Рефетека.ру / Промышленность и пр-во

Дипломная работа: Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

ДИПЛОМНЫЙ ПРОЕКТ

на тему:

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Содержание


Введение

1. Аналитический обзор

2. Патентный поиск

3. Технологическая часть

Описание технологической схемы

Промывка

Суточный материальный баланс

Тепловой баланс

Выбор и расчёт оборудования

Определение поверхности теплообмена

Определение средней разности температур между теплоносителем и реакционной массой

4. Основное оборудование\

5. Строительная часть

Генеральный план

Объемно-планировочное решение

Конструктивное решение

Санитарно-техническое оборудование

6. Автоматизация и автоматизированные системы управления технологическим процессом (АСУ ТП)

Обоснование необходимости контроля, регулирования и сигнализации

Описание схемы автоматизации

Спецификация на оборудование

7. Стандартизация

8. Охрана труда и окружающей среды

Опасные и вредные производственные факторы, свойственные процессу получения динитробензойной кислоты

Мероприятия, принятые в проекте для обеспечения безопасности технологического процесса

Мероприятия, принятые в проекте для обеспечения безопасности технологического оборудования

Организация пожаро - и взрывобезопасности проектируемого производства

Мероприятия, предусмотренные в проекте для обеспечения нормальных санитарно-гигиенических условий производственной среды

Охрана окружающей среды

9. Экономическая оценка проектных решений

Организация производства

Расчет сметной стоимости

Расчёт численности работающих

Расчет производительности труда

Расчет фонда заработной платы работающих

Расчет годового расхода электроэнергии

Расчет сметы “Расходов на содержание и эксплуатацию оборудования”

Расчет сметы “Общецеховые расходы”

Расчет проектной себестоимости продукции

Технико-экономические показатели и определение экономической эффективности проектируемого производства

Выводы по проекту

Список использованной литературы

Введение


Использование полинитроароматических соединений в органическом синтезе привлекает как доступностью исходного сырья, так и широкими синтетическими возможностями, обусловленными наличием нитрогрупп.

С одной стороны, полинитросоединения являются промышленно производимыми продуктами - производные нитробензола широко используются как взрывчатые вещества, так и промежуточные продукты в синтезе красителей.

Ароматические полинитросоединения, благодаря способности нитрогрупп к восстановлению и нуклеофильному замещению, а также возможности модификации других заместителей в цикле, представляют большую ценность в качестве субстратов в органическом синтезе. Например, ароматическая нитрогруппа оказывает активирующее, в силу своей электроноакцепторной природы, влияние на другие заместители в ароматическом кольце. В 2,4,6-тринитротолуоле благодаря наличию трех нитрогрупп становятся возможными реакции конденсации метильной группы с электрофильными агентами (альдегидами, нитрозосоединениями и др.) [1].

Активированные ароматические нитрогруппы подвергаются замещению различными нуклеофилами, особенно легко протекает внутримолекулярная разновидность этой реакции, в которой нуклеофильная группа содержится в исходном субстрате. Реакция внутримолекулярной динитроциклизации открывает путь к синтезу различных конденсированных гетероциклов. Значительный интерес представляет синтез бензоконденсированных шести - и особенно семичленных гетероциклов, так как среди них имеется большое количество лекарственных веществ, в частности, регулирующие работу ЦНС - транквилизаторы, снотворные, антидепрессанты, нейролептики и т. п [2].

Продукты нитрования бензойной кислоты - моно - и динитробензойные кислоты - широко применяются в качестве полупродуктов в органическом синтезе, фармацевтике, фотохимии и химии красителей [3]. В частности, 3,5-динитробензойная кислота используется в синтезе аминобензойных кислот, являющихся полупродуктами при получении азокрасителей, лекарственных препаратов, нитробензоилхлоридов, пигментов.

Реакции с хлорангидридами 3,5-динитробензойной кислоты используют для идентификации спиртов, аминов и алифатических простых эфиров.

Кроме того, 3,5-динитробензойная кислота используется для приготовления рентгеноконтактного препарата типа “Триомброст”, для приготовления витамина Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год, служащего для витаминизации кормом, применяемых в сельском хозяйстве [3].

Таким образом, можно сделать вывод о важности проектирования производства 3,5-динитробензойной кислоты мощностью 13 тонн в год, как для развития сельского хозяйства, так и для других отраслей промышленности.

1. Аналитический обзор


Одним из наиболее интересных представителей является 3,5-динитробензойная кислота (3,5-ДНБК). Так нитрование бензойной кислоты меланжем при 70-1000С в течение 20ч приводит к получению ДНБК с выходом 53% [4]. При использовании нитрующей смеси на основе дымящей (Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год) азотной и концентрированной серной кислот и при температурах 70-1450С за 6ч выход составил 35%, а за 24 ч - 55-58% [4].


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Немаловажное техническое преимущество нитрующей смеси перед меланжем состоит в том, что она может быть сохраняема в железной аппаратуре и передаваема по железным трубам, так как не разъедает этого металла. Количество серной кислоты рассчитывается по минимальной крепости (общей кислотности) смеси, при которой еще заметен нитрующий эффект. Если увеличить количество азотной кислоты при сохранении того же количества серной кислоты в правильно составленной нитрующей смеси, то часть азотной кислоты останется без взаимодействия. Если увеличить количество серной кислоты, это вызовет лишний расход серной кислоты в отработанной кислоте. На заводах часто при составлении нитрующей смеси пользуются отработанной кислотой предыдущих нитрований, соответствующим образом ее подкрепляя добавкой более крепкой серной и по расчету азотной кислоты [5].

Кроме того известно применение в качестве исходного продукта для получения ДНБК 3-нитробензойной кислоты. Но и при этом выход не превышал 66% [6].

Приведенные методы получения ДНБК отличаются невысоким выходом продукта, так как нитрование при высоких температурах способствует интенсивному протеканию нежелательных реакций окисления, которые в конечном счете могут стать причиной взрыва [6]. Однако снижение температуры, уменьшающее вероятность протекания побочных процессов, в равной степени снижает скорость и основной реакции нитрования. Последняя лимитируется скоростью образования и степенью сольватации иона нитрония Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год. На концентрацию и скорость образования ионов нитрония большое влияние также оказывает концентрация воды в нитрующей смеси (увеличения содержания воды ингибирует этот процесс) [6]. Очевидно, что благоприятными факторами, увеличивающими выход 3,5-ДНБК, будут снижение температуры нитрования, уменьшение содержания воды и увеличение избытка азотной кислоты в реакционной смеси.

Установлено, что при замене серной кислоты в нитрующей смеси на олеум возможно проведение процесса в более мягких температурных условиях с повышенным выходом. Изучено влияние ряда факторов на нитрование бензойной кислоты дымящей азотной кислотой в среде 5-60% олеума [7].


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Таблица №1

Зависимость выхода 3,5-динитробензойной кислоты от температуры реакции.

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Выход, %

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Выход, %
30 Следы 55 73
40 5 60 75
45 39 65 71
50 67 70 64

При исследовании зависимости выхода ДНБК от температуры (таблица) обнаружено, что максимальный выход ДНБК колеблется в области 55-650С. С увеличением температуры возрастает роль побочных процессов окисления и уменьшается выход ДНБК. Существенным фактором процесса нитрования является его длительность. При увеличении температуры синтеза с 50 до 700С максимум на кривой зависимости выхода ДНБК от длительности нитрования (рис.1) смещается с 12-14ч до 5-8ч, однако максимальный выход ДНБК при этом падает [4].


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Рис1. Влияние длительности синтеза на выход ДНБК при различных температурах: 1-50; 2-60; 3-700C.


На получениие ДНБК существенно влияет избыток нитрующего агента (рис.2).

Оптимальным является соотношение азотной и бензойной кислот, равное (2,4-2,8):

1. Следует отметить, что увеличение этого соотношения в данных условиях может привести к спонтанному выбросу реакционной смеси.


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Рис2. Влияние избытка азотной кислоты на выход ДНБК.


Нитрование бензойной кислоты в олеуме с различным содержанием серного ангидрида (рис.3) показало, что выход ДНБК резко увеличивается в области содержания серного ангидрида 5-20% и в дальнейшем возрастает незначительно.


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Рис3. Влияние содержания серного ангидрида в олеуме на выход ДНБК.


Таким образом, изучение приведенных выше закономерностей позволило в мягких условиях получить ДНБК высокой степени чистоты с выходом 70-80%. Ниже приведена методика нитрования бензойной кислоты в оптимальных условиях.

К охлажденной до 100С смеси 5,5мл дымящей азотной кислоты (Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год) и 35 мл 20% олеума прибавляли порциями при перемешивании 12,2г (0,1 моль) бензойной кислоты. После гомогенизации смеси прибавляли по каплям еще 5,4мл Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год таким образом, чтобы общее количество ее составило 0,26моль. Затем в течение 1,5ч поднимали температуру до 600С. Через 5-6ч наблюдали выпадение осадка ДНБК. Еще через 6ч охлаждали реакционную смесь до комнатной температуры и выливали на 200г тонкоизмельченного льда. Осадок отфильтровали, промывали холодной водой и сушили при 1200С в течение 6ч. Выход 16,4г (77,3 мас. %).Т. пл. 205-2060С, по данным [7], т. пл. 204-2050С. ИК-спектр: 1550см-1 (Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год), 1690 см-1 (Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год, димер) [8].

2. Патентный поиск


Патентный поиск проводился с целью найти известные ранее способы получения 3,5-динитробензойной кислоты, близкие по технологии к рассматриваемой в данном проекте, информацию о компаниях-производителях.

Патентный поиск производился на основе следующих бумажных и электронных носителей патентной информации:

Международный классификатор изобретений, 7-я редакция;

База данных Роспатента: http://www.Fips.ru (рефераты изобретений к заявкам РФ с 1994г.)

База данных Европейского Патентного Ведомства:

http://www.europea-patent office.ru

В результате был найден патент на получение 3,5-динитробензойной кислоты методом нитрования бензойной кислоты смесью олеума и азотной кислоты.


Таблица №2

Используемые патентные документы

Номер патентного изобретения Название патента Дата публикации
30504 Украина, МПК Получение 3,5-динитробензойной кислоты 15.11.2000г.

3. Технологическая часть


Описание технологической схемы


Процесс получения 3,5-динитробензойной кислоты проходит в четыре стадии. На первой стадии исходное сырье - 98% азотная кислота и 20% олеум, охлажденные до 100С, загружаются в реактор Р1, куда затем при помощи ленточного транспортера загружается бензойная кислота. Реакционная масса подогревается горячей водой из бойлерной до температуры 600С, после чего выдерживается в течение 6 часов. В случае превышения данного температурного порога срабатывает сирена и реакционная масса сбрасывается в аварийную емкость. Для отвода нитрозных газов, выделяющихся в процессе реакции предусмотрен трубопровод под вакуумом, по которому окислы азота подаются на абсорбцию.

Затем реакционная масса с помощью трубы передавливания подается в разбавитель Р2 из промежуточной емкости Е4. В аппарате происходит разбавление реакционной массы водой для снижения содержания в ней серной кислоты. Содержание серной кислоты понижается в разбавителе до 20%. Далее суспензия динитробензойной кислоты сбрасывается на вакуум-фильтр ВФ1 и промывается водой.

Маточник и промывные воды при этом собираются емкости Е5 и отправляется на регенерацию, а сырая динитробензойная кислота инжектируется на пропарку в аппарат Р3. Процесс пропаривания происходит при 1000С в течение 4 часов, ввиду сильной гидрофобности 3,5-динитробензойной кислоты.

Пропаренная ДНБК снова сбрасывается на вакуум-фильтр ВФ2 и промывается водой. Маточник и промывные воды при этом собираются в емкости Е6 и отправляется на разбавление. ДНБК загружается вручную в реактор Р4, куда загружается и этиловый спиртм из емкости Е7 для процесса кристаллизации. Процесс проходит при 800С. Затем кристаллизованная ДНБК фильтруется, сушится в сушильных шкафах и расфасовывается. Часть маточника при этом возвращается в процесс ввиду экономии этилового спирта.


Расчет материального баланса получения 3,5-динитробензойной кислоты


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Выходы по стадиям:

1-я стадия - реакция нитрования - 55,2%

2-я стадия - разбавление и фильтрация - 98,5%

3-я стадия - пропарка и фильтрация - 95,0%

4-я стадия - кристаллизация и фильтрация - 89,5%

5-я стадия - сушка - 99,5%

Расчет количества бензойной кислоты, необходимого для получения 1000кг

3,5-динитробензойной кислоты:

Чтобы получить 1000 кг готовой динитробензойной кислоты, на стадию сушки необходимо подать с учетом выхода:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год кг - поступает на стадию сушку

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год кг - поступает на стадию кристаллизации и фильтрации

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год кг - поступает на стадию пропарки и фильтрации

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год кг - поступает на стадию разбавления и фильтрации


1-я стадия - реакция нитрования

Реакция нитрования протекает в 2 стадии:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


На первой стадии мононитрования бензойная кислота нитруется до изомеров в соотношении мета-: (орто - + пара-) =80: 20.

Таким образом, для получения 1199,4 кг динитробензойной кислоты необходимо бензойной кислоты:

Из 122,0 г/м бензойной кислоты образуется 212,0 г/м динитробензойной кислоты

Из Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/годкг БК - 1199,4 кг ДНБК


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год кг БК


С учетом выхода на каждой стадии реакции получаем, что для получения 1000кг ДНБК необходимо:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год кг БК


Бензойная кислота содержит 0,1% примесей, тогда общая масса БК, которую необходимо взять для реакции, составит:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год кг БК


Рассчитаем количество мета-изомера, образующегося на первой стадии реакции, с учетом выхода:

Из 122,0 г/м БК - 167,0 г/м м-ДНБК

Из 1250,4кг БК - Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/годкг м-ДНБК


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год кг м-ДНБК


Проверка по второй стадии реакции с учетом выхода: из 167,0 г/м м-ДНБК - 212,0 г/м ДНБК, из 1369,3 кг м-ДНБК - Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/годкг ДНБК


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год кг ДНБК


По методике к смеси 15,8г 98% азотной кислоты и 66,1г 20% олеума прибавляют порциями при перемешивании 12,2г бензойной кислоты.

