Рефетека.ру / Промышленность и пр-во

Курсовая работа: Расчет и подбор нормализованного теплообменного аппарата

Размещено на http://

Федеральное агентство по образованию


Государственное образовательное учреждение высшего профессионального образования

ВОЛГОГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

(ВолгГТУ)


Кафедра ПАХП


Курсовая работа

на тему:

Расчет и подбор нормализованного теплообменного аппарата


Выполнил: студент

группы ХТ-341

Ошкин Михаил Иванович


Волгоград 2008г.

Содержание


Аннотация

Введение

Общая часть

1. Определение расхода теплоты и расхода воды

2. Приблизительная оценка

Расчет и подбор теплообменных аппаратов

Вариант №1: D = 273мм, n = 37, z =1 и F = 9

Вариант №2: D = 325мм, n = 56, z =2 и F = 13

Расчет нагрузочной характеристики

Заключение

Приложение №1

Приложение №2

Список используемой литературы


Аннотация


В данной семестровой работе рассматривается процесс передачи энергии в форме тепла и на основе расчетных данных осуществляется подбор теплообменного аппарата.

В данном случае рассматривается процесс охлаждения жидкости с заданным расходом.

Исходными материалами являются ацетон и скважинная вода. Вода является охладителем с начальной температурой равной Расчет и подбор нормализованного теплообменного аппарата. Для исключения накипи в межтрубном пространстве конечная температура воды не превышает Расчет и подбор нормализованного теплообменного аппарата, т.е. принята Расчет и подбор нормализованного теплообменного аппарата.

Жидкости подаются в теплообменный аппарат противоточно, при условии, что осуществляется развитое турбулентное течение. Кожух теплообменного аппарата выполнен из материала – сталь, с толщиной 2мм, без учета расчета на прочность. Подбор теплообменного аппарата осуществляется при условии, что поверхность теплообмена не будет превышать 10%. Исходным материалом для расчета поверхности теплообменного аппарата является учебник: К.Ф. Павлов, П.Г. Романков, А.А. Носков «Примеры и задачи по курсу процессов и аппаратов химической технологии».

Введение

теплообменный аппарат ацетон

В зависимости от способа передачи тепла различают две основные группы теплообменников:

1) поверхностные теплообменники, в которых перенос тепла между обменивающимися теплом средами происходит через разделяющую их поверхность теплообмена – глухую стенку;

2) теплообменники смешения, в которых тепло передается от одной среды к другой при их непосредственном соприкосновении.

Теплообменники и холодильники могут устанавливаться горизонтально и вертикально, быть одно-, двух-, четырех- и шестиходовыми по трубному пространству. Трубы, кожух и другие элементы конструкции могут быть изготовлены из углеродистой или нержавеющей стали, а трубы холодильников – также и из латуни. Распределительные камеры и крышки холодильников выполняют из углеродистой стали.

Кожухотрубчатые конденсаторы предназначены для конденсации паров в межтрубном пространстве, а также для подогрева жидкостей и газов за счет теплоты конденсации пара. Они могут быть с неподвижной трубчатой решеткой или с температурным компенсатором на кожухе, также вертикальные и горизонтальные. От холодильников они отличаются большим диаметром штуцера для подвода пара в межтрубное пространство.

В кожухотрубчатых испарителях в трубном пространстве кипит жидкость, а в межтрубном пространстве может быть жидкий, газообразный, парообразный, парогазовый или парожидкостной теплоноситель. Эти теплообменники могут быть только вертикальные, с неподвижной трубной решеткой или с температурным компенсатором на кожухе.

В работе используется кожухотрубчатый теплообменник. Кожухотрубчатые теплообменные аппараты могут использоваться в качестве теплообменников, холодильников, конденсаторов и испарителей. Этот теплообменник относится к числу наиболее часто применяемых поверхностных теплообменников. В теплообменнике одна из обменивающихся теплом сред движется внутри труб, а другая – в межтрубном пространстве. Среды обычно направляются противоположно друг другу. При этом нагреваемую среду направляют снизу вверх, а среду, отдающую тепло, - в противоположном направлении. Такое направление движения каждой среды совпадает с направлением, в котором стремится двигаться данная среда под влиянием изменения ее плотности при нагревании или охлаждении.

