Рефетека.ру / Эк.-мат. моделирование

Контрольная работа: Эконометрическое моделирование временных рядов

Задача 1


За год на предприятии были выпущены семь партий продукции, для каждой из которых были определены издержки. Вычислить сумму издержек для следующего плана выпуска.

линейный экономический моделирование

Таблица 1.1.Данные о планируемом выпуске изделий

ед.прод. тыс.шт. затраты, руб.
2,2 ?
3,9 ?
5,5 ?

Таблица 1.2.Данные о выпущенных партиях

ед.прод.тыс.шт. затраты, руб.
1 30
2 70
4 150
3 100
5 170
6 215
8 290

Задача относится к разделу Парная регрессия, т.к. в ней даны один независимый параметр (единицы продукции, обозначим как х) и зависимый параметр (затраты, обозначим у).Прежде чем выбирать вид аппроксимирующей зависимости следует представить исходные данные графически.


Эконометрическое моделирование временных рядов


Предполагаем линейную зависимость между х и у


Y=a+bx


Для определения параметров a,b используем метод наименьших квадратов


∑( y –(a+bx))І → min


Функция минимальна, если равны нулю ё, частные производные по параметрам т.е.:


y’a = ∑ (2( y-abx)(-1))=0

y’b = ∑ (2 ( y-a-bx)(-x))=0


или


na+b∑x =∑y,

a ∑x +b ∑xІ =∑xy (1)


Система уравнений (1) однозначно определяет параметры a и b – это система двух уравнений с двумя неизвестными. Все остальные величины можно определить из исходных данных :

n- количество исходных точек,

∑x ∑y - суммарные значения параметров х и у по всем точкам,

∑xy - суммарное значение произведения параметров,

∑xІ- суммарное значение квадрата величины х.

Рассчитаем коэффициенты линейного уравнения парной регрессии:


Σx^2 = (x^2) - cp –(xcp)^2

b = (cp(y*x) – cp (y)*cp (x))/(σx^2) (2)

a = cp( y) - b*cp(x)


Где индекс cp обозначает среднее значение данной величины, т.е. суммарное значение данной величины надо разделить на n.

Составим таблицу в редакторе Excel.


Таблица 1.3

n x y xy x^2
1 1 30 30 1
2 2 70 140 4
3 4 150 600 16
4 3 100 300 9
5 5 170 850 25
6 6 215 1290 36
7 8 290 2320 64
итого 29 1025 5530 155
среднее 4,14 146,43 790,00 22,14
σІ 4,98



Используя из табл. 1.3, получаем следующую систему уравнений:

7a+29b=1025

29a+155b=5530

Решаем систему уравнений методом последовательных исключений переменных или по формуле (2) и определяем коэффициенты

a= -6.127

b= 36.824

линейное уравнение запишем в виде

y=-6.127+36.824x (3)

Для варианта х=2,у=9 ,z =5 рассчитываем затраты


Таблица 1.4

ед.прод. тыс.шт. затраты, руб.
2,2 74,89
3,9 137,49
5,5 196,41

Используя пакет прикладных программ (ППП) статистическая функция ЛИНЕЙНАЯ и графические результаты (добавить линию тренда) проверим полученные результаты.

Таблица 1.5

36,824 -6,127
0,987 4,64432
0,9964 5,82708
1392 5
47266 169,775

Рис.1.2.

Эконометрическое моделирование временных рядов


Кроме того, по найденному уравнению линейной регрессии (3) проведем расчет величин у, сравним их с заданными, т.е. рассчитаем отклонения и определим их суммарное отклонение, которое должно быть равно нулю. Результаты приведем в табл. 1.6.

Таблица 1.6

n x y xy y расч y-y расч
1 1 30 30 900 1 30,7 -0,7
2 2 70 140 4900 4 67,5 2,5
3 4 150 600 22500 16 141,2 8,8
4 3 100 300 10000 9 104,3 -4,3
5 5 170 850 28900 25 178,0 -8,0
6 6 215 1290 46225 36 214,8 0,2
7 8 290 2320 84100 64 288,5 1,5
итого 29 1025 5530 197525 155
0,0

Выводы:

Решена задача парной регрессии методом наименьших квадратов.

Получены коэффициенты в линейном уравнении y=-6.127+36.824x и рассчитан возможный домашний вариант.

Результаты проверены с помощью ППП и линии тренда.


Задача 2.