Следовательно, для нитрования 1250,4кг бензойной кислоты потребуется пропорциональное количество азотной кислоты и олеума [8]:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год, в которой

моногидрата - Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

воды - Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год, в котором

свободного Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год - Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год - Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Рассчитаем количество требующегося по реакции моногидрата Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год:

1) в первой реакции расходуется:


122,0 г/м БК - 63,0 г/м Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

1250,4 кг БК - Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/годкг Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/годПроектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


2) во второй реакции расходуется:


167,0 г/м БК - 63,0 г/м Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

1369,3 кг БК - Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/годкг Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/годПроектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Таким образом, всего на нитрование идет моногидрата Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Следовательно, после нитрования осталось моногидрата Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Рассчитаем количество образовавшейся по реакции Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год:

1) по первой реакции образуется:


122,0 г/м БК - 18,0 г/м Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

1250,4 кг БК - Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/годкг Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/годПроектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


2) по второй реакции образуется:


167,0 г/м БК - 18,0 г/м Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

1369,3 кг БК - Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/годкг Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/годПроектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Таким образом, всего при нитровании образуется Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


С учетом воды, содержащейся в азотной кислоте, общая масса составит:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Рассчитаем количествоПроектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год, образующейся в результате реакции при “связывании" воды сернистым ангидридом:


Х9 1355,9 Х8

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

18,0 80,0 98,0

Из 80,0 г/м Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год - 98,0 г/м Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Из 1355,9 кг Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год - Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/годкг Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/годкг Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Следовательно, общее количество серной кислоты складывается из кислоты образующейся при связывании воды и кислоты, содержащейся в 20%олеуме:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Рассчитаем количествоПроектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год, вступающее в реакцию:


80,0 г/м Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год - 18,0 г/м Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

1355,9 кг Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год - Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/годкг Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/годкг Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


В процессе нитрования происходит раскисление орто - и пара-нитробензойных кислот и непрореагировавшей мета - нитробензойной кислоты [9].


586,0

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

334,0 1764,0 616,0 342,0 1140,0


Рассчитаем общее количество нитробензойных кислот, участвующих в реакции раскисления:


334 г/м НБК - 1764,0 г/м Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/годкг НБК - 586,0кг Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год НБК


Рассчитаем количество газообразных продуктов и воды, выделившихся в результате реакции:


Из 334,0 г/м НБК - 616,0 г/м Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Из 110,9 кг НБК - Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/годкг Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/годПроектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Из 334,0 г/м НБК - 1140,0 г/м Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Из 110,9 кг НБК - Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/годкг Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/годПроектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Из 334,0 г/м НБК - 342,0 г/м Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Из 110,9 кг НБК - Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/годкг Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/годПроектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Следовательно, количество воды не вступившее в реакцию составит:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Рассчитаем общее количество непрореагировавших орто - и пара-нитробензойных кислот и мета - нитробензойной кислоты:


Из 122,0 г/м БК - 167,0 г/м Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Из 1250,4кг БК - Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/годкг Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год кг Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Следовательно, общее количество непрореагировавших орто - и пара-нитробензойных кислот и мета - нитробензойной кислоты равно:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Таким образом, в суспензии ДНБК останется непрореагировавших НБК:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Таблица №3

Материальный баланс стадии нитрования

Приход кг Расход кг

1. Бензойная кислота:

ОВ 1250,4кг

примеси 1,1кг

1251,5

1. Суспензия ДНБК в отработанной кислоте:

ДНБК 1199,4 кг

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 7084,8 кг

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 127,2 кг

НБК 655,9кг

примеси 1,1кг

9068,4

2. Азотная кислота (98%):

ОВ 1588,1 кг

вода 32,4 кг

1620,5

2. Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

378,7

3. Олеум (20%):

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 1355,9кг

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 5423,8кг

6779,8

3. Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

204,6
Итого 9651,8 Итого 9651,7

Таким образом, можно сделать вывод, что приведенное в методике [8] количество азотной кислоты недостаточно, так как в результате реакции остается значительное количество нераскисленных нитробензойных кислот.

Рассчитаем требующееся количество азотной кислоты для полного раскисления Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/годнитробензойных кислот:


766,8

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

334,0 1764,0 616,0 342,0 1140,0

334 г/м НБК - 1764,0 г/м Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

766,8кг НБК - Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/годкг Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Азотная кислота, не вступившая в реакцию нитрования, частично остается в отработанной кислоте, частично расходуется в побочных реакциях, частично улетучивается в вентиляцию. Распределение азотной кислоты по этим статьям зависит от конкретных условий проведения реакции, то есть от температуры процесса, свойств и качества нитруемого соединения и т.д. На основании такого допущения определяем, что на раскисление пошло 20% моногидрата Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год [9]:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Следовательно, общая масса моногидрата:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Для проведения реакции требуется 1002,1кг моногидрата азотной кислоты, тогда общее количество моногидрата азотной кислоты, необходимое для проведения реакции нитрования составит:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Следовательно, количество требующейся 98% азотной кислоты составит:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Рассчитаем количество газообразных продуктов и воды, выделившихся в результате реакции:


766,8 4049,8

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

334,0 1764,0 616,0 342,0 1140,0

Из 1764,0 г/м Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год - 616,0 г/м Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Из 4049,8 кг Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год - Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/годкг Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/годПроектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Из 1764,0 г/м Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год - 1140,0 г/м Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Из 4049,8 кг Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год - Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/годкг Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/годПроектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Из 1764,0 г/м Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год - 342,0 г/м Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Из 4049,8 кг Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год - Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/годкг Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/годПроектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Для рассматриваемого процесса, можно принять, что 50 % оставшейся азотной кислоты расходуется на раскисление, 25 % - уносится в вентиляцию, а 25 % - остается в отработанной кислоте.

Рассчитаем количество продуктов, образующихся при раскислении 404,9 кг моногидрата азотной кислоты:


404,9

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

126 18 76 32

Из 126,0 г/м Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год - 76,0 г/м Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Из 404,9 кг Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год - Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/годкг Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/годПроектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Из 126,0 г/м Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год - 18,0 г/м Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Из 404,9 кг Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год - Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/годкг Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/годПроектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Из 126,0 г/м Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год - 32,0 г/м Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Из 404,9 кг Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год - Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/годкг Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/годПроектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Следовательно, количество воды не вступившее в реакцию составит:

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Таблица №4

Материальный баланс стадии нитрования

Приход кг Расход кг

1. Бензойная кислота:

ОВ 1250,4кг

примеси 1,1кг

1251,5

1. Суспензия ДНБК в отработанной кислоте:

ДНБК 1199,4 кг

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 7084,8 кг

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 941,4 кг

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 202,5кг

примеси 1,1кг

9429,2

2. Азотная кислота (98%):

ОВ 5861,9 кг

вода 117,2 кг

5979,1

2. Газообразные продукты:

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 2861,4 кг

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 1414,2кг

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 102,8кг

в вентиляцию 202,5 кг

4580,9

3. Олеум (20%):

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 1355,9кг

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 5423,8кг

6779,8

Итого 14010,4 Итого 14010,1

2-я стадия - разбавление и фильтрация

В соответствии с методикой получения 3,5-динитробензойной кислоты необходимо снизить концентрацию серной кислоты в суспензии динитробензойной кислоты до 20%. Для этого рассчитаем необходимое количество воды, идущее на разбавление серной кислоты.

Массовая доля серной кислоты в исходной суспензии:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Требуемая массовая доля серной кислоты в суспензии:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


По правилу смешения запишем друг под другом массовые доли исходных растворов, а правее между ними - массовую долю раствора, который необходимо приготовить. При этом считаем, что вода - это раствор с массовой долей Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год, равной нулю. Из большей массовой доли вычитаем заданную и записываем результат справа внизу, из заданной массовой доли вычитаем меньшую и записываем результат справа вверху [10].


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Затем вычисляем массу полученного раствора Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год и массу воды Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год, которая потребуется для разбавления:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год,


где Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год - масса суспензии, которая подается на разбавление.


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год - масса полученного раствора

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Динитробензойная кислота после фильтрации содержит 40% маточного раствора, образующегося в результате реакции:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Рассчитаем процентное содержание компонентов в разбавленной суспензии:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Следовательно, в 472,5 кг маточного раствора содержится пропорциональное количество компонентов:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


В результате, масса компонентов, содержащихся в отводимом маточном растворе уменьшится на соответствующее количество этих компонентов, содержащихся в динитробензойной кислоте:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Рассчитаем потери динитробензойной кислоты с учетом выхода продукта:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Таблица №5

Материальный баланс стадии разбавления и фильтрации

Приход кг Расход кг

1. Суспензия ДНБК в отработанной кислоте:

ДНБК 1199,4 кг

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 7084,8 кг

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 941,4 кг

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 202,5кг

примеси 1,1кг

9429,2

1. Сырая ДНБК всего:

ДНБК 1181,2 кг

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 371,8 кг

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 97,9 кг

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 2,8 кг

1653,7
2. Вода 26007,9

2. Маточник всего:

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 26577,5 кг

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 6987,0 кг

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 199,7 кг

примеси 1,1кг

ДНБК 18,0кг

33783,3
Итого 35437,1 Итого 35437,0

Промывка

Зададимся модулем при промывке ДНБК 1 (1:

1), на 1 м. ч. ДНБК возьмем 1 м. ч. воды. Промывка осуществляется на вакуум-фильтре [9].

Динитробензойная кислота после промывки содержит 20% маточного раствора:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Рассчитаем процентное содержание компонентов в промытой ДНБК:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Следовательно, в 236,2 кг маточного раствора содержится пропорциональное количество компонентов:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


В результате, масса компонентов, содержащихся в отводимой промывной воде уменьшится на соответствующее количество этих компонентов, содержащихся в динитробензойной кислоте:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Таблица №6

Материальный баланс стадии промывки

Приход кг Расход кг

1. Сырая ДНБК всего:

ДНБК 1181,2 кг

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 371,8 кг

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 97,9 кг

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 2,8 кг

1653,7

1. Промытая ДНБК всего:

ДНБК 1181,2 кг

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 224,9 кг

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/годПроектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 11,3 кг


1417,4
2. Вода 1653,7

2. Промывная вода всего:

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 1800,6 кг

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/годПроектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 89,4 кг


1890,0
Итого 3307,4 Итого 3307,4

Ориентировочно число промывок для жидких, веществ можно оценить по следующей формуле:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


где Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год - начальная кислотность продукта;

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год - кислотность продукта после n-ной промывки;

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год - количества жидкого вещества;

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год - количество промывной жидкости;

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год - число промывок;

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год - коэффициент распределения примесей (кислоты) между продуктом и водой.


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


К сожалению, коэффициент Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год в большинстве случаев нам неизвестен, кроме того, он не остаётся постоянным на всех ступенях промывки. Однако для ориентировочной оценки числа промывок этой формулой можно пользоваться.

Обычно Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год изменяется от 0,1 до 0,3. Примем значение Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год=0,2 и определим Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год.

В продукте на 1181,2 кг ДНБК содержится 475,2 кг ОК, в том числе

Н2SO4 моногидрата97,9 кг

Н2О 371,8 кг


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/годпримем равным 0,4%.

Решая уравнение


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


находим, что Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Следовательно, одной промывки будет вполне достаточно.

3-я стадия - пропарка и фильтрация

Расчет необходимого количества пара, необходимого для пропарки отфильтрованной реакционной массы приведен в расчете теплового баланса третьей стадии процесса. Необходимое количество пара составляет Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год.

Динитробензойная кислота после фильтрации содержит 20% маточного раствора, образующегося в результате реакции: Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Рассчитаем процентное содержание компонентов в пропаренной динитробензойной кислоте:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год, Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Следовательно, в Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год маточного раствора содержится пропорциональное количество компонентов:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


В результате, масса компонентов, содержащихся в отводимом маточном растворе уменьшится на соответствующее количество этих компонентов, содержащихся в динитробензойной кислоте:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Рассчитаем потери динитробензойной кислоты с учетом выхода продукта:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Таблица №7

Материальный баланс стадии пропарки и фильтрации

Приход кг Расход кг

1. Промытая ДНБК всего:

ДНБК 1181,2 кг

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 224,9 кг

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/годПроектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 11,3 кг

1417,4

1. Пропаренная ДНБК всего:

ДНБК 1122,2 кг

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 223,9 кг

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 0,6 кг

1346,7
2. Пар 6996,5

2. Маточник всего: Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 6997,5 кг

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 10,7 кг

ДНБК 59,0кг

7067,2
Итого 8413,9 Итого 8413,9

Промывка

Зададимся модулем при промывке ДНБК 1 (1:

1), на 1 м. ч. ДНБК возьмем 1 м. ч. воды. Промывка осуществляется на вакуум-фильтре.

Динитробензойная кислота после промывки содержит 20% маточного раствора:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Рассчитаем процентное содержание компонентов в промытой ДНБК:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Таблица №8

Материальный баланс стадии промывки

Приход кг Расход кг

1. Пропаренная ДНБК всего:

ДНБК 1122,2 кг

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 223,9 кг

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 0,6 кг

1346,7

1. Промытая ДНБК всего:

ДНБК 1122,2 кг

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 224,4 кг


1346,6
2. Вода 1346,7

2. Промывная вода всего:

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 1346,2 кг

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/годПроектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 0,6 кг


1346,8
Итого 2693,4 Итого 2693,4

4-я стадия - кристаллизация и фильтрация

Из литературных данных известно, что для растворения 1 весовой части динитробензойной кислоты требуется 4,5 весовых частей 50% этилового спирта. Рассчитаем необходимое количество Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год, идущее на кристаллизацию Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год динитробензойной кислоты.


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Динитробензойная кислота после фильтрации содержит 20% маточного раствора, образующегося в результате реакции:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Рассчитаем процентное содержание компонентов в исходной динитробензойной кислоте:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Следовательно, в Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год маточного раствора содержится пропорциональное количество компонентов:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


В результате, масса компонентов, содержащихся в отводимом маточном растворе уменьшится на соответствующее количество этих компонентов, содержащихся в динитробензойной кислоте:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Рассчитаем потери динитробензойной кислоты после кристаллизации и фильтрации с учетом выхода продукта:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Таблица №9

Материальный баланс стадии кристаллизации и фильтрации

Приход кг Расход кг

1. Промытая ДНБК всего:

ДНБК 1122,2 кг

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 224,4 кг


1346,6

1. Кристаллизованная ДНБК всего:

ДНБК 1005,0 кг

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 105,2 кг

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 96,8 кг


1207,0

2. Этиловый спирт (50%)

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 2524,9кг

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 2524,9кг

5049,9

2. Маточник всего:

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 2644,1 кг

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 2428,1 кг

ДНБК 117,2 кг

5189,4
Итого 6396,5 Итого 6396,4

Для снижения расхода этилового спирта примем, что половина маточного раствора возвращается в процесс.


Таблица №10

Материальный баланс стадии кристаллизации и фильтрации с использованием маточного раствора

Приход кг Расход кг

1. Пропаренная ДНБК всего:

ДНБК 1122,2 кг

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 224,4 кг


1346,6

1. Кристаллизованная ДНБК всего:

ДНБК 1005,0 кг

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 105,2 кг

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 96,8 кг


1207,0

2. Отработанный этанол всего:

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 1214,0кг

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 1322,0кг

ДНБК 58,6 кг


2594,6

2. Маточник всего:

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 2644,1 кг

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 2428,1 кг

ДНБК 175,8 кг

5248,0

3. Этиловый спирт (50%)

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 1310,9кг

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 1202,9кг

2513,8

Итого 6455,0 Итого 6455,0

5-я стадия - сушка

Рассчитаем потери динитробензойной кислоты на стадии сушки с учетом выхода продукта:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Таблица №11

Материальный баланс стадии сушки

Приход кг Расход кг

1. Кристаллизованная ДНБК всего:

ДНБК 1005,0 кг

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 105,2 кг

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 96,8 кг

1207,0

1. Сухая ДНБК


1000,0


2. Продукты испарения всего:

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 105,2 кг

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 96,8 кг

ДНБК 5,0 кг

207,0
Итого 1207,0 Итого 1207,0

Суточный материальный баланс


Для определения числа операций за рабочий день, проводимых в одном реакторе, мы должны установить продолжительность одной операции по получению 3,5-динитробензойной кислоты. Общее время одной операции складывается из следующих составляющих:

Осмотр аппарата

Загрузка и подогрев компонентов

Выдержка и разбавление

Фильтрация

Пропарка и фильтрация

Кристаллизация и фильтрация

Сушка

Пользуясь практическими данными, можно принять:

время осмотра аппарата - 5мин.