Конструкции теплообменников должны отличаться простотой, удобством монтажа и ремонта. В ряде случаев конструкция теплообменника должна обеспечивать возможно меньшее загрязнение поверхности теплообмена и быть легко доступной для осмотра и очистки.

Конденсация ацетона водой

Примем следующие индексы:

«1» - для ацетона

«2» - для воды

Общая часть


1. Определим расход теплоты и расход воды на охлаждение ацетона


Примем температуру ацетона на входе в теплообменник равной tн1 = 56 0С. Конечная температура ацетона, по условию задания, равной 36 0С. Вода подается в теплообменник с начальной температурой tн2 = 17 0С. Конечная температура равна tн2 = 27 0С.

- средняя температура воды:


Расчет и подбор нормализованного теплообменного аппарата


Данным условиям соответствуют следующие физико-химические показатели воды:

С2 = 4231,9 Дж/(кг К) – теплоемкость этилацетата (стр. 562, рис. XI, [1]);

λ2 = 0,593 Вт/(м К) – коэф. теплопроводимости (стр. 561, рис. X, [1]);

ρ2 = 998 кг/м3 – плотность этилацетата (стр. 512, т. IV, [1]);

μ2 = 1 10-3 Па с – коэф. динамической вязкости (стр. 516, т. IX, [1]).

- среднюю логарифмическую разность температур:


56→36

27←17

Расчет и подбор нормализованного теплообменного аппарата290С Расчет и подбор нормализованного теплообменного аппарата190С


Т.к. Расчет и подбор нормализованного теплообменного аппарата, используется формула:

Расчет и подбор нормализованного теплообменного аппарата


Расчет Расчет и подбор нормализованного теплообменного аппарата- температурного коэффициента:


Расчет и подбор нормализованного теплообменного аппарата

Расчет и подбор нормализованного теплообменного аппарата


где Расчет и подбор нормализованного теплообменного аппарата


Расчет и подбор нормализованного теплообменного аппарата при Расчет и подбор нормализованного теплообменного аппарата, Расчет и подбор нормализованного теплообменного аппарата, Расчет и подбор нормализованного теплообменного аппарата

Расчет и подбор нормализованного теплообменного аппарата

Расчет и подбор нормализованного теплообменного аппарата тогда Расчет и подбор нормализованного теплообменного аппарата,

Расчет и подбор нормализованного теплообменного аппарата

Расчет и подбор нормализованного теплообменного аппарата

тогдаРасчет и подбор нормализованного теплообменного аппарата

- среднюю температуру исходного вещества:


Расчет и подбор нормализованного теплообменного аппарата

Данным условиям соответствуют следующие физико-химические показатели ацетона:

с1 = 2304,5 Дж/(кг К) – теплоемкость этилацетата (стр. 562, рис. XI, [1]);

λ1 = 0,163 Вт/(м К) – коэф. теплопроводимости (стр. 561, рис. X, [1]);

ρ1 = 762,5 кг/м3 – плотность этилацетата (стр. 512, т. IV, [1]);

μ1 = 0,257 10-3 Па с – коэф. динамической вязкости (стр. 516, т. IX, [1]).

Определим расход исходного вещества Расчет и подбор нормализованного теплообменного аппарата:


Расчет и подбор нормализованного теплообменного аппарата


С учетом потерь теплоты в размере 5% , тепловая нагрузка составитРасчет и подбор нормализованного теплообменного аппарата:


Расчет и подбор нормализованного теплообменного аппаратаРасчет и подбор нормализованного теплообменного аппарата


Расход воды составитРасчет и подбор нормализованного теплообменного аппарата:


Расчет и подбор нормализованного теплообменного аппарата


Объемные расходы исходного вещества и водыРасчет и подбор нормализованного теплообменного аппарата:


Расчет и подбор нормализованного теплообменного аппарата0,00546Расчет и подбор нормализованного теплообменного аппарата