По семи территория Уральского района за 1995 г. Изе6стны значения двух признаков (табл.2.1)


Таблица 2.1

район расходы на покупку продовольственных товаров в общих расходах, % у среднедневная заработная плата одного работающего, руб.,х
Удмуртская респ. 68,8 45,1
Свердловская обл. 61,2 59
Башкортостан 59,9 57,2
Челябинская обл. 56,7 61,8
Пермская обл. 55 58,8
Курганская обл. 54,3 47,2
Оренбургская обл. 49,3 55,2

Требуется определить параметры парной регрессии для следующих функции: линейной степенной показательной, равносторонней геперболы и параболы методом наименьших квадратов (МНК). Составить прогноз величины у для некоторого х например для х=1.1 (х) min. Дать графическую интерпретацию результатов, использовать ППП для решения статистических задач сделать выводы.

К исходным данным добавим ещё одну пару значений х,у, связанную с порядковым номером по журналу и количеством студентов в группе, по формулам:


x8=xmin +((xmax-xmin)/Nсум)*Ni

y8=ymin+((ymax-ymin)/Nсум)*Ni


где, Ni –порядковый номер по журналу, Nсум- количество студентов в группе, min, max – минимальная и максимальная величины х и у по таблице 2.1.

после этого составляем таблицу 2.2 и рассчитываем все параметры для решения системы уравнений:


na+b∑x =∑y (4)

a∑x+b∑(x^2) =∑(xy)


Рассчитываем коэффициенты линейного уравнения парной регрессии:


σx^2= (x^2)cp = (xcp)^2

b= (cp(y*x) –cp(y)*cp(x))/(σx^2) (5)

a= cp (y) –b*cp(x)


Таблица 2.2.Линейная регрессия y=a+bx

n y x yx y^x y-y^x
1 68,80 45,10 3102,88 2034,01 4733,44 61,65 7,15
2 61,20 59,00 3610,80 3481,00 3745,44 56,88 4,32
3 59,90 57,20 3426,28 3271,84 3588,01 57,49 2,41
4 56,70 61,80 3504,06 3819,24 3214,89 55,92 0,78
5 55,00 58,80 3234,00 3457,44 3025,00 56,95 -1,95
6 54,30 47,20 2562,96 2227,84 2948,49 60,93 -6,63
7 49,30 55,20 2721,36 3047,04 2430,49 58,18 -8,88
8 61,00 55,12 3362,32 3038,21 3721,00 58,21 2,79
итого 466,20 439,42 25524,66 24376,62 27406,76 x 0
среднее значение 58,28 54,93 3190,58 3047,08 3425,85 x x
σІ 29,87 30,05 х х х х х
σ 5,47 5,48 х х х х х

Коэффициенты линейного уравнения парной регрессии можно определить из двух систем уравнений с двумя переменными(4):


8a+439.42b=466.2

439.4a+24376.62 b=25524.66


В результате вычислений получаем значения коэффициентов:


b=-0.34 ,a=77.14


Получено уравнение парной регрессии для описания расходов на покупки товаров от средней зарплаты одного члена семьи


y^=77.14-0.34*x


Это уравнение показывает , что с увеличением среднедневной заработной платы на 1 руб. для расходов на покупку продовольственных товаров снижается на 34 коп.

Надежность полученных результатов оцениваем по ряду коэффициентов (корреляции, детерминации) и критерию Фишера, определяем среднюю ошибку аппроксимации.

Таблица 2.3

коэффициент корреляции коэффициент корреляции показывает , что связь между х и у умеренная, обратная
rxy=-0,344 rxy=b*(σx/σy)
коэффициент детерминации вариация результата на 11,9% объясняется ариацией фактора х
rІxy=0,119 rІ=(-0,344)І=0,119

-1≤xy≤1 0≤rІxy≤1


полученное уравнение регрессии описывает исх. Параметры (х,у) с точностью 11,9%. Влияние прочих факторов оценивается в 88,9%
критерий Фишера Подставляя в уравнение регрессии фактические значения х, определяем расчетные значения у^х
Fфакт. =0,81 Fтабл. =5,99

найдем еличину средней ошибки аппроксимации
Fфакт. =(rІ/1-rІ)*(n-2) A=1/n(Ai)=1/n (|y-y^x|/y*100%)=(61,19/8)*100%=7,65%

в среднем расчетные значения отклоняются от фактических на 7,65%

Коэффициент Фишера показывает, что это уравнение не имеет экономического смысла, так как Fфакт.< Fтабл.

Полученное значение Fфакт. Указывает на необходимость принять нулевую гипотезу о случайной природу выявленной зависимости и статистической незначимости параметров уравнения и показателей тесноты связи.

Графическое представление полученных результатов показано на рис. 2.1.


Эконометрическое моделирование временных рядов

Рис.2.1


Из рисунка 2.1. видно, что исходные статистические данные достаточно разборосаны, т.е. явной закономерности не прослеживается.

Результаты вычислений по исходным данным, представлены в таблице 2.1 , полностью совпадают с уже полученным уравнением регрессии.