набор в мерники кислотной смеси - 10мин.

загрузка кислот в реактор - 20мин.

нагрев до Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год - 90мин.

выдержка реакционной массы - 6ч.

слив реакционной массы - 20мин.

подогрев воды до Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год - 30мин.

разбавление - 60 мин.

охлаждение до Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год - 30мин.

фильтрация - 30мин.

выгрузка динитробензойной кислоты и загрузка в аппарат - 15мин.

пропарка - 4ч.

охлаждение до Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год - 30мин.

фильтрация - 30мин.

набор в мерник этилового спирта - 10мин.

загрузка этилового спирта в кристаллизатор - 10мин.

загрузка динитробензойной кислоты - 15мин.

нагрев реакционной массы до Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год - 30мин.

растворение - 15мин.

охлаждение до Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год - 60мин.

фильтрация - 15мин.

выгрузка - 10мин.

сушка - 6ч.

Итого продолжительность одного цикла - 16 часов. Таким образом, за восьмичасовой рабочий день при двусменной работе возможно проведение только 1 цикла. Следовательно, операционный баланс будет равен суточному балансу. Производительность проектируемого производства составляет 13 тонн/год. Предполагается, что проектируемое производство будет работать 237 дней в году. Из этих данных определяем суточную производительность проектируемого объекта:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/годт готовой динитробензойной кислоты.


Таблица №12

Операционный материальный баланс стадии нитрования

Приход кг Расход кг

1. Бензойная кислота:

ОВ 68,7кг

примеси 0,1кг

68,8

1. Суспензия ДНБК в отработанной кислоте:

ДНБК 66,0 кг

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 389,6 кг

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 51,8 кг

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 11,1кг

примеси 0,1кг

518,6

2. Азотная кислота (98%):

ОВ 322,4 кг

вода 6,4 кг

328,8

2. Газообразные продукты:

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 157,4 кг

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 77,8кг

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 5,7кг

в вентиляцию 11,1 кг

252,0

3. Олеум (20%):

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 74,5кг

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 298,4кг

372,9

Итого 770,5 Итого 770,6

Таблица №13

Операционный материальный баланс стадии разбавления и фильтрации

Приход кг Расход кг

1. Суспензия ДНБК в отработанной кислоте:

ДНБК 66,0 кг

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 389,6 кг

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 51,8 кг

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 11,1кг

примеси 0,1кг

518,6

1. Сырая ДНБК всего:

ДНБК 65,0 кг

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 20,5 кг

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 5,4 кг

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 0,1 кг

91,0
2. Вода 1430,4

2. Маточник всего:

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 1461,8 кг

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 384,3 кг

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 11,0 кг

примеси 0,1 кг

ДНБК 1,0 кг

1858,2
Итого 1949,0 Итого 1949,2

Таблица №14

Материальный баланс стадии промывки

Приход кг Расход кг

1. Сырая ДНБК всего:

ДНБК 65,0 кг

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 20,5 кг

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 5,4 кг

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 0,1 кг

91,0

1. Промытая ДНБК всего:

ДНБК 65,0 кг

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 12,4 кг

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/годПроектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 0,7 кг

78,1
2. Вода 91,0

2. Промывная вода всего:

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 99,0 кг

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/годПроектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 4,9 кг

103,9
Итого 182,0 Итого 182,0

Таблица №15

Операционный материальный баланс стадии пропарки и фильтрации

Приход кг Расход кг

1. Промытая ДНБК всего:

ДНБК 65,0 кг

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 12,4 кг

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/годПроектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 0,7 кг

78,1

1. Пропаренная ДНБК всего:

ДНБК 61,7 кг

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 12,3 кг

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 0,1 кг

74,1
2. Пар 384,7

2. Маточник всего:

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 384,8 кг

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 0,6 кг

ДНБК 3,2кг

388,6
Итого 462,8 Итого 462,7

Таблица №16

Материальный баланс стадии промывки

Приход кг Расход кг

1. Пропаренная ДНБК всего:

ДНБК 61,7 кг

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 12,3 кг

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 0,1 кг

74,1

1. Промытая ДНБК всего:

ДНБК 61,7 кг

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 12,4 кг

74,1
2. Вода 74,1

2. Промывная вода всего:

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 74,0 кг

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/годПроектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 0,1 кг

74,1
Итого 148,2 Итого 148,2

Таблица №17

Операционный материальный баланс стадии кристаллизации и фильтрации

Приход кг Расход кг

1. Промытая ДНБК всего:

ДНБК 61,7 кг

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 12,4 кг


74,1

1. Кристаллизованная ДНБК всего:

ДНБК 55,3 кг

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 5,8 кг

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 5,3 кг

66,4

2. Этиловый спирт (50%)

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 138,9 кг

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 138,9 кг

277,8

2. Маточник всего:

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 145,3 кг

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 133,6 кг

ДНБК 6,5 кг

285,5
Итого 351,9 Итого 351,9

Для снижения расхода этилового спирта примем, что половина маточного раствора возвращается в процесс.


Таблица №18

Операционный материальный баланс стадии кристаллизации и фильтрации с использованием маточного раствора

Приход кг Расход кг

1. Пропаренная ДНБК всего:

ДНБК 61,7 кг

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 12,4 кг


74,1

1. Кристаллизованная ДНБК всего:

ДНБК 55,3 кг

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 5,8 кг

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 5,3 кг

66,4

2. Отработанный этанол всего:

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 66,8кг

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 72,6кг

ДНБК 3,1 кг

142,5

2. Маточник всего:

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 145,5 кг

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 133,6 кг

ДНБК 9,6 кг

288,7

3. Этиловый спирт (50%)

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 72,1кг

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 66,3 кг

138,3

Итого 355,0 Итого 355,1

Таблица №19

Материальный баланс стадии сушки

Приход кг Расход кг

1. Кристаллизованная ДНБК всего:

ДНБК 55,3 кг

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 5,8 кг

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 5,3 кг

66,4

1. Сухая ДНБК


55,0


2. Продукты испарения всего:

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 5,8 кг

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 5,3 кг

ДНБК 0,3 кг

11,4
Итого 66,4 Итого 66,4

Тепловой баланс


Для расчёта, какое количество теплоты нужно отвести от аппарата (или подвести) в течение одной операции в периодическом процессе или за единицу времени (в час) в непрерывном процессе необходимо рассчитать тепловой баланс. Тепловой баланс составляется на основе данных операционного или часового материального баланса, данных принятого технологического режима и необходимых технических справочных данных.

Рассчитанный тепловой баланс показывает, какое количество теплоты нужно отвести из аппарата (или подвести) в течение одной операции в периодическом процессе. Эти данные необходимы для определения производительности любого аппарата - реактора.

По принятому технологическому режиму при получении 3,5-динитробензойной кислоты в аппарат вначале загружается кислотная смесь, затем бензойная кислота, потом смесь подогревается до 60°С. Принимаем, что реагенты кислотная смесь поступают в аппарат с температурой 10°С. Затем реакционная масса поступает на стадию разбавления.

1-я стадия - реакция нитрования

Приход:

1. Количество тепла, поступающее в аппарат с реагентами:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год - тепло, поступающее с реагентами, кДж;

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год - количество реагента, вносимое в аппарат на одну операцию (см. “Операционный материальный баланс”), кг;

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год - теплоёмкость реагентов, которую рассчитывают как аддитивную величину, кДж/ (кгЧК).

Теплоемкости сырья, продуктов реакции и отходов, кДж/ (кгЧград) [11]:

Бензойная кислота 1, 19

Азотная кислота (98%) 1,74

Олеум (20%) 1,34

3,5 - динитробензойная кислота 1,01

Серная кислота 1,40

Вода 4,18

Окислы азота 0,86

Кислород 1,03

Этиловый спирт (50%) 3,32

Диоксид углерода0,90

Приход:

Тепло Q1, поступившее с азотной кислотой (98%):


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Тепло Q2, поступившее с олеумом (20%):


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Тепло Q3, поступившее с бензойной кислотой:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Тепло Q4 необходимое для нагрева смеси от 10°С до 60°С:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Рассчитаем долю олеума в полученной реакционной смеси:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Определим количество тепла Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год, выделившееся при протекании реакции получения динитробензойной кислоты:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


На основании закона Гесса можно записать:


Qреакции=SQобразования продуктов реакции - SQобразования исходных веществ


Теплоты образования исходных веществ и продуктов реакции,Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год [11]:

Бензойная кислота385,14

Азотная кислота (98%) 173,0

3,5 - динитробензойная кислота 464,45

Вода 285,83

Определим удельную теплоту реакции:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


где 122 - молекулярная масса бензойной кислоты.

Определим количество тепла Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год, выделившееся при протекании реакции образования серной кислоты (реакции гидратации):


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


На основании закона Гесса можно записать:


Qреакции=SQобразования продуктов реакции - SQобразования исходных веществ


Теплоты образования исходных веществ и продуктов реакции,Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год [11]:

Оксид серы (VI) 439,0

Вода (98%) 285,83

Серная кислота 813,91

Определим удельную теплоту реакции:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


где 80 - молекулярная масса оксида серы (VI).

Расход:

Тепло Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год, отводимое с продуктами реакции:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Тепло Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год, отводимое с газообразными продуктами реакции:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Тепло Q9 - потери в окружающую среду (примем потери 10% от теплоты, необходимой на нагрев смеси):


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Тепло Q10, отводимое с охлаждающей водой:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Таблица №20

Операционный тепловой баланс стадии нитрования

Приход кДж Расход кДж
1) Тепло Q1 с азотной кислотой 5721,1

1) Тепло Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год, отводимое с продуктами реакции

47918,6
2) Тепло Q2 с олеумом

4996,9


2) Тепло Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год, отводимое с газообразными продуктами

224,3
3) Тепло Q3 с бензойной кислотой 1637,4 3) Тепло Q9 - потери в окружающую среду 5701,7

4) Тепло Q4 для нагрева

смеси

57017,0 4) Тепло Q10, отводимое с охлаждающей водой 206912,4
5) Тепло Q5 выделившееся при протекании реакции 108354,4

6) Тепло Q6 гидратации 83030,2

Итого 260757,0 Итого 260757,0

2-я стадия - разбавление и фильтрация

Приход:

1) Тепло Q2, поступившее с водой:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


2) Определяем количество тепла Q3, которое выделяется при разбавлении кислотной смеси водой, выделяющейся в процессе нитрования. В процессе нитрования происходит изменение концентрации кислотной смеси за счёт выделяющейся реакционной воды, а, иногда, и за счёт воды, вводимой с азотной кислотой, когда она дозируется. Теплота гидратации может быть определена по формулам Томсена или теплотам исчерпывающего разбавления [9]. По Томсену теплота гидратации серной кислоты:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год,


где Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год - количество тепла, выделяющееся при разбавлении серной кислоты от моногидратного состояния до степени гидратности Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Степень гидратности Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/годпоказывает, сколько молей воды приходится на 1 моль серной кислоты.

Cостав исходной кислотной смеси, %


Н2SO4 75,1

H2O 10,0,

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Определяем теплоту гидратации исходной кислотной смеси:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Состав кислотной смеси после разбавления, %


Н2SO4 20,7,

H2O 78,7

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Определяем теплоту гидратации конечной кислотной смеси:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Теперь рассчитываем тепловой эффект разбавления:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год,


где 0,78 - содержание серной кислоты в исходной смеси в долях;

98 - молекулярная масса серной кислоты.

Расход:

1) Тепло Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год, отводимое с динитробензойной кислотой:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год,


примем долю азотной кислоты равной 0.


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


2) Тепло Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год, отводимое с маточным раствором:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год,

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


3) ТеплоПроектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год, отводимое с охлаждающей водой:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Таблица №21

Операционный тепловой баланс стадии разбавления и фильтрации

Приход кДж Расход кДж
1) Тепло Q1 с суспензией ДНБК 47918,6

1) Тепло Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год, отводимое с ДНБК

3185,0
2) Тепло Q2 с водой

358769,4


2) Тепло Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год, отводимое с маточником

133790,4
3) Тепло Q3 гидратации 192705,9 3) Тепло Q6, отводимое с охлаждающей водой 462418,5
Итого 599393,9 Итого 599393,9

3-я стадия - пропарка и фильтрация

Приход:

1) Рассчитаем количество теплоты Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/годнеобходимое на нагрев смеси до 1000С


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год,

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Количество пара, требующегося для нагрева смеси:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


2) Тепло Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год, поступившее с паром:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


3) ТеплоПроектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год, вносимое с горячей водой:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Расход:

1) Тепло конденсации пара Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


2) Тепло Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год, отводимое с динитробензойной кислотой:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год,

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


3) Тепло Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год, отводимое с маточным раствором:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год,

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


4) Тепло Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год - потери в окружающую среду (примем потери 20% от теплоты, необходимой на нагрев смеси):


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Таблица №22

Операционный тепловой баланс стадии пропарки и фильтрации

Приход кДж Расход кДж

1) Тепло Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год с ДНБК

3185,0

1) ТеплоПроектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/годконденсации

884810,0

2) Тепло Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год, необходимое на нагрев ДНБК

83172,1


2) Тепло Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год, отводимое с ДНБК

2252,6
3) Тепло Q3 с паром 9372,0

3) Тепло Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год, отводимое с маточником

31865,2
4) Тепло Q4 с горячей водой

875438,0


4) Тепло Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год - потери в окружающую среду

1874,4
Итого 971167,1 Итого 971167,1

4-я стадия - кристаллизация

Приход:

1) Тепло Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год, поступившее с этанолом:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год,

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


2) Тепло Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год необходимое для нагрева смеси от 20°С до 80°С:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Расход:

1) Тепло Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год, отводимое с ДНБК:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год,

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


2) Тепло Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год, отводимое с маточным раствором:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год,

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


3) Тепло Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год - потери в окружающую среду (примем потери 10% от теплоты, необходимой на нагрев смеси):


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


4) ТеплоПроектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год, отводимое с охлаждающей водой:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Таблица №23

Операционный тепловой баланс стадии кристаллизации

Приход кДж Расход кДж

1) Тепло Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год с ДНБК

2252,6

1) Тепло Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год, отводимое с ДНБК

1859,2

2) Тепло Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год с этанолом

18334,8

2) Тепло Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год, отводимое с маточным раствором

18272,0

3) Тепло Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год для нагрева смеси

63342,0

3) Тепло Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год - потери в окружающую среду

6334,2


4) Тепло Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год, отводимое с охлаждающей водой

57464,0
Итого 83929,4 Итого 83929,4

4-я стадия - кристаллизация с использованием маточного раствора

Приход:

1) Тепло Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год, поступившее с этанолом:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год,

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


2) Тепло Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год, поступившее с маточником:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год,

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


3) Тепло Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год необходимое для нагрева смеси от 20°С до 80°С:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Расход:

1) Тепло Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год, отводимое с ДНБК:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год,

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


2) Тепло Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год, отводимое с маточным раствором:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год,

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


3) Тепло Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год - потери в окружающую среду (примем потери 10% от теплоты, необходимой на нагрев смеси):


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


4) ТеплоПроектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год, отводимое с охлаждающей водой:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Таблица №24

Операционный тепловой баланс стадии кристаллизации

Приход кДж Расход кДж

1) Тепло Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год с ДНБК

2252,6

1) Тепло Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год, отводимое с ДНБК

1859,2

2) Тепло Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год с этанолом

9127,8

2) Тепло Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год, отводимое с маточным раствором

18476,8

3) Тепло Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год с маточником

9405,0

3) Тепло Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год - потери в окружающую среду

6334,2

4) Тепло Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год для нагрева

смеси

63342,0

4) Тепло Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год, отводимое с охлаждающей водой

57457,2
Итого 84127,4 Итого 84127,4

Выбор и расчёт оборудования


1-я стадия - реакция нитрования

Вначале необходимо выбрать объем аппарата. Для этого определим суточные объемы, загружаемых в реактор компонентов и их сумму (плотность олеума - 1897 Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год, Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год - 1520 Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год, Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год - 1260Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год) [11].