Расчет и подбор нормализованного теплообменного аппарата 0,00477Расчет и подбор нормализованного теплообменного аппарата

2. Наметим варианты теплообменных аппаратов


Для этого определим ориентировочное значение площади поверхности теплообмена, принимая Расчет и подбор нормализованного теплообменного аппарата (стр. 47, т. 2.1, [2])Расчет и подбор нормализованного теплообменного аппарата:


Расчет и подбор нормализованного теплообменного аппаратаРасчет и подбор нормализованного теплообменного аппарата


Для более интенсивного теплообмена необходим аппарат с турбулентным режимом течения теплоносителей. Направим в трубное пространство воду, а в межтрубное пространство – ацетон. Также для наиболее эффективного теплообмена необходимо, чтобы трубы в аппарате располагались в шахматном порядке.

В теплообменниках с диаметром труб Расчет и подбор нормализованного теплообменного аппарата по ГОСТу 15120-79 скорость течения исходного вещества при Расчет и подбор нормализованного теплообменного аппарата должна быть болееРасчет и подбор нормализованного теплообменного аппарата:


Расчет и подбор нормализованного теплообменного аппарата0,525Расчет и подбор нормализованного теплообменного аппарата


При этом число труб в аппарате обеспечивающих объемный расход исходного вещества при турбулентном режиме течения:


Расчет и подбор нормализованного теплообменного аппарата31,1=31 шт.


Расчет и подбор теплообменных аппаратов

Вариант №1:


D = 273 мм, n =37 , z =1 и F=9 м2 :


Определим расчетное значение площади поверхности теплообмена и рассчитаем запас поверхности теплообмена у теплообменного аппарата данного типа.

Размер стрелки сегмента:


Расчет и подбор нормализованного теплообменного аппаратамм


Расстояние между перегородками:


Расчет и подбор нормализованного теплообменного аппаратамм


Где Расчет и подбор нормализованного теплообменного аппарата


Определим скорость и критерий Рейнольдса для исходного веществаРасчет и подбор нормализованного теплообменного аппарата:


Расчет и подбор нормализованного теплообменного аппаратаРасчет и подбор нормализованного теплообменного аппарата

Расчет и подбор нормализованного теплообменного аппарата36847


Для воды:

Расчет и подбор нормализованного теплообменного аппаратаРасчет и подбор нормализованного теплообменного аппарата

Расчет и подбор нормализованного теплообменного аппарата


Определим коэффициенты теплоотдачи:

- для воды:

Теплоотдача течении в прямых трубах и каналах (Расчет и подбор нормализованного теплообменного аппарата), критерий Нуссельта рассчитывается по формуле (см. стр. 152, (4.17), [1])


Расчет и подбор нормализованного теплообменного аппарата

εl = 1 – поправочный коэффициент, учитывающий влияние на коэффициент теплоотдачи отношения длины трубы к ее диаметру.

Откуда Расчет и подбор нормализованного теплообменного аппарата

Рассчитаем критерий Прандтля:


Расчет и подбор нормализованного теплообменного аппарата


Тогда по формуле:


Расчет и подбор нормализованного теплообменного аппарата62,78


Принимаем значение Расчет и подбор нормализованного теплообменного аппаратаРасчет и подбор нормализованного теплообменного аппарата= 1.

Коэффициент теплоотдачиРасчет и подбор нормализованного теплообменного аппарата:

Расчет и подбор нормализованного теплообменного аппарата1773


- для ацетона:

Рассчитаем критерий Прандтля:


Расчет и подбор нормализованного теплообменного аппарата3,633

Расчет и подбор нормализованного теплообменного аппарата


ПринявРасчет и подбор нормализованного теплообменного аппарата.

Коэффициент теплоотдачиРасчет и подбор нормализованного теплообменного аппарата:

Расчет и подбор нормализованного теплообменного аппарата1299Расчет и подбор нормализованного теплообменного аппарата


Применительно к кожухотрубчатым теплообменникам с поперечными перегородками в формуле принимают коэффициент Расчет и подбор нормализованного теплообменного аппарата, учитывая, что теплоноситель в межтрубном лишь часть пути движется поперек труб и при угле атаки меньшем 900.

