Широкое применение в промышленности электродвигателей, нагревательных электрических приборов, систем управления, работающих в различных условиях, требует обеспечения электробезопасности, разработки мероприятий и средств, обеспечивающих защиту людей от воздействия электрического тока. Охрана труда - это система законодательных актов, социально-экономических, организационных, технических, гигиенических, и лечебно-профилактических мероприятий и средств, обеспечивающих безопасность, сохранение здоровья и работоспособности человека в процессе труда. Как известно – полностью безопасных и безвредных производств не существует. Задача охраны труда - свести к минимальной вероятность поражения или заболевания работающего с одновременным обеспечением комфорта при максимальной производительности труда. Улучшение условий труда и его безопасность приводят к снижению производственного травматизма, профессиональных заболеваний, что сохраняет здоровье трудящихся и одновременно приводит к уменьшению затрат на оплату соответствующих льгот и компенсаций за работу в неблагоприятных условиях.
В данном разделе “Охрана труда” наряду с теоретическими основами, с достаточной полнотой, рассмотрены организационные вопросы охраны труда, пожарной безопасности, электробезопасности, оздоровления воздушной cреды производственных помещений, методы и средства обеспечения безопасности технологических процессов, а также приведены требования, методы и средства, обеспечивающие безопасность труда при изготовлении проектируемого электродвигателя.
По мере усложнения системы “Человек-техника” все более ощутимее становится экономические и социальные потери от несоответствия условий труда и техники производства возможностям человека. Анализ условий труда на механосборочном участке, где будет изготавливаться проектируемый двигатель приводит к заключению о потенциальной опасности производства. Суть опасности заключается в том, что воздействие присутствующих опасных и вредных производственных факторов на человека, приводит к травмам, заболеваниям, ухудшению самочувствия и другим последствиям. Главной задачей анализа условий труда является установление закономерностей, вызывающих ухудшение или потери работоспособности рабочего, и разработка на этой основе эффективных профилактических мероприятий.
На участке имеются следующие вредные и опасные факторы:
а) механические факторы, характеризующиеся воздействием на человека кинетической, потенциальной энергий и механическим вращением. К ним относятся кинетическая энергия движущихся и вращающихся тел, шум, вибрация.
б) термические факторы, характеризующиеся тепловой энергией и аномальной температурой. К ним относятся температура нагретых предметов и поверхностей.
в) электрические факторы, характеризующиеся наличием токоведущих частей оборудования.
При разработке мероприятий по улучшению условий труда необходимо учитывать весь комплекс факторов, воздействующих на формирование безопасных условий труда.
Шум - это беспорядочное хаотическое сочетание волн различной частоты и интенсивности. Шум и вибрация на производстве наносит большой ущерб, вредно действуя на организм человека и снижая производительность пруда.
Шум возникает при механических колебаниях. Различают три формы воздействия шума на органы слуха:
а) утомление слуха;
б) шумовая травма;
в) посредственная тугоухость.
Для снижения шума, возникающего в цехе, предусмотрено: массивный бетонный фундамент, шумопоглащающие лаки, применение звукоизолирующих кожухов и акустических экранов на оборудовании, являющимся источниками повышенного уровня шума.
Пожары на машиностроительных предприятиях представляют большую опасность для работающих и могут причинить огромный материальный ущерб. К основным причинам пожаров, возникающих при производстве электродвигателей, можно отнести: нарушение технологического режима, неисправность электрооборудования (короткое замыкание, перегрузки), самовозгорание промасленной ветоши и других материалов, склонных к самовозгоранию, несоблюдение графика планового ремонта, реконструкции установок с отклонением от технологических схем. На проектируемом участке возможны такие причин пожара: перегрузка проводов, короткое замыкание, возникновение больших переходных сопротивлений, самовозгорание различных материалов, смесей и масел, высокая конденсация воспламеняемой смеси газа, пара или пыли с воздухом (пары растворителя). Для локализации и ликвидации пожара внутрицеховыми средствами создаются следующие условия предупреждения пожаров: курить только в строго отведенных местах, подтеки и разливы масла и растворителя убирать ветошью, ветошь должна находиться в специально приспособленном контейнере.
Эксплуатация большинства машин и оборудования связана с применением электрической энергии. Электрический ток проходя через организм, оказывает термическое, электролитическое, и биологическое воздействие, вызывая местные и общие электротравмы. Основными причинами воздействия тока на человека являются:
- случайное прикосновение или приближение на опасное расстояние к токоведущим частям;
- появление напряжения на металлических частях оборудования в результате повреждения изоляции или ошибочных действий персонала;
- шаговое напряжение в результате замыкания провода на землю.