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Мы не можем загрузить общее количество материалов, равное этому объёму, так как всегда должен оставаться резерв на случай повышения уровня жидкости из-за перемешивания, вспенивания и т.д. Обычно коэффициент заполнения аппарата колеблется от 0,9 до 0,6. Для реакции нитрования примем коэффициент заполнения равным 0,7 [12]. Тогда


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год.


Из каталога выбираем аппарат с характеристиками [13]:

аппарат вертикальный

Рабочая температура 10-1000

Номинальный объем - Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год;

Dобечайки - Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год (внутренний);

Нобечайки - Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год;

Основной материал - сталь 08Х22Н10Т

Площадь поверхности теплообмена:

рубашки - Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

змеевика - Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

В аппарате имеется две секции змеевиков из труб Ж 25 мм с числом витков в секции 12. Шаг витка равен 2d трубы.


Определение поверхности теплообмена


Требуемая поверхность теплообмена определяется по формуле [12]:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


В приведенной формуле:

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год - количество тепла, которое нужно отвести (подвести) в процессе дозировки, кДж;

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год - коэффициент теплопередачи, Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год;

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год - поверхность теплообмена,Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год;

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год - средняя разность температур между теплоносителем и реакционной массой град.

Выбор коэффициента теплопередачи

Для дипломного проекта значение коэффициента теплопередачи принимаем на основании литературных данных.

Примем следующие значения коэффициента теплопередачи [12]:

для змеевика


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год=500 Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год=581,5 Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

для рубашки

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год=200 Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год=252,6 Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Определение средней разности температур между теплоносителем и реакционной массой


Для определения Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/годобычно располагают данными о температурном режиме в аппарате и температуре входящей охлаждающей воды или другого охлаждающего агента.

Для определения Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/годнеобходимы данные о температурном режиме в аппарате и температуре входящего охлаждающего агента (воды) [12]. Рассчитаем поверхность, необходимую для нагрева реакционной массы с 10Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/годдо 60Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год. Для этого примем, что горячая вода, поступающая в змеевик, охлаждается с 95Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/годдо 65Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год.


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год, Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Следовательно, требуемая площадь нагрева составляет:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Рассчитаем поверхность, необходимую для отвода тепла реакционной массы. Для этого примем, что рассол (23,8% раствор хлорида кальция), поступающая в рубашку, нагревается с - 20Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/годдо - 10Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год. Температура реакционной массы при этом составляет 60Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год.


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Следовательно, требуемая площадь для отвода тепла составляет:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Так как площадь теплообмена рубашки составляет по каталогу Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год, то для теплоотвода требуется использовать две секции змеевиков.

Рассчитаем время прилива кислотной смеси. Время прилива может быть рассчитано по формуле [12]:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Для периодического отмеривания жидкости используют резервуары с устройством для отмеривания объема. Чаще всего используют цилиндрические стальные резервуары с плоскими днищами. Для измерения жидкости в мерниках применяют смотровые стекла, поплавки, пневматические измерители. При выборе габаритов мерника исходят из необходимого количества жидкости, подлежащей загрузке за операцию.

Рассчитаем объемы мерников кислот, идущих на приготовление кислотной смеси и бензойной кислоты [14]:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год - объем мерника 20% олеума

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год - объем мерника 98% азотной кислоты


Бензойная кислота загружается в реактор при помощи ленточного расходомера.


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год - объем мерника бензойной кислоты


Объем аварийной емкости Е3 должен в 4-5 раз превышать объем реактора нитрования:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Объем промежуточной емкости Е4 равен объему реактора нитрования:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Расчет перемешивающего устройства нитратора

Расчет ведется исходя из вязкости самого вязкого компонента, плотности самого плотного и температурного режима [12].

Самый вязкий и наиболее плотный компонент это 20% раствор олеума:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Диаметр перемешивающего устройства:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Примем скорость вращения мешалки [12]: Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/годм/с

Следовательно, число оборотов мешалки:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год, Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год оборот/сек


Определим значение критерия Рейнольдса:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год, Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


По [12] выбираем пропеллерную трехлопастную мешалку.

Определим критерий мощности: Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год, где Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год и Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год - постоянные величины (определяются по таблице [12]):


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Рассчитаем величину мощности:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год кВт


Определяем мощность мешалки в пусковой момент:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год кВт


Установочная мощность:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год, Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год кВт


где 0,95 - КПД электродвигателя, 1,2-запас мощности электродвигателя [12].

Проверим следующее условие [12]:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год,


следовательно, мешалка данного типа подходит.

Выбираем привод мощностью 1,0кВт; мотор редуктор типа МПО2 и электродвигатель типа АИ [15].

Рассчитаем производительность насоса для подачи 98% азотной кислоты [12]:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/годПроектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Время подачи азотной кислоты составляет 600с, тогда


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Выбираем насос марки Х20/18, производительностью Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год. Тип электродвигателя АО2-31-2, мощностью 3кВт.

2-я стадия - разбавление и фильтрация

Определим суточные объемы, загружаемых в реактор компонентов и их сумму (плотность воды - 1000 Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год, Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год - 1520 Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год, Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год - 1900Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год) [11].

Плотность суспензии ДНБК рассчитывается как аддитивная величина:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Следовательно, объем аппарата равен:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Примем коэффициент заполнения аппарата равным 0,8 [12].

Тогда объем аппарата будет равен Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год.

Из каталога выбираем аппарат с характеристиками [13]:

аппарат вертикальный

Рабочая температура 10-1000

Номинальный объем - Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год;

Dобечайки - Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год (внутренний);

Нобечайки - Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год;

Основной материал - сталь 08Х22Н10Т

Площадь поверхности теплообмена:

рубашки - Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

змеевика - Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

В аппарате одна секция змеевиков из труб Ж 57 мм с числом витков в секции 12. Шаг витка равен 2d трубы.

Рассчитаем поверхность, необходимую для отвода тепла реакционной массы. Для этого примем, что рассол (23,8% раствор хлорида кальция), поступающая в рубашку, нагревается с - 20Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/годдо - 10Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год. Реакционной массы при этом охлаждается с 60Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/годдо 20Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год.


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Следовательно, требуемая площадь для отвода тепла составляет:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Так как площадь теплообмена рубашки составляет по каталогу Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год, то для теплоотвода требуется использовать две секции змеевиков.

Рассчитаем время прилива воды. Время прилива может быть рассчитано по формуле [12]:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Рассчитаем объем мерника суспензии ДНБК, загружаемой в реактор разбавления:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Рассчитаем объем хранилища маточника отработанной кислотной смеси. Плотность маточного раствора рассчитывается как аддитивная величина (с учетом промывной воды):


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Примем коэффициент заполнения равным 0,9; тогда объем хранилища будет равен:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Рассчитаем необходимую площадь поверхности фильтрации:

Плотность ДНБК рассчитывается как аддитивная величина:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Следовательно, объем ДНБК равен:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Зададим высоту слоя ДНБК на фильтре равной 15см, тогда требуемая площадь поверхности составит:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Из каталога выбираем вакуум-фильтр емкостной под давлением с

характеристиками [16]:

Площадь поверхности фильтрации - Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год;

D - Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год; Н - Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год;

Основной материал - сталь 12Х18Н10Т

Расчет перемешивающего устройства разбавителя

Вязкость и плотность раствора ДНБК определим как аддитивные величины.


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Диаметр перемешивающего устройства:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год, Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Примем скорость вращения мешалки [12]: Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/годм/с

Следовательно, число оборотов мешалки:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год, Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год оборот/сек


Определим значение критерия Рейнольдса:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год, Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


По [12] выбираем пропеллерную трехлопастную мешалку.

Определим критерий мощности: Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год, где Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год и Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год - постоянные величины (определяются по таблице [12]):


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Рассчитаем величину мощности:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год кВт


Определяем мощность мешалки в пусковой момент:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год кВт


Установочная мощность:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год кВт


где 0,95 - КПД электродвигателя, 1,2-запас мощности электродвигателя [12].

Проверим следующее условие [12]:

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год,

следовательно, мешалка данного типа подходит.

Выбираем привод мощностью 1,5кВт; мотор редуктор типа МПО2 и электродвигатель типа АИ [15].

3-я стадия - пропарка и фильтрация

Определим суточные объемы, загружаемых в реактор компонентов и их сумму, учитывая, что сконденсировавшийся пар переходит в равное по массе количество воды: (плотность воды - 1000 Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год, Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год - 1830 Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год, Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год - 1900Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год) [11].

Плотность ДНБК рассчитывается как аддитивная величина:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Следовательно, объем аппарата равен:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Для пропарки примем коэффициент заполнения равным 0,7 [12].


Тогда Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год.


Из каталога выбираем аппарат с характеристиками [13]:

аппарат вертикальный

Рабочая температура 10-1000

Номинальный объем - Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год;

Dобечайки - Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год (внутренний);

Нобечайки - Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год;

Основной материал - сталь 08Х22Н10Т

Площадь поверхности теплообмена:

рубашки - Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

змеевика - Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Рассчитаем поверхность, необходимую для отвода тепла реакционной массы. Для этого примем, что рассол (23,8% раствор хлорида кальция), поступающая в рубашку, нагревается с - 20Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/годдо - 5Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год. Реакционной массы при этом охлаждается с 100Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/годдо 20Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год.


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Следовательно, требуемая площадь нагрева составляет:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Так как площадь теплообмена рубашки составляет по каталогу Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год, то для теплоотвода площади поверхности рубашки вполне достаточно.

Рассчитаем объем хранилища маточника реакционной смеси.

Плотность маточного раствора рассчитывается как аддитивная величина (с учетом промывной воды):


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Примем коэффициент заполнения равным 0,9; тогда объем хранилища будет равен:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Рассчитаем необходимую площадь поверхности фильтрации:

Плотность ДНБК рассчитывается как аддитивная величина:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Следовательно, объем ДНБК равен:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Зададим высоту слоя ДНБК на фильтре равной 15см, тогда требуемая площадь поверхности составит:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Из каталога выбираем вакуум-фильтр емкостной с характеристиками [16]:

Площадь поверхности фильтрации - Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год;

D - Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год; Н - Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год;

Основной материал - сталь 12Х18Н10Т

Расчет перемешивающего устройства пропаривателя

Вязкость и плотность раствора ДНБК определим как аддитивные величины.


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Диаметр перемешивающего устройства:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Примем скорость вращения мешалки [12]: Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/годм/с

Следовательно, число оборотов мешалки:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год оборот/сек


Определим значение критерия Рейнольдса:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год, Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


По [12] выбираем пропеллерную трехлопастную мешалку.

Определим критерий мощности: Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год, где Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год и Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год - постоянные величины (определяются по таблице [12]):


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Рассчитаем величину мощности:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год кВт


Определяем мощность мешалки в пусковой момент:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год кВт


Установочная мощность:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год кВт


где 0,95 - КПД электродвигателя, 1,2-запас мощности электродвигателя [12].

Проверим следующее условие [12]:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год, Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год,


следовательно, мешалка данного типа подходит.

Выбираем привод мощностью 1,0кВт; мотор редуктор типа МПО2 и электродвигатель типа АИ [15].

Рассчитаем производительность насоса для подачи маточного раствора на разбавление [12]:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Время подачи маточника составляет 3600с, тогда


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Выбираем насос марки Х2/25, производительностью Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год. Тип электродвигателя АОЛ-12-2, мощностью 1,1кВт.

4-я стадия - кристаллизация и фильтрация

Определим суточные объемы, загружаемых в реактор компонентов и их сумму: (плотность воды - 1000 Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год, Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год - 1900Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год,Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год - 894,5Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год) [11].

Плотность ДНБК рассчитывается как аддитивная величина:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Следовательно, объем аппарата равен:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Для стадии кристаллизации примем коэффициент заполнения равным 0,7 [12].


Тогда Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год.


Из каталога выбираем аппарат с характеристиками [13]:

аппарат вертикальный

Рабочая температура 10-1000

Номинальный объем - Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год;

Dобечайки - Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год (внутренний);

Нобечайки - Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год;

Основной материал - сталь 08Х22Н10Т

Площадь поверхности теплообмена:

рубашки - Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год, змеевика - Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Рассчитаем поверхность, необходимую для отвода тепла реакционной массы. Для этого примем, что рассол (23,8% раствор хлорида кальция), поступающая в рубашку, нагревается с - 20Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/годдо - 10Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год. Реакционной массы при этом охлаждается с 80Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/годдо 20Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год.


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Следовательно, требуемая площадь нагрева составляет:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Так как площадь теплообмена рубашки составляет по каталогу Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год, то для теплоотвода площади поверхности рубашки вполне достаточно.

Рассчитаем объемы мерников компонентов [14]:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год - объем мерника 50% этилового спирта

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год - объем мерника маточника


Рассчитаем объем хранилища маточника реакционной смеси.

Плотность маточного раствора рассчитывается как аддитивная величина:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Примем коэффициент заполнения равным 0,9; тогда объем хранилища будет равен:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Рассчитаем необходимую площадь поверхности фильтрации:

Плотность ДНБК рассчитывается как аддитивная величина:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Следовательно, объем ДНБК равен:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Зададим высоту слоя ДНБК на фильтре равной 15см, тогда требуемая площадь поверхности составит:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Из каталога выбираем вакуум-фильтр емкостной с характеристиками [15]:

Площадь поверхности фильтрации - Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год;

D - Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год;

Н - Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год;

Основной материал - сталь 12Х18Н10Т.