Примем тепловую проводимость загрязнений стенки со стороны воды равной Расчет и подбор нормализованного теплообменного аппарата (табл. 2.2, [2]), коэффициент теплопроводимости стали равной Расчет и подбор нормализованного теплообменного аппарата (табл. XXVIII, [1]), тепловую проводимость загрязнений стенки со стороны исходного вещества равной Расчет и подбор нормализованного теплообменного аппарата (табл. 2.2, [2]).

Тогда

Расчет и подбор нормализованного теплообменного аппарата


Коэффициент теплоотдачи рассчитаем по формуле:


Расчет и подбор нормализованного теплообменного аппарата


Поверхностная плотность теплового потокаРасчет и подбор нормализованного теплообменного аппарата:


Расчет и подбор нормализованного теплообменного аппаратаРасчет и подбор нормализованного теплообменного аппарата


Расчетная площадь поверхности теплообмена составитРасчет и подбор нормализованного теплообменного аппарата:


Расчет и подбор нормализованного теплообменного аппарата14,5Расчет и подбор нормализованного теплообменного аппарата


Запас поверхности составляет при этом:


Расчет и подбор нормализованного теплообменного аппарата


Запас поверхности теплообмена данного аппарата не удовлетворяет условию. По аналогичной схеме рассчитаем другой вариант.


Вариант №2


D =325 мм, n =56 , z =2 и F = 13 :

Определим скорости и критерии Рейнольдса:

- для исходного вещества: Расчет и подбор нормализованного теплообменного аппарата

Расчет и подбор нормализованного теплообменного аппарата


- для воды: Расчет и подбор нормализованного теплообменного аппарата

Расчет и подбор нормализованного теплообменного аппарата

Определим коэффициенты теплоотдачи:

- для ацетона:

Расчет и подбор нормализованного теплообменного аппарата

Расчет и подбор нормализованного теплообменного аппарата

- для воды:


Расчет и подбор нормализованного теплообменного аппарата

Расчет и подбор нормализованного теплообменного аппарата


Коэффициент теплопередачи:


Расчет и подбор нормализованного теплообменного аппарата


Поверхностная плотность теплового потока:


Расчет и подбор нормализованного теплообменного аппарата


Расчетная площадь поверхности теплообмена:

Расчет и подбор нормализованного теплообменного аппарата


Запас поверхности составляет при этом:


Расчет и подбор нормализованного теплообменного аппарата


Запас поверхности теплообмена данного аппарата удовлетворяет условию.


Расчет нагрузочной характеристики


Примем следующий интервал температур стенки со стороны горячего теплоносителя:


T1 = / 25 30 40 50 55/ 0С


Данным температурам соответствуют следующие физико-химические показатели исходного вещества:


с1.1 =2220,7 Дж/(кг К) – теплоемкость при tст =25 0C;

с1.2 = 2258,41 Дж/(кг К) – теплоемкость при tст =30 0C;

с1.3 = 2283,55 Дж/(кг К) – теплоемкость при tст =40 0C;

с1.4 =2308,69 Дж/(кг К) – теплоемкость при tст = 50 0C;

с1.5 =2342,21 Дж/(кг К) – теплоемкость при tст =55 0C;


λ1.1 =0,169 Вт/(м К) ρ1.1 = 785,3 кг/м3

λ1.2 =0,167 Вт/(м К) ρ1.2 = 779,5 кг/м3

λ1.3 = 0,165 Вт/(м К) ρ1.3 =768 кг/м3

λ1.4 =0,163 Вт/(м К) ρ1.4 = 757 кг/м3

λ1.5 =0,162 Вт/(м К) ρ1.5 = 751,5 кг/м3


μ1.1 = 0,3075 10-3 Па с

μ1.2 =0,293 10-3 Па с

μ1.3 = 0,268-3 Па с

μ1.4 = 0,246 10-3 Па с

μ1.5 = 0,476 10-3 Па с


Скорость исходного вещества равна:


Расчет и подбор нормализованного теплообменного аппарата


Критерии Рейнольдса и Прандтля:


Расчет и подбор нормализованного теплообменного аппарата

Расчет и подбор нормализованного теплообменного аппарата

Расчет и подбор нормализованного теплообменного аппарата

Расчет и подбор нормализованного теплообменного аппарата24209,73

Расчет и подбор нормализованного теплообменного аппарата26077,6

Расчет и подбор нормализованного теплообменного аппарата28002,85

Расчет и подбор нормализованного теплообменного аппарата14366,9


Расчет и подбор нормализованного теплообменного аппарата

Расчет и подбор нормализованного теплообменного аппарата3,96

Расчет и подбор нормализованного теплообменного аппарата3,71

Расчет и подбор нормализованного теплообменного аппарата3,48

Расчет и подбор нормализованного теплообменного аппарата6,88


Значение Nu рассчитываем по формуле:


Расчет и подбор нормализованного теплообменного аппарата

Расчет и подбор нормализованного теплообменного аппарата

Расчет и подбор нормализованного теплообменного аппарата166,6

Расчет и подбор нормализованного теплообменного аппарата170

Расчет и подбор нормализованного теплообменного аппарата145,54


Коэффициент теплоотдачи рассчитаем по формуле:


Расчет и подбор нормализованного теплообменного аппарата

Расчет и подбор нормализованного теплообменного аппарата1090

Расчет и подбор нормализованного теплообменного аппарата1100

Расчет и подбор нормализованного теплообменного аппарата1108

Расчет и подбор нормализованного теплообменного аппарата943,1


Плотность теплового потокаРасчет и подбор нормализованного теплообменного аппарата


Расчет и подбор нормализованного теплообменного аппарата

Расчет и подбор нормализованного теплообменного аппарата

Расчет и подбор нормализованного теплообменного аппарата

Расчет и подбор нормализованного теплообменного аппарата6597,4

Расчет и подбор нормализованного теплообменного аппарата-4433,7

Расчет и подбор нормализованного теплообменного аппарата-8487,8


Определим температуру стенки со стороны холодного теплоносителя – воды:


Расчет и подбор нормализованного теплообменного аппарата

Расчет и подбор нормализованного теплообменного аппарата

Расчет и подбор нормализованного теплообменного аппарата

Расчет и подбор нормализованного теплообменного аппарата

Расчет и подбор нормализованного теплообменного аппарата

Расчет и подбор нормализованного теплообменного аппарата


Данным температурам соответствуют следующие физико-химические показатели воды:


с2.1 = 4231,9 Дж/(кг К) – теплоемкость воды при tст = 240C;

с2.2 = 4252,9 Дж/(кг К) – теплоемкость воды при tст = 29,250C;

с2.3 = 4273,8 Дж/(кг К) – теплоемкость воды при tст = 39,70C;

с2.4 = 4315,7 Дж/(кг К) – теплоемкость воды при tст = 50,20C;

с2.5 = 4336,7 Дж/(кг К) – теплоемкость воды при tст = 55,40C;

λ2.1 = 0,611 Вт/(м К) ρ2.1 = 993,5 кг/м3

λ2.2 = 0,616 Вт/(м К) ρ2.2 = 995кг/м3

λ2.3 = 0,637 Вт/(м К) ρ2.3 = 992 кг/м3

λ2.4 = 0,645 Вт/(м К) ρ2.4 = 987,5 кг/м3

λ2.5 = 0,651 Вт/(м К) ρ2.5 = 985,3 кг/м3


μ2.1 = 0,9 10-3 Па с

μ2.2 = 0,801 10-3 Па с

μ2.3 = 0,656 10-3 Па с

μ2.4 = 0,549 10-3 Па с

μ2.5 = 0,509 10-3 Па с

Скорости воды:

Расчет и подбор нормализованного теплообменного аппарата


Критерии Рейнольдса и Прандтля считаем аналогично:


Расчет и подбор нормализованного теплообменного аппарата

Расчет и подбор нормализованного теплообменного аппарата

Расчет и подбор нормализованного теплообменного аппарата

Расчет и подбор нормализованного теплообменного аппарата

Расчет и подбор нормализованного теплообменного аппарата


Значение Прандтля:


