Рефетека.ру / Математика

Реферат: К решению нелинейных вариационных задач

Казанский государственный педагогический университет.

Дипломная работа

«К решению нелинейных вариационных задач».

выполнил студент 151 группы математического факультета

Салахутдинов М.Ш.

Научные руководители:

КФМН, доцент

Сайфуллин Э. Г.

Ст. Преподаватель Хисматуллина Н.Г.

Казань -1999.

ВВЕДЕНИЕ

Дипломная работа в целом посвящена методам решения экстремальных задач. Причем более подробно изложены те классы экстремальных задач, которые не изучаются ни в школьном курсе, ни в педвузовском курсе математики. Однако основная идея их решения лежит на основе построения математических моделей экономических задач и их решения.

В первой части дипломной работы рассмотрены простейшие задачи на отыскание наибольшего и наименьшего значения, которые решаются элементарным способом - на основе известных неравенств: среднее арифметическое не меньше среднего геометрического. В случае равенства сумма принимает минимальное значение, а произведение достигает максимального. Рассмотрены экстремальные значения квадратного трехчлена, а также решение экстремальных задач с применением производной.
Далее рассматриваются основные понятия о задачах математического программирования: транспортная задача линейного программирования; задача о рационе; задача об оптимальном использовании сырья; рассмотрены задачи нелинейного программирования (случай нелинейной целевой функции; случай нелинейной целевой функции и нелинейной системы ограничений).

Во второй части приводятся основные понятия о краевых задачах, примеры аналитического решения краевых задач, приближенный метод решения.
Приводится сходящийся алгоритм для линейных краевых задач. На основе этого алгоритма при помощи ЭВМ решены цикл различных краевых задач; численные результаты приведены в приложениях.

Третья часть посвящена'одномерным вариационным задачам и методам их решения.

Преимущество данной работы в методическом плане заключается в том, что вариационная задача, в частном случае, может быть сведена к обычной задаче на отыскание экстремума функции одной переменной, а поэтому позволяет ввести понятие вариационной задачи уже в школьном курсе в классах с углубленным изучением- математики, как новый класс экстремальных задач.

Далее в работе приводится вывод уравнений Эйлера-Лагранжа. На их основе рассмотрены примеры аналитического решения вариационной задачи.
Получен алгоритм решения линейных вариационных задач на основе метода конечных разностей, которая не решается аналитическими приемами. На основе этого алгоритма на ЭВМ решены ряд задач, численные результаты приведены в приложениях.

Другой метод решения вариационных задач - метод Ритца вводится на простейших примерах, а затем обобщается. Так как оценка точности метода
Ритца не является тривиальной задачей, то сравнительный анализ численных результатов весьма актуален.

Решение рассмотренных задач методом Ритца и другими приемами, сравнительный анализ результатов показывает хорошую достоверность этого метода уже в первом приближении.

В заключении приводится одна новая модификация метода Ритца, при помощи которой вариационная задача сводится к достаточно простой задаче отыскания экстремума функции одной переменной. При этом процедура нахождения корня нелинейного уравнения выполнима лишь приближенными методами. Сравнительный анализ численных результатов показывает надежность метода. Основная ценность этой модификации в решении существенно нелинейных задач.

В конце третьей части этой работы приводится идея обобщения рассмотренных задач на двумерный случай и методом Ритца решается двумерная задача.

I. ОБ ЭКСТРЕМАЛЬНЫХ ЗАДАЧАХ

1.1. Определение экстремума элементарным способом

Во многих учебных пособиях для 7-х и 8-х классов встречаются неравенства, связывающие среднее арифметическое и геометрическое:
[pic]

^ ^
С-г I

где среднее арифметическое больше или равно среднего геометрического, что очевидно:

°^-^^Г-=? а^г 2.1/ЙГ»;> ({&')^({Г)^ г^1аГ^ {fS-fT)

Причем равенство возможно только при ft=6. При помощи этого неравенства решаются задачи на экстремум:

1) Положительное числоД представить в виде суммы положительных слагаемых х и^-^так, чтобы их произведение х-(/^-х) было наибольшим.

Решение: Найти х?о (/Ьх^при гл-сх-х Е Х (А-У)'3 __ о Пусть о-=Х и

&=/4-х. Знаем, что ^^clx (a-5J-w-axV'aS = а——

При 0-^0 т.е. ?< = А-У — Х= ^/^

2) Найти прямоугольник, имеющий данный периметр Р и наибольшую площадь. Пусть о. и ^ - стороны прямбугольника, тогда .?= 2-(o-t-e) .
Площадь ^а-с' принимает максимальное значение как произведение двух положительных чисел при (Х-^о. Тогда J?=

Похожие работы:

  1. • Динамическое программирование и вариационное исчисление
  2. • Нелинейное программирование
  3. • Решение задач нелинейного программирования
  4. • Численные методы для решения нелинейных уравнений
  5. • Решение систем нелинейных уравнений методом Бройдена
  6. • Обобщенный принцип наименьшего действия
  7. • Вариации при исчислении
  8. • Решение задачи методами линейного, целочисленного ...
  9. • Построение приближенного решения нелинейного уравнения ...
  10. • Подходы к анализу нелинейной динамики жидкостей
  11. • Обобщенный принцип наименьшего действия
  12. • Нахождение корня нелинейного уравнения. Методы ...
  13. • Нелинейные САУ
  14. • Оптимизационные модели принятия решений
  15. • Итерационные методы решения систем нелинейных ...
  16. • Итерационные методы решения нелинейных уравнений
  17. • Решение нелинейного уравнения методом касательных
  18. •  ... итерации и метода Ньютона для решения систем двух ...
  19. • СИНЕРГЕТИКА КАК НАУКА О САМООРГАНИЗАЦИИ
Рефетека ру refoteka@gmail.com