Для улавливания паров этанола, выделяющихся в процессе реакции, используются кожухотрубчатый теплообменник типа со следующими характеристиками [12]:

Наружный диаметр-159мм;

Длина труб - 1м;

Число труб - 13;

Поверхность теплообмена - Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год;

Основной материал - сталь 08Х22Н10Т.

Расчет перемешивающего устройства кристаллизатора

Вязкость и плотность раствора ДНБК определим как аддитивные величины.


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Диаметр перемешивающего устройства:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Примем скорость вращения мешалки [12]: Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/годм/с

Следовательно, число оборотов мешалки:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год оборот/сек


Определим значение критерия Рейнольдса:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


По [12] выбираем якорную четырехлопастную мешалку.

Определим критерий мощности: Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год, где Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год и Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год - постоянные величины (определяются по таблице [12]):


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Рассчитаем величину мощности:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год кВт


Определяем мощность мешалки в пусковой момент:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год кВт


Установочная мощность:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год кВт


где 0,95 - КПД электродвигателя, 1,2-запас мощности электродвигателя [12].

Проверим следующее условие [12]:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год, Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год,


следовательно, мешалка данного типа подходит.

Выбираем привод мощностью 1,0кВт; мотор редуктор типа МПО2 и электродвигатель типа АИ [15].

4. Основное оборудование\


Вертикальные аппараты с рубашкой и перемешивающими устройствами, разъемные с эллиптическими днищами.

Материал аппаратов: 12Х18Н10Т [13].


Таблица №25

Основное оборудование [13]

Аппарат

Объем требуем.,

м3

Объем

станд., м3

Поверхность теплообмена, м2 Технологическая характеристика
1 Р1 0,66 1,0

Рубашка: 4,4

Змеевик: 3,2

D = 1,0 м, H = 3,66 м
2 Р2 2,1 3,2

Рубашка: 13,0

Змеевик: 8,6

D = 1,6 м, H = 5,0 м
3 Р3 0,70 1,0 Рубашка: 4,4 D = 1,0 м, H = 3,66 м
4 Р4 0,5 1,0 Рубашка: 4,4 D = 1,0 м, H = 3,66 м
5 Р5 0,5 1,0 Рубашка: 4,4 D = 1,0 м, H = 3,66 м

D - диаметр аппарата, м; H - высота аппарата, м.

Вспомогательное оборудование [14]

Объемы мерников рассчитываются аналогично объемам аппаратов (см. Расчет объема реактора для одной операции.).

Материал мерников кислот - 06ХН28МДТ [18].

Выбор мерников


Таблица № 26

Стандартный ряд для мерников (МПроектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год)

Dst, м 0,3 0,5 0,7 0,8 1,0 1,2
hst, м 0,5 0,8 0,9 1,0 1,5 1,8
Vst, м3 0,071 0,157 0,385 0,502 0,785 1,130

Таблица № 27

Стандартный ряд для мерников кислот и щелочей (МПроектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год)

Dst, м 0,15 0,2 0,3 0,6
hst, м 0,2 0,3 0,5 0,8

Vst, м3Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

0,0353 0,094 0,22 0,25

Таблица №28

Вспомогательное оборудование

Мерник Объем треб., м3 Объем станд., м3 Технологическое назначение
М1 0,2 0,22 Мерник 20% олеума
М2 0,2 0,22 Мерник 98% азотной кислоты
М3 0,05 0,071 Мерник БК
М4 0,30 0,385 Мерник ДНБК
М5 0,31 0,385 Мерник этанола
М6 0,08 0,094 Мерник маточного раствора
Д1-Д2 1,0 D = 0,16 м, H = 1,0 м
Емкость Объем, м3 Технологическое назначение
Е1 20,0 Для хранения 20% олеума
Е2 20,0 Для хранения 98% азотной кислоты
Е3 4,0 Аварийная емкость
Е4 1,0 Промежуточная емкость
Е5 1,9 Для сбора маточника на стадии разбавления
Е6 0,5 Для сбора маточника на стадии пропарки
Е7 0,3 Для хранения этанола
Е8 0,3 Для сбора маточника на стадии кристаллизации
Аппарат Марка Технологическое назначение
ВФ1 ЕДМ 3,2 Фильтровывание и промывка ДНБК
ВФ2 ЕДМ 1,5 Фильтровывание и промывка ДНБК
ВФ3 ЕДМ 1,5 Фильтровывание и промывка ДНБК
Аппарат Марка Технологическое назначение
ЦН1 Х20/18 Для подачи азотной кислоты
ЦН2 Х2/25 Для подачи маточного раствора

Выбор теплообменной аппаратуры для улавливания паров этанола [12]:

Основной материал - сталь 08Х22Н10Т

Выбор емкостей для сырья и для отходов производства [14]:

Материал для емкостей для хранения конц кислот: 12Х18Н10Т с футеровкой, для кислот конц. < 72% - футерованная сталь; емкости для промывных вод, отработанных кислот и спирта - 12Х18Н10Т.

Выбор вакуум - фильтров [16]:

Основной материал - сталь 08Х22Н10Т

Выбор насосов [12]:

5. Строительная часть


Генеральный план


Строительство цеха намечено в Ленинградской области. Рельеф участка, занимаемого цехом - равнинный. Грунт, являющийся основанием для зданий и сооружений, представляет собой суглинок мощностью более 5метров. Грунтовые воды находятся на глубине восьми метров от поверхности земли. Допускаемое давление на указанный грунт принимается, в соответствии с нормами и техническими условиями, равным Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год.

Глубина промерзания грунта - 2,4м.

На территории предприятия размещены производственный цех, склад готовой продукции, склад сырья, ремонтный цех, здание заводоуправления, пожарный водоем.

На проектируемом объекте предусмотрены подъездные пути в виде автомобильных дорог. Предусмотрена обводная автомобильная дорога, сквозные проезды между зданиями на территории предприятия. Ширина дорог - 7м. Внутри заводские перевозки осуществляются автопогрузчиком и внутризаводским автотранспортом.

При проектировании производственного объекта учтены пожарные требования, требования ГО и санитарно-гигиенические нормы.

Учтена возможность дальнейшего расширения производства. При проектировании предполагается возможная меньшая площадь участка.


Объемно-планировочное решение


Объемно-планировочное решение здания продиктовано требованиями технологического процесса и габаритами оборудования. Производственное оборудование размещено с учетом удобства его эксплуатации и ремонта.

Производственное помещение по степени взрывопожаростойкости относится к категории А. Проектируемое здание одноэтажное, имеет в плане прямоугольную форму, длиной 24м, шириной 9м, состоит из основного производственного здания для получения 3,5-динитробензойно кислоты. Производственный цех (основное здание) имеет пролет 9,6м, ширину 9м с шагом колонн 6м. Внутри производственного цеха расположена одна монтажная площадка.

Здание имеет лестничную клетку, обслуживающую второй этаж бытовых помещений и лабораторию. Здание имеет несколько аварийных выходов.

В здании имеется электрощитовая, КИП, приточная ветиляция.


Конструктивное решение


Основное производственное здание одноэтажное, каркасного типа. Фундаменты под колонны железобетонные, сборные. Колонны устанавливаются в фундамент стаканного типа с глубиной заложения подошвы 1,8м.

Стены здания панельные, толщина стен 300м, кровля железобетонная односкатная. Имеет покрытие из железобетонных плит размером 3Ч6 м. Утепление покрытия осуществляется укладкой пенобетона [17].

Остекление двойное. Отделочные работы: внутри все стены окрашены в светлые тона.


Санитарно-техническое оборудование


Отопление воздушное, совмещенное с приточно-вытяжной вентиляцией. Здание оборудовано производственным, противопожарным и хозяйственным водопроводом с питанием от коммунальной сети. Спуск бытовых сточных вод производится в канализацию с предварительной очисткой стоков [17].

6. Автоматизация и автоматизированные системы управления технологическим процессом (АСУ ТП)


Обоснование необходимости контроля, регулирования и сигнализации


Необходимыми условиями нормальной работы технологической установки являются:

постоянство загрузки кислотной смеси

постоянство состава реакционной массы

поддержание заданной влажности полупродуктов

поддержание температурного режима работы

нормальная работа приборов КИПиА

нормальное снабжение установки водой и электроэнергией

Необходимость автоматизации данного блока определяется следующими параметрами:

улавливание нитрозных газов осуществляется под вакуумом, контроль за которым является одной из задач автоматизации. Потеря контроля за давлением может повлечь за собой несоблюдение режима процесса и как следствие меньший выход и качество продукта.

процесс так же протекает при сравнительно повышенных температурах. Поэтому следующей задачей автоматизации является регистрация и контроль температуры.

регулирование влажности полупродукта важно для наиболее полного выхода конечного продукта.

При неравномерной подачи тех или иных потоков в реактор происходит нарушение нормальной работы, что может привести к аварийной ситуации.

Описание схемы автоматизации


Сама схема автоматизации приведена на чертеже (формат А2)

Работа системы начинается с включения КЭП. Сначала КЭП подает сигнал и одновременно открываются клапаны 6-9, 7-9 и в реактор Р1 начинается подача исходных реагентов: олеума и азотной кислоты соответственно (рис.1). Затем КЭП подает сигнал на мотор-редуктор перемешивающего устройства (клапан 5).

При подаче исходного сырья на входе в реактор Р1 в качестве первичного прибора применяется камерная диафрагма ДК-0,6 (6-1), установленная на линии подачи сырья в реактор Р1. С диафрагмы электрический выходной сигнал поступает в измерительный преобразователь разности давлений Сапфир-22ДД (6-2). Этот сигнал принимает регистрирующий прибор КСУ-3 (6-4) и прибор регулирования Р27.3 (6-5), совмещенный с ручным задатчиком РЗД - 22 (6-6), установленным на щите. Прибор контроля вырабатывает регулирующее воздействие, подаваемое на блок ручного управления БРУ-42 (поз.6-7), которое затем подается на бесконтактный пускатель ПБР-2М (поз.6-8), который воздействует на клапан 15нж985нж поз (6-9).

Затем КЭП открывает клапан 3 (рис.1) и происходит нагрев смеси. Поддержание температуры в заданных пределах осуществляет первичный преобразователь температуры - термопреобразователь сопротивления ТСП-8032 (поз.9-1), сигнал с которого поступает на нормирующий преобразователь Ш-78 (поз.9-2), который преобразует сопротивление в унифицированный токовый сигнал (0-5 мА). Этот сигнал принимает регистрирующий и показывающий прибор КСУ-3 (поз.9-3), установленный на щите. Прибор вырабатывает регулирующее воздействие, подаваемое на блок ручного управления БРУ-42 (поз.9-6), которое затем подается на бесконтактный пускатель ПБР-2М (поз.9-7), который воздействует на аварийный клапан 15нж985нж (поз.9-8).

Увеличение давления в вакуум линии, приводит к уменьшению интенсивности отвода выделяющихся газов. Давление трубопроводе определяется измерительным прибором Сапфир-22-ДИ-EX (поз.10-1), выходной сигнал с которого (0-5 мА) поступает на блок передачи сигнала (поз.10-2), а затем на регистрирующий и сигнализирующий прибор КСУ-1 (поз.10-3), при этом загорается лампочка HL2.

Регулирование концентрации серной кислоты в реакторе Р2 осуществляется изменением расхода воды, подаваемой в аппарат на разбавление (клапан 6). Чувствительным элементом служит прибор ДМ-5М (12-1). Преобразователь типа П-201 (12-2) обеспечивает непрерывное преобразование ЭДС чувствительного элемента в унифицированный электрический сигнал (0-5мА). Этот сигнал принимает регистрирующий и сигнализирующий прибор КСУ-3 (12-3) и прибор регулирования Р27.3 (12-4), совмещенный с ручным задатчиком РЗД-22 (12-5), установленные на щите. Прибор контроля вырабатывает регулирующее воздействие, подаваемое на блок ручного управления БРУ-42 (поз.12-6), которое затем подается на бесконтактный пускатель ПБР-2М (поз.12-7), который воздействует на клапан 15нж985нж (12-8).

Поддержание требуемого уровня жидкости в реакторе осуществляется изменением расхода пара (клапан 9), конденсирующегося в аппарате. Регулирующий клапан установлен на линии подачи пара. Уровнемер буйковый электрический УБ-Э (15-1) обеспечивает непрерывное преобразование значения уровня жидкости в аппарате в унифицированный электрический сигнал (0-5мА). Этот сигнал принимает регистрирующий и сигнализирующий прибор КСУ-3 (15-2) и прибор регулирования Р27.3 (15-3), совмещенный с ручным задатчиком РЗД-22 (15-4), установленные на щите. Прибор контроля вырабатывает регулирующее воздействие, подаваемое на блок ручного управления БРУ-42 (поз.15-5), которое затем подается на бесконтактный пускатель ПБР-2М (поз.15-6), который воздействует на клапан 15нж985нж (15-7).

При достижении температуры отметки в 65єС (КЭП открывает клапан 4) первичный преобразователь температуры - термопреобразователь сопротивления ТСП-8032 (поз.8-1), поступает на нормирующий преобразователь Ш-78 (поз.8-2), который преобразует сопротивление в унифицированный токовый сигнал (0-5 мА). Этот сигнал принимает регистрирующий и показывающий прибор КСУ-3 (поз.8-3), установленный на щите, который затем подается на бесконтактный пускатель ПБР-2М (поз.8-4), который воздействует на запорный клапан 15нж985нж (поз.8-5).


Спецификация на оборудование


Позиция Наименование и техническая характеристика оборудования и материалов, завод изготовитель Тип, марка оборудования Кол-во шт.

Регулирование расхода азотной кислоты;

F= 1090,5 кг/ч и олеума F= 1110,6 кг/ч



6-1

7-1

Диафрагма камерная. Условное давление 0,6 МПа. Диаметр условного прохода 200 мм. Материал диска Ст.12Х18Н10Т. "Теплоприбор", г. Рязань ДК-6 1

6-2

7-2


Преобразователь измерительный разности давлений. Предел измерения 0,63 МПа, основная погрешность 0,5 %. Выходной сигнал (0-5мА). ПО "Манометр", Москва. Сапфир-22ДД-2450 1

6-3

7-3


Блок извлечения корня. Входной сигнал 0…5мА. Выходной сигнал 0-5мА.

ПО ”Геофизприбор”, г. Ивано-Франковск

БИК-1 1

6-4

7-4

Миллиамперметр самопишущий одноканальный. Входной сигнал 0-5 мА. Выходной сигнал 0-5мА.

Завод "Львовприбор".

КСУ-3

мод.1040Т

1

6-5

7-5

Блок регулирующий аналоговый с импульсным выходным сигналом. Входной сигнал 0-5мА. Выходной сигнал 0-10 В постоянного тока.

