ВЕКТОРНАЯ АЛГЕБРА - раздел векторного исчисления в котором изучаются простейшие операции над (свободными) векторами. К числу операций относятся линейные операции над векторами: операция сложения векторов и умножения вектора на число.
Суммой a+b векторов a и b называют вектор , проведенный из начала a к концу b , если конец a и начало b совмещены. Операция сложения векторов обладает свойствами:
a+b=b+a (коммутативность)
(а+b)*с=а*(b+с) (ассоциативность)
a + 0=a (наличие нулевого элемента )
a+(-a)=0 (наличие противоположного элемента),
где 0 - нулевой вектор, -a есть вектор, противоположный вектору а. Разностью a-b векторов a и b называют вектор x такой, что x+b=a.
Произведением lx вектора а на число l в случае l¹0, а¹О называют вектор, модуль которого равен |l||a| и который направлен в ту же сторону, что и вектор a, если l>0, и в противоположную, если l