Основные меры защиты от поражения током: изоляция, недоступность токоведущих частей, применение малого напряжения (не выше 42 В, а в особоопасных помещениях - 12 В), защитное отключение, применение специальных электрозащитных средств, защитное заземление и зануление. Одно из наиболее часто применяемой мерой защиты от поражения током является защитное заземление.
Заземление - преднамеренное электрическое соединение с землей металлических нетоковедущих частей, которые могут оказаться под напряжением. Разделяют заземлители искусственные, предназначенные для целей заземления, и естественные - находящиеся в земле металлические предметы для иных целей. Для искусственных заземлителей применяют обычно вертикальные и горизонтальные электроды. В качестве вертикальных электродов используют стальные трубы диаметром 3 ¸ 5 см и стальные уголки размером от 40 х 40 до 60 х 60 мм длиной 3 ¸ 5 м. Также применяют стальные прутки диаметром 10 ¸ 20 мм и длиной 10 м. Для связи вертикальных электродов и в качестве самостоятельного горизонтального электрода используют сталь сечением не менее 4 х 12 мм и сталь круглого сечения диаметром не менее 6 мм.
В качестве заземляющих проводников применяют полосовую или круглую сталь, прокладку которых производят открыто по конструкции здания на специальных опорах. Заземлительное оборудование присоединяется к магистрали заземления параллельно отдельными проводниками
В качестве искусственного заземления применяем стальные прутья диаметром 50 мм и длиной 5 м. Для связи вертикальных электродов и в качестве самостоятельного горизонтального электрода, используем полосовую сталь сечением 4x12 мм.
Определяем сопротивление растеканию тока одиночного вертикального заземления, ом:
Rв =r/(2×p×l)×(ln(2×l/d)+0.5ln((4×t+l)/(4×t-l)) ом; (2.1)
где l – длина заземления, м;
d – разность наружного и внутреннего диаметроа трубы (при D = 50 мм ; do = 40 мм);
t – глубина заложения половины заземления, м;
r - расчетное удельное сопротивление грунта, ом×м.
r = rизм × y, (2.2)
где rизм – удельное сопротивление грунта =500 ом;
y - коэффициент сезонности = 1.3.
Подставляя известные величины в формулу (2.2), получим:
r = 500×1.3 = 650 Ом×м
Определим глубину заложения половины заземления, м;
t = 0.5×l+to м, (2.3)
где tо – расстояние от поверхности земли до верхнего конца заземлителя, принимаем = 0.5 м.
Подставляя известные величины в формулу (2.1), получим:
Rв = 650/(2×p×5)×(ln(10/0.01)+0.5ln(17/7) = 179.75 Ом.
Определим число заземлений по формуле:
n = Rв/(R3×h) шт,
где R3 – наибольшее допустимое сопротивление заземляющего устройства, Ом;
h - коэффициент использования вертикальных заземлителей без учета влияния соединительной полосы = 0.71 (электроды размещены по контуру).
n = 179.75/(4×0.71) = 63.29 шт.
Принимаем n = 64 шт.
Определим сопротивление растеканию растеканию тока горизонтальной соединительной полосы, Ом:
Rn = r/(2×p×l1)×ln(2×l12/(b×t1) Ом, (2.4)
где t1 – глубина заложения полосы, м;
b – ширина полосы, м;
l1 – длина полосы, определяется как:
l1 = 1.05×a×n м, (2.5)
где a – расстояние между вертикальными заземлениями, м:
a = 3×l = 3×5 = 15 м,
Подставляя известные величины в формулу (2.5) , получим:
l1 = 1.05×15×64 = 1008 м.
Подставляя известные величины в формулу (2.4), получим:
Rn = 650/(2×p×1008)×ln(2×10082/(0.012×3)) = 1.8 Ом.
Определим сопротивление растеканию тока заземляющего устройства:
Ro = Rв×Rn/(Rв×Rn+Rn×n×hв) Ом, (2.6)
где hв – коэффициент использования горизонтального полосового заземлителя, соединяющего вертикальные заземлители, м.
Подставляя известные величины в формулу (2.6), получим:
Ro = 179.5×1.8/(179.5×0.33+1.8×0.71×64) = 2.29
Ro не превышает допустимого сопротивления защитного заземления : 2.29