МЗТА, Москва

Р27.3 1

7-6

7-6

Задатчик ручной. Входной сигнал 0-5мА. Выходной сигнал 0-5мА. Завод тепловой автоматики. г. Москва РЗД-22 1

6-7

7-7

Блок ручного управления. Входной сигнал 0-10 В. Выходной сигнал импульсный 24 В постоянного тока. ПО "Электроприбор" г. Чебоксары. БРУ-42 1

6-8

7-8


Бесконтактный пускатель реверсивный. Входной сигнал импульсный 24В постоянного тока.

ПО "Электроприбор" г. Чебоксары.

ПБР-2М 1

6-9

7-9

Клапан регулирующий, dy=200 мм. t до 425 0С.

ПО "Пензтяжпромарматура".

15нж985нж 1

Изм. № докум. Подп. Дата ДП.221. А4.01
Работал Тарасенко


Проверил. Чистяков






спецификация на приборы и средства автоматизации Стадия Лист Листов
Н. контр.




1 5
Утв.



СПбГТИ (ТУ)

Группа 221








Позиция Наименование и техническая характеристика оборудования и материалов, завод изготовитель Тип, марка оборудования Кол-во шт.

Регулирование аварийной температуры Т; Т=65оС

8-1 Термопреобразователь сопротивления платиновый, пределы измерения 0-200°С. Инерционность 7 сек. Материал Ст.08Х18Н10Т. Луцкий приборостроительный з-д ТСП-8032 1
8-2

Преобразователь нормирующий. Основная погрешность 0,4-1%. Выходной сигнал 0-5 мА.

ПО "Микроприбор", г. Львов

Ш-78 1
8-3

Миллиамперметр самопишущий многоканальный. Входной сигнал 0-5 мА. Выходной сигнал 0-5мА.

Завод "Львовприбор".

КСУ-3

мод.1041Т

1
8-4 Блок ручного управления. Входной сигнал 0-10 В. Выходной сигнал импульсный 24 В постоянного тока. ПО "Электроприбор" г. Чебоксары. БРУ-42 1
8-5

Бесконтактный пускатель реверсивный. Входной сигнал импульсный 24В постоянного тока.

ПО "Электроприбор" г. Чебоксары.

ПБР-2М 1
8-6

Клапан запорный, dy=50 мм. t=5-150 0С.

Семеновский арматурный завод.

15нж985нж 1

Контроль температуры в аппарате T; T= 60 ◦С

9-1

13-1

Термопреобразователь сопротивления медный, пределы измерения - 50-200°С. Инерционность 40 сек. Материал Ст.08Х13.

Луцкий приборостроительный з-д

ТСП-8054 1

9-2

13-2

Преобразователь нормирующий. Основная погрешность 0,4-1%. Выходной сигнал 0-5 мА.

ПО "Микроприбор", г. Львов

Ш-78 1

9-3

13-3

Миллиамперметр самопишущий одноканальный. Входной сигнал 0-5 мА. Выходной сигнал 0-5мА.

Завод "Львовприбор".

КСУ-3

мод.1040Т

1





ДП.221. А4.02


Лист






2
Изм Лист № докум. Подп. Дата


Позиция Наименование и техническая характеристика оборудования и материалов, завод изготовитель Тип, марка оборудования Кол-во шт.

9-4

13-4

Блок регулирующий аналоговый с импульсным выходным сигналом. Входной сигнал 0-5мА. Выходной сигнал 0-10 В постоянного тока.

МЗТА, Москва

Р27.3 1

9-5

13-5

Задатчик ручной. Входной сигнал 0-5мА. Выходной сигнал 0-5мА.

Завод тепловой автоматики. г. Москва.

РЗД-22 1

9-6

13-6

Блок ручного управления. Входной сигнал 0-10 В. Выходной сигнал импульсный 24 В постоянного тока. ПО "Электроприбор" г. Чебоксары. БРУ-42 1

9-7

13-7

Бесконтактный пускатель реверсивный. Входной сигнал импульсный 24В постоянного тока.

ПО "Электроприбор" г. Чебоксары.

ПБР-2М 1

9-8

13-8

Клапан регулирующий, dy=50 мм. t=5-150 0С.

Семеновский арматурный завод.

15нж985нж 1

Контроль давления в трубопроводе; Р=0.06 МПа

10-1

11-1

14-1

Преобразователь измерительный избыточного давления. Предел измерения 0,4 Мпа. Выходной сигнал 0-5 мА. Основная погрешность - +0,5%.

ПО "Манометр", г. Москва

Сапфир-22ДИ-ЕХ,

мод.2150

1

10-2

11-2

14-2

Блок передачи сигнала. Входной сигнал 0-5 мА.

Основная погрешность - +0,5%.

ПО "Манометр", г. Москва

БПС-24 1

10-3

11-3

14-3

Миллиамперметр самопишущий одноканальный. Входной сигнал 0-5 мА. Выходной сигнал 0-5мА.

ОЭО ВНПО "Союзавтомашстрой", г. Грозный.

КСУ-1

мод.063

1

Регулирование концентрации серной кислоты в аппарате; C= 20%

12-1

Чувствительный элемент. Длина погружной части 1100мм.

Гомельский завод измерительных приборов

ДМ-5М 1





ДП.221. А4.02


Лист






3
Изм Лист № докум. Подп. Дата


Позиция Наименование и техническая характеристика оборудования и материалов, завод изготовитель Тип, марка оборудования Кол-во шт.
12-2

Преобразователь ЭДС в унифицированный выходной сигнал постоянного тока. Основная погрешность 1,0 %. Выходной сигнал

(0-5мА).

Гомельский завод измерительных приборов

П-201 1
12-3

Миллиамперметр самопишущий одноканальный. Входной сигнал 0-5 мА. Выходной сигнал 0-5мА.

Завод "Львовприбор".

КСУ-3

мод.1040Т

1
12-4

Блок регулирующий аналоговый с импульсным выходным сигналом. Входной сигнал 0-5мА. Выходной сигнал 0-10 В постоянного тока.

МЗТА, Москва

Р27.3 1
12-5

Задатчик ручной. Входной сигнал 0-5мА. Выходной сигнал 0-5мА.

Завод тепловой автоматики. г. Москва.

РЗД-22 1
12-6 Блок ручного управления. Входной сигнал 0-10 В. Выходной сигнал импульсный 24 В постоянного тока. ПО "Электроприбор" г. Чебоксары. БРУ-42 1
12-7

Бесконтактный пускатель реверсивный. Входной сигнал импульсный 24В постоянного тока.

ПО "Электроприбор" г. Чебоксары.

ПБР-2М 1
12-8

Клапан регулирующий, dy=200 мм. t до 425 0С.

ПО "Пензтяжпромарматура".

15нж985нж 1

Регулирование уровня жидкости низа колонны;

L= 1,8м



15-1

Уровнемер буйковый электрический. Пределы измерения 0,02-16 м. Основная погрешность 1,0%.

Выходной сигнал 0-5мА.

"Теплоприбор", г. Рязань

УБ-Э 1





ДП.221. А4.03


Лист






4
Изм Лист № докум. Подп. Дата


Позиция Наименование и техническая характеристика оборудования и материалов, завод изготовитель Тип, марка оборудования Кол-во шт.
15-2

Миллиамперметр самопишущий одноканальный. Входной сигнал 0-5 мА. Выходной сигнал 0-5мА.

Завод "Львовприбор".

КСУ-3

мод.1040Т

1
15-3

Блок регулирующий аналоговый с импульсным выходным сигналом. Входной сигнал 0-5мА. Выходной сигнал 0-10 В постоянного тока.

МЗТА, Москва

Р27.3 1
15-4

Задатчик ручной. Входной сигнал 0-5мА. Выходной сигнал 0-5мА.

Завод тепловой автоматики. г. Москва.

РЗД-22 1
15-5 Блок ручного управления. Входной сигнал 0-10 В. Выходной сигнал импульсный 24 В постоянного тока. ПО "Электроприбор" г. Чебоксары. БРУ-42

1


15-6

Бесконтактный пускатель реверсивный. Входной сигнал импульсный 24В постоянного тока.

ПО "Электроприбор" г. Чебоксары.

ПБР-2М

1


15-7

Клапан регулирующий, dy=200 мм. t до 425 0С.

ПО "Пензтяжпромарматура".

15нж985нж 1





ДП.221. А4.04


Лист






5
Изм Лист № докум. Подп. Дата


7. Стандартизация


Дипломный проект выполнен по СТП 2.605.0.17-85 Виды учебный дипломный проект, работа, работа-проект. Общие требования. - СПбГТИ (ТУ), 1997. - 20с.


Таблица №30

Исходное сырье

Наименование Нормативный документ
1 20% Олеум ГОСТ 2184-77
2 98% Азотная кислота ГОСТ 4461-77
3 Бензойная кислота ГОСТ 10521-78
4 Этиловый спирт ГОСТ 5962-67

Оснащение необходимыми техническими средствами автоматизации велась на основе действующих стандартов ГОСТ 21.404-85.

Раздел охраны и безопасности труда оформлялся с учетом следующих нормативных документов:

ГОСТ 12.0.003-74 ССБТ. Опасные и вредные производственные факторы. Классификация.

ГОСТ 12.1.005-88 ССБТ. Общие санитарно-гигиенические требования к воздуху рабочей зоны.

ГОСТ 12.3.002-75 ССБТ. Процессы производственные. Общие требования безопасности.

ГОСТ 12.2.003-91 ССБТ. Оборудование производственное. Общие требования безопасности.

ГОСТ 12.1.003-83 ССБТ. Шум. Общие требования безопасности.

ГОСТ 12.1.029-90 ССБТ. Средства и методы защиты от шума. Классификация.

ГОСТ 12.1.012-90 ССБТ. Вибрационная безопасность. Общие требования.

НПБ 105-03 Определение категорий помещений, зданий и наружных установок по взрывопожарной и пожарной опасности.

Правила устройства электроустановок. - М.: Главгосэнергонадзор России, 1998. - 607 с.

СНиП 2.09.04-87 Административные и бытовые здания. Нормы проектирования. - М.: Стройиздат, 1987.

СН 305-77 Инструкция по проектированию и устройству молниезащиты зданий и сооружений.

СНиП 21-01-97 Пожарная безопасность зданий и сооружений.

НПБ 104-95 Системы оповещения людей о пожаре в зданиях и сооружениях.

НПБ 110-95 Перечень объектов, подлежащих защите автоматическими установками пожаротушения.

СНиП 31-03-2001 Производственные здания промышленных предприятий. Нормы проектирования. - M.: Стройиздат, 2002.

СНиП 2.04.05-91 Отопление, вентиляция и кондиционирование.

СНиП 23-05-95 Естественное и искусственное освещение производственных помещений. Нормы проектирования.

При выполнении графической части дипломного проекта были использованы следующие стандарты ЕСКД:

ГОСТ 2.104-68 ЕСКД. Основные надписи.

ГОСТ 2.108-64 ЕСКД. Спецификация.

ГОСТ 2.109-73 ЕСКД. Основные требования к чертежам.

ГОСТ 2.301-68 ЕСКД. Форматы.

ГОСТ 2.308-68 ЕСКД. Линии.

ГОСТ 2.304-81 ЕСКД. Шрифты чертежные.

ГОСТ 2.316-68 ЕСКД. Правила нанесения на чертежах надписей, технических требований и таблиц.

При выполнении строительной части дипломного проекта были использованы следующие стандарты:

ГОСТ 21.301-78 СПДС. Основные требования к рабочим чертежам.

ГОСТ 21.108-78 СПДС. Условные графические изображения, обозначения на чертежах генеральных планов и транспорта.

ГОСТ 21.110-82 СПДС. Спецификация оборудования.

ГОСТ 21.105-79 СПДС. Нанесение на чертежах размеров, надписей технических требований и таблиц.

Список использованной литературы оформлялся по ГОСТ 7.1-84 Система стандартов по информации, библиотечному и издательскому делу. Библиографическое описание документов. Общие требования и правила составления.

8. Охрана труда и окружающей среды


Опасные и вредные производственные факторы, свойственные процессу получения динитробензойной кислоты


Опасные и вредные производственные факторы разделяются по природе действия на следующие группы [18]:

физические;

химические;

биологические;

психофизиологические.

Группа физически опасных и вредных производственных факторов включает такие опасные и вредные моменты производства, как движущиеся машины и механизмы или их элементы, передвигающиеся изделия, заготовки, материалы, разрушающиеся конструкции; повышенные уровни шума, вибрации, ультразвука, ионизирующих излучений, статического электричества, электромагнитного излучения; неудовлетворительное освещение, повышенное напряжение в электрической цепи.

Группа химически опасных и вредных производственных факторов обязана вредному воздействию на организм человека различного сырья полупродуктов и отходов производства.

Биологические опасные и вредные производственные факторы включают в себя патогенные микроорганизмы (вирусы, бактерии, грибы, простейшие и др.) и продукты их жизнедеятельности, а также макроорганизмы (растения и животные).

Психофизиологические опасные и вредные производственные факторы по характеру действия подразделяются на физические (статические и динамические) и нервно-психические нагрузки (умственное перенапряжение, перенапряжение анализаторов, монотонность труда), эмоциональные перегрузки.

Сведения о химически опасных и вредных производственных факторах представляются в таблице 1. Для составления таблицы воспользуемся ГОСТом [19] и справочниками [20], [21].

Таблица №31

Характеристика физико-химических, пожаровзрывоопасных и токсичных свойств сырья, готового продукта и отходов производства

В

е

щ

е

с

т

в

а


Физико-химические свойства Пожаровзрывоопасные свойства Токсические свойства

Агрегатное состояние Температура кипения, 0С Температура плавления, 0С Плотность, кг/м3

Температура,

0C

Пределы распространения пламени

Характер действия на организм

человека

Класс опасности ПДК р. з., мг/м3





вспышки самовоспламенения

Температурные,

0C

Концентра

ционные, об. %











нижний верхний нижний верхний


Азотная кислота (98%) ж 83,4 -42,0 1,502 - - - - - - 0 III 5
Олеум (20%) ж 330,0 10,35 1,834 - - - - - - 0 II 1
Бензойная кислота тв 249,2 122,5 1,260 165,0 532,0 - - 0,5 7,9 0 III 1,5
Этиловый спирт (50%) ж 78,3 -114,1 0,806 26,0 480,0 23 45,0 3,6 17,7 н IV 1000
3,5динитробензойная кислота тв - 204,0 1,90 - 280,0 - - 0,4 15,8 0 III 1,5
Оксид азота (III) г -40,0 -163,7 1,447 - - - - - - 0 III 5
Серная кислота ж 330,0 10,35 1,834 - - - - - - 0 II 1

Условные обозначения:

О - вещества с остронаправленным механизмом действия, требующие автоматического контроля за их содержанием в воздухе;

Н - вещества с наркотическим механизмом действия.


