x0, u)=1. В сопоставлении с неравенством (1.15) получаем соотношение

[pic] для любой точки x?x1. (1.16*)

Метод динамического программирования (1.15), (1.16) (или, что то же самое, (1.16*), (1.16)) содержит некоторую информацию об оптимальных процессах и потому может быть использован для их разыскания. Однако он имеет ряд неудобств. Во-первых, применение этого метода требует нахождения не только оптимальных управлений, но и функции ?(x), так как эта функция входит в соотношения (1.15) - (1.16*). Во-вторых, уравнение Беллмана
(1.16*) (или соотношения (1.15), (1.16)) представляет собой уравнение в частных производных относительно функции ?, осложнённое к тому же знаком максимума. Указанные обстоятельства сильно затрудняют возможность пользования методом динамического программирования для отыскания оптимальных процессов в конкретных примерах. Но самым главным недостатком этого метода является предположение о выполнении гипотез 1 и 2. Ведь оптимальные управления и функция ? нам заранее не известны, так что гипотезы 1 и 2 содержат предположение о неизвестной функции, и проверить выполнение этих гипотез по уравнениям движения объекта невозможно. Этот недостаток можно было бы считать не особенно существенным, если бы после решения оптимальной задачи этим методом оказалось, что функция ?(x) действительно является непрерывно дифференцируемой. Но дело заключается в том, что даже в простейших, линейных задачах оптимального управления функция ?(x) не является, как правило, всюду дифференцируемой. Тем не менее, методом динамического программирования можно нередко пользоваться как ценным эвристическим средством.

6. Принцип максимума. Продолжим теперь рассуждения предыдущего пункта, предположив функцию ?(x) уже дважды непрерывно дифференцируемой

(всюду, кроме точки x1). Итак, будем предполагать, что выполнена следующая

Г и п о т е з а 3. функция ?(x) имеет при x?x1 вторые непрерывные производные [pic] i, j=1,2,…,n, а функции fi(x, u) - первые непрерывные производные [pic] где i, j=1,2,…,n.

Пусть (u(t), x(t)), t0?t?t1, - оптимальный процесс, переводящий объект
(1.2) (или (1.3)) из фазового состояния x0 в состояние x1. Фиксируем некоторый момент времени t, t0?t?t1, и рассмотрим функцию B(x, u(t))=[pic] переменного x. В силу гипотезы 3 вытекает, что функция B(x, u(t)) всюду, кроме точки x1, имеет непрерывные производные по переменным x1,x2,…,xn:

[pic] (1.17)
В частности, так как x(t)?x1 (поскольку t

Похожие работы:

  1. • Программная реализация модального управления для линейных ...
  2. • Методика решения задач по теоретическим основам ...
  3. • Задачи синтеза оптимальных систем управления
  4. • Разработка энергосберегающих технологий процесса ...
  5. • Блочно-симметричные модели и методы проектирования ...
  6. • Синтез химико-технологической схемы
  7. • Методы разделения азеотропных смесей
  8. • Билеты по Принципы построения автоматизированных ...
  9. • Автоматизированные информационные системы
  10. • Методы оптимизации при решении уравнений
  11. • Синтез системы автоматического управления непрерывным ...
  12. • Разработка энергосберегающей технологии ректификации ...
  13. • Определение оптимального объёма производства ...
  14. • Билеты по Принципы построения автоматизированных ...
  15. • Синтез и анализ аналоговых и цифровых регуляторов
  16. • Методы органического синтеза
  17. • Построение экономической модели с использованием симплекс ...
  18. • Основные методы реализации ЛРТУ
  19. • Производство синтетического аммиака при среднем давлении ...
Рефетека ру refoteka@gmail.com