Расчет и подбор нормализованного теплообменного аппарата

Расчет и подбор нормализованного теплообменного аппарата

Расчет и подбор нормализованного теплообменного аппарата

Расчет и подбор нормализованного теплообменного аппарата

Расчет и подбор нормализованного теплообменного аппарата


Т.к. все значения Re>10000, то значение Nu:


Расчет и подбор нормализованного теплообменного аппарата

Расчет и подбор нормализованного теплообменного аппарата

Расчет и подбор нормализованного теплообменного аппарата

Расчет и подбор нормализованного теплообменного аппарата

Расчет и подбор нормализованного теплообменного аппарата


Коэффициент теплоотдачи:


Расчет и подбор нормализованного теплообменного аппарата

Расчет и подбор нормализованного теплообменного аппарата

Расчет и подбор нормализованного теплообменного аппарата

Расчет и подбор нормализованного теплообменного аппарата

Расчет и подбор нормализованного теплообменного аппарата


Плотность теплового потока:


Расчет и подбор нормализованного теплообменного аппарата

Расчет и подбор нормализованного теплообменного аппарата

Расчет и подбор нормализованного теплообменного аппарата

Расчет и подбор нормализованного теплообменного аппарата

Расчет и подбор нормализованного теплообменного аппарата


Далее строим графики зависимости Расчет и подбор нормализованного теплообменного аппаратаи Расчет и подбор нормализованного теплообменного аппарата. Совмещенные кривые отображают нагрузочную характеристику теплообменного аппарата. Для установившегося процесса теплопередачи должно соблюдаться условие q1 = q2, поэтому точка пересечения кривых определяет действительную плотность теплового потока и действительную температуру на поверхности стенки со стороны горячего теплоносителя. Зная эту температуру можно с помощью критериальных уравнений вычислить значения коэффициентов теплоотдачи и рассчитать величину коэффициента теплопередачи.

Расчет и подбор нормализованного теплообменного аппарата



Данной температуре (Т=29) соответствуют следующие физико-химические показатели:

- для исходного вещества:


с1 = 2258,4 Дж/(кг К) – теплоемкость (стр. 562, рис. XI, [1]);

λ1 =0,167 Вт/(м К) – коэф. теплопроводимости (стр. 561, рис. X, [1]);

ρ1 =779,5 кг/м3 – плотность (стр. 512, т. IV, [1]);

μ1 = 0,293 10-3 Па с – коэф. динамической вязкости (стр. 516, т. IX, [1]).


- для воды:


с2 = 4232,9 Дж/(кг К) – теплоемкость (стр. 562, рис. XI, [1]);

λ2 =0,616 Вт/(м К) – коэф. теплопроводимости (стр. 561, рис. X, [1]);

ρ2 =995 кг/м3 – плотность (стр. 512, т. IV, [1]);

μ2 = 0,801 10-3 Па с – коэф. динамической вязкости (стр. 516, т. IX, [1]).


Рассчитаем значения Re и Pr:


Расчет и подбор нормализованного теплообменного аппарата Расчет и подбор нормализованного теплообменного аппарата

Расчет и подбор нормализованного теплообменного аппарата Расчет и подбор нормализованного теплообменного аппарата

Расчет и подбор нормализованного теплообменного аппарата

Расчет и подбор нормализованного теплообменного аппарата


Коэффициент теплоотдачи:


Расчет и подбор нормализованного теплообменного аппарата

Расчет и подбор нормализованного теплообменного аппарата


Коэффициент теплопередачи:


Расчет и подбор нормализованного теплообменного аппарата


Погрешность расчета:


Расчет и подбор нормализованного теплообменного аппарата


Заключение


Для достижения поставленной цели в данной семестровой работе рассматривались только нормализованные теплообменные аппараты (холодильники), без рассмотрения экономических факторов, таких как: металлоемкость, себестоимость, вес и т.п.