Мероприятия, принятые в проекте для обеспечения безопасности технологического процесса


Безопасность производственного процесса достигается упреждением опасной аварийной ситуации и в течение всего времени его функционирования должна быть обеспечена [22]:

применением технологических процессов (видов работ), а также приемов, режимов работы в порядке обслуживания производственного оборудования;

использованием производственных помещений, удовлетворяющих соответствующим требованиям и комфортности работающих;

оборудованием производственных площадок (для процессов, выполняемых вне производственных помещений);

обустройством территории производственных предприятий;

использованием исходных материалов, заготовок, полуфабрикатов, комплектующих изделий (узлов, элементов) и т.п., не оказывающих опасного и вредного воздействия на работающих. При невозможности выполнения этого требования должны быть приняты меры, обеспечивающие безопасность производственного процесса и защиту обслуживающего персонала;

применением производственного оборудования, не являющегося источником травматизма и профессиональных заболеваний;

применением надежно действующих и регулярно проверяемых контрольно-измерительных приборов, устройств противоаварийной защиты, средств получения, переработки и передачи информации;

применением электронно-вычислительной техники и микропроцессоров для управления производственными процессами и системами противоаварийной защиты;

применением быстродействующей отсекающей арматуры и средств локализации опасных и вредных производственных факторов;

рациональным размещением производственного оборудования и организацией рабочих мест;

распределением функций между человеком и машиной (оборудованием) в целях ограничения физических и нервно-психических (особенно при контроле) перегрузок;

применением средств защиты работающих, соответствующих характеру проявления возможных опасных и вредных производственных факторов;

обозначением опасных зон производства работ;

включением требований безопасности в нормативно-техническую, проектно-конструкторскую и технологическую документацию, соблюдением этих требований, а также требований соответствующих правил безопасности в нормативно-техническую, проектно-конструкторскую и технологическую документацию, соблюдением этих требований, а также требований соответствующих правил безопасности и других документов по охране труда;

использование методов и средств контроля измеряемых параметров опасных и вредных производственных факторов;

соблюдением установленного порядка и организованности на каждом рабочем месте, высокой производственной, технологической и трудовой дисциплины.

При проектировании, организации и осуществлении технологического процесса для обеспечения безопасности должны предусматриваться следующие меры: устранение непосредственного контакта работающих с исходными материалами, заготовками, полуфабрикатами, комплектующими изделиями (узлами, элементами), готовой продукцией и отходами производства, оказывающими опасное и вредное воздействие; замена технологических процессов и операций, связанных с возникновением опасных и вредных производственных факторов, процессами и операциями, при которых указанные факторы отсутствуют или не превышают предельно допустимых концентраций, уровней; комплексная механизация, автоматизация, применение дистанционного управления технологическими процессами и операциями при наличии опасных и вредных производственных факторов; герметизация оборудования или создание в оборудовании повышенного или пониженного (фиксируемого по прибору) давления (по сравнению с атмосферным); применение средств защиты работающих; разработка обеспечивающих безопасность систем управления и контроля производственного процесса, включая их автоматизацию внешней и внутренней диагностики на базе ЭВМ; применение мер, направленных на предотвращение проявления опасных и вредных производственных факторов в случае аварии; применение безотходных технологий замкнутого цикла производств, а если это невозможно, то своевременное удаление, обезвреживание и захоронение отходов, являющихся источником вредных производственных факторов; использование системы оборотного водоснабжения; применение рациональных режимов труда и отдыха с целью предотвращения монотонности, гиподинамики, чрезмерных физических и нервно-психических перегрузок.

Требования безопасности к технологическому процессу должны быть изложены в технологической документации.

Мероприятия, принятые в проекте для обеспечения безопасности технологического оборудования


Безопасность производственного оборудования в основном предопределяется рациональным выбором принципов его действия, конструкторских схем, а также безопасных элементов конструкции [23]. Необходимо предусмотреть в конструкции применение специальных средств защиты, средств механизации, автоматизации, дистанционного управления. В полном объеме должны быть выполнены эргономические требования.

Безопасность конструкции производственного оборудования обеспечивается:

выбором принципов действия и конструктивных решений, источников энергии и характеристик энергоносителей, параметров рабочих процессов, системы управления и ее элементов;

минимизацией потребляемой и накапливаемой энергии при функционировании оборудования;

выбором комплектующих изделий и материалов для изготовления конструкций, а также применяемых при эксплуатации;

выбором технологических процессов изготовления;

надежностью конструкции и ее элементов (в том числе дублированием отдельных систем управления, средств защиты и информации, отказы которых могут привести к созданию опасных ситуаций);

применением средств механизации, автоматизации (в том числе автоматического регулирования параметров рабочих процессов) дистанционного управления и контроля;

возможностью использования средств защиты, не входящих в конструкцию;

ограничением физических и нервнопсихических нагрузок на работающих.

Требования безопасности к производственному оборудованию конкретных групп, видов, моделей (марок) устанавливаются на основе требований настоящего стандарта с учетом:

особенностей назначения, исполнения и условий эксплуатации;

результатов испытаний, а также анализа опасных ситуаций (в том числе пожаровзрывоопасных), имевших место при эксплуатации аналогичного оборудования;

требований стандартов, устанавливающих допустимые значения опасных и вредных производственных факторов;

научно-исследовательских и опытно-конструкторских работ, а также анализа средств и методов обеспечения безопасности на лучших мировых аналогах;

прогноза возможного возникновения опасных ситуаций на вновь создаваемом или модернизируемом оборудовании.

Требования безопасности к технологическому комплексу должны также учитывать возможные опасности, вызванные совместным функционированием единиц производственного оборудования, составляющих комплекс.

Каждый технологический комплекс и автономно используемое производственное оборудование должны укомплектовываться эксплуатационной документацией, содержащей требования (правила), предотвращающие возникновение опасных ситуаций при монтаже (демонтаже), вводе в эксплуатацию и эксплуатации. Общие требования к содержанию эксплуатационной документации в части обеспечения безопасности приведены в приложении.

Производственное оборудование должно отвечать требованиям безопасности в течение всего периода эксплуатации при выполнении потребителем требований, установленных в эксплуатационной документации.

Производственное оборудование в процессе эксплуатации не должно загрязнять природную среду выбросами вредных веществ и вредных микроорганизмов в количествах выше допустимых значений, установленных стандартами и санитарными нормами.

Материалы конструкции производственного оборудования не должны оказывать опасное и вредное воздействие на организм человека на всех заданных режимах работы и предусмотренных условиях эксплуатации, а также создавать пожаровзрывоопасные ситуации.

Конструкция производственного оборудования должна исключать на всех предусмотренных режимах работы нагрузки на детали и сборочные единицы, способные вызвать разрушения, представляющие опасность для работающих.

Если возможно возникновение нагрузок, приводящих к опасным для работающих разрушениям отдельных деталей или сборочных единиц, то производственное оборудование должно быть оснащено устройствами, предотвращающими возникновение разрушающих нагрузок, а такие детали и сборочные единицы должны быть ограждены или расположены так, чтобы их разрушающиеся части не создавали травмоопасных ситуаций.

Конструкция производственного оборудования и его отдельных частей должна исключать возможность их падения, опрокидывания и самопроизвольного смещения при всех предусмотренных условиях эксплуатации и монтажа (демонтажа). Если из-за формы производственного оборудования, распределения масс отдельных его частей и (или) условий монтажа (демонтажа) не может быть достигнута необходимая устойчивость, то должны быть предусмотрены средства и методы закрепления, о чем эксплуатационная документация должна содержать соответствующие требования.

Конструкция производственного оборудования должна исключать падение или выбрасывание предметов (например инструмента, заготовок, обработанных деталей, стружки), представляющих опасность для работающих, а также выбросов смазывающих, охлаждающих и других рабочих жидкостей.

Если для указанных целей необходимо использовать защитные ограждения, не входящие в конструкцию, то эксплуатационная документация должна содержать соответствующие требования к ним.

Движущиеся части производственного оборудования, являющиеся возможным источником травмоопасности, должны быть ограждены или расположены так, чтобы исключалась возможность прикасания к ним работающего или использованы другие средства (например двуручное управление), предотвращающие травмирование.

Если функциональное назначение движущихся частей, представляющих опасность, не допускает использование ограждений или других средств, исключающих возможность прикасания работающих к движущимся частям, то конструкция производственного оборудования должна предусматривать сигнализацию, предупреждающую о пуске оборудования, а также использование сигнальных цветов и знаков безопасности.

В непосредственной близости от движущихся частей, находящихся вне поля видимости оператора, должны быть установлены органы управления аварийным остановом (торможением), если в опасной зоне, создаваемой движущимися частями, могут находиться работающие.

Конструкция зажимных, захватывающих, подъемных и загрузочных устройств или их приводов должна исключать возможность возникновения опасности при полном или частичном самопроизвольном прекращении подачи энергии, а также исключать самопроизвольное изменение состояния этих устройств при восстановлении подачи энергии.

Части производственного оборудования (в том числе трубопроводы гидро-, паро-, пневмосистем, предохранительные клапаны, кабели и др.), механическое повреждение которых может вызвать возникновение опасности, должны быть защищены ограждениями или расположены так, чтобы предотвратить их случайное повреждение работающими или средствами технического обслуживания.

Конструкция производственного оборудования должна исключать самопроизвольное ослабление или разъединение креплений сборочных единиц и деталей, а также исключать перемещение подвижных частей за пределы, предусмотренные конструкцией, если это может повлечь за собой создание опасной ситуации.

Производственное оборудование должно быть пожаровзрывобезопасным в предусмотренных условиях эксплуатации.

Технические средства и методы обеспечения пожаровзрывобезопасности (например предотвращение образования пожаро - и взрывоопасной среды, исключение образования источников зажигания и инициирования взрыва, предупредительная сигнализация, система пожаротушения, аварийная вентиляция, герметические оболочки, аварийный слив горючих жидкостей и стравливание горючих газов, размещение производственного оборудования или его отдельных частей в специальных помещениях) должны устанавливаться в стандартах, технических условиях и эксплуатационных документах на производственное оборудование конкретных групп, видов, моделей (марок).

Конструкция производственного оборудования, приводимого в действие электрической энергией, должна включать устройства (средства) для обеспечения электробезопасности.

Технические средства и способы обеспечения электробезопасности (например ограждение, заземление, зануление, изоляция токоведущих частей, защитное отключение и др.) должны устанавливаться в стандартах и технических условиях на производственное оборудование конкретных групп, видов, моделей (марок) с учетом условий эксплуатации и характеристик источников электрической энергии.

Производственное оборудование, являющееся источником шума, ультразвука и вибрации, должно быть выполнено так, чтобы шум, ультразвук и вибрация в предусмотренных условиях и режимах эксплуатации не превышали установленные стандартами допустимые уровни.

Производственное оборудование, работа которого сопровождается выделением вредных веществ (в том числе пожаровзрывоопасных), и (или) вредных микроорганизмов, должно включать встроенные устройства для их удаления или обеспечивать возможность присоединения к производственному оборудованию удаляющих устройств, не входящих в конструкцию.

Устройство для удаления вредных веществ и микроорганизмов должно быть выполнено так, чтобы концентрация вредных веществ и микроорганизмов в рабочей зоне, а также их выбросы в природную среду не превышали значений, установленных стандартами и санитарными нормами. В необходимых случаях должна осуществляться очистка и (или) нейтрализация выбросов.

Производственное оборудование должно быть выполнено так, чтобы воздействие на работающих вредных излучений было исключено или ограничено безопасными уровнями.

Конструкция производственного оборудования и (или) его размещение должны исключать контакт его горючих частей с пожаровзрывоопасными веществами, если такой контакт может явиться причиной пожара или взрыва, а также исключать возможность соприкасания работающего с горячими или переохлажденными частями или нахождение в непосредственной близости от таких частей, если это может повлечь за собой травмирование, перегрев или переохлаждение работающего.

Если назначение производственного оборудования и условия его эксплуатации (например, использование вне производственных помещений) не могут полностью исключить контакт работающего с переохлажденными или горячими его частями, то эксплуатационная документация должна содержать требование об использовании средств индивидуальной защиты.

Конструкция производственного оборудования должна исключать опасность, вызываемую разбрызгиванием горячих обрабатываемых и (или) используемых при эксплуатации материалов и веществ.

Производственное оборудование должно быть оснащено местным освещением, если его отсутствие может явиться причиной перенапряжения органа зрения или повлечь за собой другие виды опасности.

Характеристика местного освещения должна соответствовать характеру работы, при выполнении которой возникает в нем необходимость.


Организация пожаро - и взрывобезопасности проектируемого производства


Взрывопожаробезопасность достигается предотвращением образования взрывоопасных и горючих сред в производственных помещениях и внутри технологического оборудования, исключением источников зажигания пожаро- и взрывоопасных сред, а также применением систем пожаро- и взрывозащиты [24].

Исключение образования взрывопожароопасных сред в производственных помещениях достигается:

применением герметичного производственного оборудования;

использованием непрерывных процессов производства;

максимальной механизацией и автоматизацией технологических процессов;

применением рабочей и аварийной вентиляции, включающейся автоматически или вручную по сигналу датчика, контролирующего содержание горючих сред в воздухе помещения;

максимально возможным применением негорючих и трудногорючих веществ и материалов вместо пожаровзрывоопасных и другими мероприятиями.

Предотвращение образования взрывоопасной среды внутри технологического оборудования обеспечивается:

применением ингибирующих и флегматизирующих добавок;

поддержанием состава среды вне области воспламенения;

применением герметичного оборудования;

отводом образующихся взрывоопасных сред а аварийные емкости и другими мероприятиями.

По взрывопожарной и пожарной опасности помещения подразделяются на категории А, Б, В1 - В4, Г и Д, а здания - на категории А, Б, В, Г и Д.

Категории взрывопожарной и пожарной опасности помещений и зданий определяются для наиболее неблагоприятного в отношении пожара или взрыва периода, исходя из вида находящихся в аппаратах и помещениях горючих веществ и материалов, их количества и пожароопасных свойств, особенностей технологических процессов.

Категории пожарной опасности наружных установок определяются, исходя из вида находящихся в наружных установках горючих веществ и материалов, их количества и пожароопасных свойств, особенностей технологических процессов.

Определение пожароопасных свойств веществ и материалов производится на основании результатов испытаний или расчетов по стандартным методикам с учетом параметров состояния (давления, температуры и т.д.).

Допускается использование справочных данных, опубликованных головными научно-исследовательскими организациями в области пожарной безопасности или выданных Государственной службой стандартных справочных данных.

Допускается использование показателей пожарной опасности для смесей веществ и материалов по наиболее опасному компоненту.