Таблица 2.4

-0,34337 77,13555
0,382134 21,09393
0,118608 5,924707
0,807417 6
8,34207 210,6129

Выводы:

Решена задача парной регрессии методом наименьших квадратов.

Низкая достоверность результатов объясняется рядом причин:

- собрано малое количество статистических данных, выбраны случайные районы за небольшой отрезок времени;

- в учебных целях добавлены случайные точки, зависящие от порядкового номера студента и числа студентов в группе;

- расходы на покупку продовольственных товаров в общих расходах зависят от ряда факторов: количества членов семьи, иждивенцев, налогов и др., т.е. реально существует более сложная зависимость, чем парная регрессия от ряда экономических факторов.

Разобрана учебная задача не имеющая практического приложения.


Задача 3.


На основании исходных данных о реальном ВВП в мире в целом, регионах и странах с 1990 г. По 2000г., представленных в таблице 3.1 провести экономический анализ. Выбрать для сравнения две страны, с помощью ППП получить аналитические зависимости, описывающие ВВП в выбранных стран, по этим уравнениям построить прогноз их развития в 2001-2020 годах, результаты сравнить с официальными опубликованными данными.


Таблица 3.1.Реальный ВВП в странах (млрд.долл. в ППС 1993 г.)

регионы страны 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
США 5971,1 5935,5 6071,8 6260 6516,7 6725,2 6833 7024,3 7199,9 7379,9 7564,4
Германия 1466,5 1487 1519,7 1503 1546,6 1596,1 1648,8 1690 1732,3 1775,6 1820
Китай 1798,5 1946 2000,9 2502,4 2802,7 3130,6 3496,9 3846,6 4231,2 4654,4 5119,8
Россия 993,2 943,5 804,5 735,2 656 626 588 600 622,1 643,9 666,4

На рис. 3.1 показано графическое изменение ВВП по ряду стран из таблицы 3.1. Их можно сравнивать между собой, определять тенденцию развития. Темпы развития за этот сравнительно небольшой промежуток времени отличаются по странам, вплоть до падения. Так, например, Россия пережила сложный период перехода к рыночной экономике, что привело к уменьшению её ВВП.


Эконометрическое моделирование временных рядов

Рис.


Сравнивая темпы роста ВП США и Китая, можно говорить о выравнивании ВВП некотором году при условии их сохранения. По исходным данным табилы3.1, можно построить линейные и логарифмические аппроксимации и графические прогнозы. На рис. 3.2 а.б приведены аппроксимирующие уравнения. Так как достоверность аппроксимации R2 практически одинакова у линейных и логарифмических функций, то аналитический ответ рассчитываем по линейным функциям, приравнивая их и определяя год совпадения ВП :

172,49х-337441=341,03х-677130

(341,03-172,49)х=677130-337441

х=2015,48

Т.е., при сохранении темпов роста в США и Китае ВВП этих стран сравняется к середине 2015 года.


Эконометрическое моделирование временных рядов

Рис. 1


Эконометрическое моделирование временных рядов

Рис. 2

Выводы


Развитие экономических процессов происходит о времени, поэтому многие эконометрические задачи моделируются одномерными временными рядами. Эти задачи имеют большое преимущество – они двумерные, т.е. моделируются на плоскости и исходные статистические данные можно представить графически.

Результаты получаются с помощью ППП и по коэффициенту аппроксимации RІ выбирается наиболее достоверная аналитическая зависимость.

Эконометрическое моделирование временных рядов позволяет анализировать имеющиеся статистические данные в различных областях человеческой деятельности – от ВВП до добычи нефти по странам и регионам. В ряде случаев возможно составлять прогнозы на будущее, изучать динамику экономических процессов в микро- и макропроцессах.


Похожие работы:

  1. • Эконометрическое моделирование: расчет ...
  2. • Предмет, метод и задачи статистики
  3. • Некоторые вопросы эконометрического моделирования
  4. • Временные ряды в эконометрических исследованиях
  5. • Системы эконометрических уравнений, их применение в ...
  6. • Эконометрическое моделирование
  7. • Эконометрика
  8. • Эконометрические методы в сельском хозяйстве
  9. • Элементы теории вероятности
  10. • Модели прогнозирования на основе временных рядов
  11. • Структура эконометрики
  12. • Конспект лекций по курсу ЭММ (Экономико-математические методы ...
  13. • Построение модели инфляционной динамики
  14. • Шпоры по эконометрике
  15. • Моделирование промышленной динамики в условиях переходной ...
  16. • АРТ-моделирование на фондовом рынке
  17. • Классификация эконометрических моделей и методов
  18. • Эконометрический метод и использование ...
  19. • Статистика внешнеэкономических связей. Динамика ...
Рефетека ру refoteka@gmail.com