В процессе приблизительной оценки были рассмотрены нормализованные теплообменные аппараты с внутренним диаметром кожуха 400мм, 600мм и 800мм. Запас поверхности теплообмена, у теплообменника с внутренним диаметром кожуха 800мм, не удовлетворял исходным требованиям, и в дальнейшем расчете нагрузочной характеристики не рассматривался. При рассмотрении теплообменных аппаратов с внутренним диаметром кожуха 400мм и 600мм, запас поверхности теплообмена составил, соответственно, 9,7% и 5%.

Далее рассчитывалась нагрузочная характеристика аппаратов. Вследствие чего, теплообменный аппарат, с внутренним диаметром кожуха 600мм, имел высокую ошибку при расчете коэффициента теплопередачи (свыше 10%), что не удовлетворяет условию задачи.

Всем требуемым условиям соответствует двухходовой нормализованный кожухотрубчатый теплообменный аппарат с внутренним диаметром кожуха 400мм, в количестве 2шт.


Приложение №1


Диаметр кожуха внутренний D, мм Число труб n Длина труб l, мм Проходное сечение, м2 h, мм


1,0 1,5 2,0 3,0 4,0 6,0 9,0 Sт102 Sм102 Sв.п.102



Поверхность теплообмена F, мм




Одноходовые
159* 13 1,0 1,5 2,0 3,0 - - - 0,5 0,8 0,4 5 100

273*

37

3,0 4,5 6,0

9,0

- - - 1,3 1,1 0,9 7 130
325* 62 - 7,5 10,0 14,5 19,5 - - 2,1 2,9 1,3 9 180
400 111 - - 17 26 35 52 - 3,8 3,1 2,0 11 250
600 257 - - 40 61 81 121 - 8,9 5,3 4,0 17 300
800 465 - - 73 109 146 219 329 16,1 7,9 6,9 23 350
1000 747 - - - 176 235 352 528 25,9 14,3 10,6 29 520
1200 1083 - - - - 340 510 765 37,5 17,9 16,4 35 550
Двухходовые

325*

56

- 6,5 9,0

13,0

17,5 - - 1,0 1,5 1,3 8 180
400 100 - - 16,0 24,0 31,0 47 - 1,7 2,5 2,0 10 250
600 240 - - 38 57 75 113 - 4,2 4,5 4,0 16 300
800 442 - - 69 104 139 208 312 7,7 7,0 6,5 22 350
1000 718 - -
169 226 338 507 12,4 13,0 10,6 28 520
1200 1048 - -

329 494 740 17,9 16,5 16,4 34 550
Четырехходовые
600 206 - - 32 49 65 97 - 1,8 4,5 4,0 14 300
800 404 - - 63 95 127 190 285 3,0 7,0 6,5 20 350
1000 666 - - - 157 209 314 471 5,5 13,0 10,6 26 520
1200 986 - - - - 310 464 697 8,4 16,5 16,4 32 550
Шестиходовые
600 196 - - 31 46 61 91 - 1,1 4,5 3,7 14 300
800 384 - - 60 90 121 181 271 2,2 7,0 7,0 20 350
1000 642 - - - 151 202 302 454 3,6 13,0 10,2 26 520
1200 958 - - - - 301 451 677 5,2 16,5 14,2 32 550

* Наружный диаметр кожуха

nр – число рядов по вертикали для горизонтальных аппаратов – по ГОСТ 15118-79;

h – расстояние между перегородками


Приложение №2


Расчет и подбор нормализованного теплообменного аппарата


Список используемой литературы


К.Ф. Павлов, П.Г. Романков, А.А. Носков «Примеры и задачи по курсу процессов и аппаратов химической технологии», 10-ое издание, переработанное и дополненное. Под ред. П.Г. Романтшва. Л.: Химия, 1987.-576С.

«Основные процессы и аппараты химической технологии»: Пособие по проектированию / Г.С. Борисов, В.П. Брыков, Ю.И. Дытнерский и др. Под ред. Ю.И. Дытнерского, 2-ое издание, переработанное и дополненное М.: Химия, 1991.-496С.

А.Г. Касаткин «Основные процессы и аппараты химической технологии». М.: Химия, 1971.-784С.

Размещено на http://

Рефетека ру refoteka@gmail.com