Таблица №32

Классификация основных производственных участков

Производственный участок (цех) Применяемые вещества Количество веществ, кг Категория помещения по НПБ Класс зон по ПУЭ Группа производственного процесса по СНиП

Цех получения

динитробензойной кислоты



Азотная кислота (98%)

Олеум (20%)

Бензойная кислота

Этиловый спирт (50%)


110,9

449,6

82,6

277,8

А В-Iа


Расчет избыточного давления взрыва для паров этилового спирта

Избыточное давление взрыва DР для индивидуальных горючих веществ, состоящих из атомов С, Н, О, N, С1, Вr, I, F, определяется по формуле


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


где Рmax - максимальное давление взрыва стехиометрической газовоздушной или паровоздушной смеси в замкнутом объеме, определяемое экспериментально или по справочным данным. При отсутствии данных допускается принимать Рmax равным 900 кПа;

Р0 - начальное давление, кПа (допускается принимать равным 101 кПа);

т - масса паров легковоспламеняющихся (ЛВЖ) и горючих жидкостей (ГЖ), вышедших в результате расчетной аварии в помещение, вычисляемая для для паров ЛВЖ и ГЖ по формуле (4), кг;

Z - коэффициент участия горючего во взрыве, который может быть рассчитан на основе характера распределения газов и паров в объеме помещения.

Примем Z равным 0,3.

Vсв - свободный объем помещения, м3;

rг. п - плотность газа или пара при расчетной температуре tp, кгЧм-3, вычисляемая по формуле


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


где М - молярная масса, кгЧкмоль-1;

v0 - мольный объем, равный 22,413 м3Чкмоль-1;

tp - расчетная температура, °С. В качестве расчетной температуры следует принимать максимально возможную температуру воздуха в данном помещении в соответствующей климатической зоне или максимально возможную температуру воздуха по технологическому регламенту с учетом возможного повышения температуры в аварийной ситуации. Если такого значения расчетной температуры tp по каким-либо причинам определить не удается, допускается принимать ее равной 61°С;

Сст - стехиометрическая концентрация паров ЛВЖ и ГЖ, % (об.), вычисляемая по формуле


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


где Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год - стехиометрический коэффициент кислорода в реакции сгорания;

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/годПроектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/годПроектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/годПроектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год число атомов С, Н, О и галоидов в молекуле горючего;

Кн - коэффициент, учитывающий негерметичность помещения и неадиабатичность процесса горения.

Допускается принимать Кн равным 3.

Масса паров жидкости m, поступивших в помещение при наличии нескольких источников испарения (поверхность разлитой жидкости, поверхность со свеженанесенным составом, открытые емкости и т.п.), определяется из выражения


т = тр + темк + тсв. окр.,


где mр - масса жидкости, испарившейся с поверхности разлива, кг;

темк - масса жидкости, испарившейся с поверхностей открытых емкостей, кг;

тсв. окр - масса жидкости, испарившейся с поверхностей, на которые нанесен применяемый состав, кг.

При этом каждое из слагаемых в определяется по формуле:


m = W Fи T,


где W - интенсивность испарения, кгЧс-1Чм-2;

Fи - площадь испарения, м2, определяемая в соответствии с п.7 в зависимости от массы жидкости тп, вышедшей в помещение.

Интенсивность испарения W определяется по справочным и экспериментальным данным. Для ненагретых выше температуры окружающей среды ЛВЖ при отсутствии данных допускается рассчитывать W no формуле


W = 10-6 h Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/годPн,


где h - коэффициент, принимаемый в зависимости от скорости и температуры воздушного потока над поверхностью испарения;

Рн - давление насыщенного пара при расчетной температуре жидкости tр, определяемое по справочным данным, кПа

h примем равным 2,4

Рн по [11] составляет 211,3 мм. рт. ст. или 28126,3кПа

Молекулярная масса этилового спирта 46Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


При интенсивности испарения Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год 277,8 кг этилового спирта испарятся за 586 с

Площадь испарения при разливе на пол определяется (при отсутствии справочных данных) исходя из расчета, что 1 л смесей и растворов, содержащих 70 % и менее (по массе) растворителей, разливается на площади 0,5 м2. Следовательно, площадь разлива 0,3м 3 спирта составит 155м2

Примем, что в процессе не используются емкости, эксплуатируемые с открытым зеркалом жидкости и со свежеокрашенными поверхностями.

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Cтехиометрическая концентрация паров этанола:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Плотность пара при расчетной температуре tp, кгЧм-3


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Свободный объем помещения примем равным 80% геометрического объема помещения:

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Избыточное давление взрыва DР для этанола:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Класс взрывоопасной зоны, в соответствии с которым производится выбор электрооборудования, определяется технологами совместно с электриками проектной или эксплуатирующей организации [25].

Зоны класса В-Iа - зоны, расположенные в помещениях, в которых при нормальной эксплуатации взрывоопасные смеси горючих газов (независимо от нижнего концентрационного предела воспламенения) или паров ЛВЖ с воздухом не образуются, а возможны только в результате аварий или неисправностей.

Группа производственного процесса по СНиП определяется в соответствии с классами опасности веществ, участвующих в технологическом процессе [26].

Для предотвращения образования в горючей или взрывоопасной среде источников зажигания необходимо предусмотреть:

защиту от атмосферного электричества

(категория по молниезащите - II, тип А) [27];

защиту от проявления разрядов статического электричества (выбор скоростных режимов движения среды и многократного заземления всего оборудования);

применение электрооборудования, соответствующего классу пожароопасных зон производственных помещений и наружных установок, а также категории и группе взрывоопасных смесей;

ликвидация условий для теплового химического и микробиологического самовозгорания обращающихся в производстве веществ;

применение инструментов и оборудования, изготовленных из материалов, не дающих при соударении механических искр;

применение быстродействующих средств защитного отключения возможных источников зажигания пожаровзрывоопасных сред.

В зданиях должны быть предусмотрены конструктивные, объемно-планировочные и инженерно-технические решения, обеспечивающие в случае пожара [28]:

возможность эвакуации людей независимо от их возраста и физического состояния наружу на прилегающую к зданию территорию (далее - наружу) до наступления угрозы их жизни и здоровью вследствие воздействия опасных факторов пожара;

возможность спасения людей;

возможность доступа личного состава пожарных подразделений и подачи средств пожаротушения к очагу пожара, а также проведения мероприятий по спасению людей и материальных ценностей;

нераспространение пожара на рядом расположенные здания, в том числе при обрушении горящего здания;

ограничение прямого и косвенного материального ущерба, включая содержимое здания и само здание, при экономически обоснованном соотношении величины ущерба и расходов на противопожарные мероприятия, пожарную охрану и ее техническое оснащение.

Эвакуация представляет собой процесс организованного самостоятельного движения людей наружу из помещений, в которых имеется возможность воздействия на них опасных факторов пожара.

Количество эвакуационных выходов из зданий категории А следует проектировать не менее двух. Из помещений, расположенных на любых этажах, кроме первого, в качестве второго эвакуационного выхода допускается использовать наружные лестницы.

Оповещение людей о пожаре должно осуществляться [29]:

подачей звуковых и (или) световых сигналов во всем помещении здания с постоянным или временным пребыванием людей;

трансляцией речевой информации о необходимости эвакуации, путях эвакуации и других действиях, направленных на обеспечение безопасности.

Управление эвакуацией должно осуществляться:

включением эвакуационного освещения;

передачей по СО специально разработанных текстов, направленных на предотвращение паники и других явлений, усложняющих процесс эвакуации (скопление людей в проходах и т.п.);

трансляция текстов, содержащих информацию о необходимом направлении движения;

включением световых указателей направления эвакуации;

дистанционным открыванием дверей дополнительных эвакуационных выходов (например, оборудованных электромагнитными замками).

Число оповещателей, их расстановка и мощность должны обеспечивать необходимую слышимость во всех местах постоянного или временного пребывания людей.

Коллективная защита людей должна быть обеспечена с помощью убежищ или защищенных помещений.

Производственные помещения должны иметь системы пожарной сигнализации.

Они могут быть пожарными, реагирующими на первоначальные признаки пожара (дым, тепло, пламя) и охранно-пожарными, совмещающими охранные (срабатывают на вскрытие дверей, окон и т.п.) и пожарные функции.

Для разработки систем тушения пожара необходимо установить требования по защите объектов, зависящие от категории объектов по взрывопожароопасности.

Производственные помещения всех категорий должны иметь первичные средства тушения пожара (огнетушители, песок, лопату, асбестовое одеяло и др.).

В помещениях, относящихся к категории А устанавливают автоматические установки пожаротушения (АУТП) и пожарной сигнализации (АУПС) [30].

Наружные ограждающие конструкции зданий категории А должны содержать легкосбрасываемые элементы. Площадь легкосбрасываемых конструкций принимается не менее 0,05м2 на 1м2 взрывоопасного помещения. К легкосбрасываемым конструкциям относятся окна, двери, распашные ворота, фонарные переплеты [31].

Объемно-планировочные решения помещений категории А должны исключать возможность проникновения в производственные помещения других категорий взрывоопасных и токсичных веществ.


Мероприятия, предусмотренные в проекте для обеспечения нормальных санитарно-гигиенических условий производственной среды


Показателями, характеризующими микроклимат, являются [20]:

температура воздуха;

относительная влажность воздуха;

скорость движения воздуха;

интенсивность теплового излучения.

Измерения показателей микроклимата должны проводиться в начале, середине и конце холодного и теплого периода года не менее 3 раз в смену (в начале, середине и конце). При колебаниях показателей микроклимата, связанных с технологическими и другими причинами, измерения необходимо проводить также при наибольших и наименьших величинах термических нагрузок на работающих, имеющих место в течение рабочей смены.

Температуру, относительную влажность и скорость движения воздуха измеряют на высоте, 1,0 м от пола или рабочей площадки при работах, выполняемых сидя, и на высоте 1,5 м - при работах, выполняемых стоя. Измерения проводят как на постоянных, так и на непостоянных рабочих местах при их минимальном и максимальном удалении от источников локального тепловыделения, охлаждения или влаговыделения (нагретых агрегатов, окон, дверных проемов, ворот, открытых ванн и т.д.).

Для определения разности температуры воздуха и скорости его движения по высоте рабочей зоны следует проводить выборочные измерения на высоте 0,1; 1,0 и 1,7 м от пола или рабочей площадки в соответствии с задачами исследования.

Температуру и относительную влажность воздуха следует измерять аспирационными психрометрами. При отсутствии в местах измерения источников лучистого тепла температуру и относительную влажность воздуха можно измерять психрометрами типа ПБУ-1М, суточными и недельными термографами и гигрографами при условии сравнения их показаний с показаниями аспирационного психрометра.

Скорость движения воздуха измеряют анемометрами ротационного действия (крыльчатые анемометры). Малые величины скорости движения воздуха (менее 0,3 м/с), особенно при наличии разнонаправленных потоков, измеряют электроанемометрами, а также цилиндрическими и шаровыми кататермометрами и т.п.

Тепловое облучение, температуру поверхностей ограждающих конструкций (стен, пола, потолка) или устройств (экранов и т.п.), наружных поверхностей технологического оборудования или его ограждающих устройств следует измерять приборами типа актинометров, болометров, электротермометров и т. п

Обеспечение нормальных метеорологических условий и чистоты воздуха на рабочих местах в значительной степени зависит от правильно организованной системы вентиляции.

Для обеспечения нормальных метеорологических условий и поддержания теплового равновесия между телом человека и окружающей средой на промышленных предприятиях проводится ряд мероприятий, основные из них следующие:

рациональная система вентиляции и отопления;

дистанционное управление теплоизлучающими процессами и аппаратами;

теплоизоляция наружных стенок теплоизлучающего оборудования;

устройство защитных экранов, водных и воздушных завес, защищающих рабочее место от теплового облучения.

Норма освещенности рабочих мест устанавливается по разряду и подразряду зрительных работ (в процессе получения динитробензойной кислоты разряд - VIII, подразряд а) и составляет 200 люкс [32].

При разработке систем освещения необходимо максимально использовать естественное освещение (верхнее, боковое).

В помещениях категории А используются системы освещения во взрывобезопасном исполнении.

По характеру спектра шум следует подразделять на [33]:

широкополосный с непрерывным спектром шириной более одной октавы;

тональный, в спектре которого имеются выраженные дискретные тона.

По временным характеристикам шум следует подразделять на:

постоянный, уровень звука которого за 8-часовой рабочий день (рабочую смену) изменяется во времени не более чем на 5 дБ А при измерениях на временной характеристике "медленно" шумомера;

непостоянный, уровень звука которого за 8-часовой рабочий день (рабочую смену) изменяется во времени более чем на 5 дБ А при измерениях на временной характеристике "медленно" шумомера.

Уровень звука и эквивалентный уровень звука на рабочих местах, измеренный по шкале А шумомера, не должен превышать 80дБ [34].

Уровень вибростойкости в октавных полосах частот, измеренные на головке болта, крепящего аппараты к фундаменту или стороительным конструкциям, не должен превышать 92дБ.

При разработке технологических процессов, проектировании, изготовлении и эксплуатации машин, производственных зданий и сооружений, а также при организации рабочего места следует принимать все необходимые меры по снижению шума, воздействующего на человека на рабочих местах, до значений, не превышающих допустимые [34]:

разработкой шумобезопасной техники;

применением средств и методов коллективной защиты;

применением средств индивидуальной защиты.

Архитектурно-планировочные методы защиты от шума включают в себя:

рациональные акустические решения планировок зданий и генеральных планов объектов;

рациональное размещение технологического оборудования, машин и механизмов;

рациональное размещение рабочих мест;

рациональное акустическое планирование зон и режима движения транспортных средств и транспортных потоков;

создание шумозащищенных зон в различных местах нахождения человека.

Организационно-технические методы защиты от шума включают в себя:

применение малошумных технологических процессов (изменение технологии производства, способа обработки и транспортирования материала и др.);

оснащение шумных машин средствами дистанционного управления и автоматического контроля;

применение малошумных машин, изменение конструктивных элементов машин, их сборочных единиц;

совершенствование технологии ремонта и обслуживания машин;

использование рациональных режимов труда и отдыха работников на шумных предприятиях.

Средства индивидуальной защиты от шума в зависимости от конструктивного исполнения подразделяются на:

противошумные наушники, закрывающие ушную раковину снаружи;

противошумные вкладыши, перекрывающие наружный слуховой проход или прилегающие к нему;

противошумные шлемы и каски;

противошумные костюмы.


Охрана окружающей среды


Для обоснования выбора метода очистки необходимо изучить [35]:

технологическую схему процесса, с целью выявления мест, узлов или стадий образования отходов;

количество образующихся отходов в единицу времени;

состав отходов;

химические и физические свойства отходов;

возможность снижения количеств образующихся отходов;

возможность повторного использования отходов и др.

Таблица №33

Характеристика производственных отходов

Наименование отходов Количество в единицу времени, т/ч Агрегатное состояние Наименование вредных примесей Содержание вредных примесей, % Примечание (метод обезвреживания или утилизации)
Маточник 0,15 ж

Серная кислота



20,4

Окисление кислородом воздуха под давлением и при повышенной температуре



г


Окислы азота

0,4 Абсорбция раствором щелочи



тв

Бензойная кислота

2,0

Компостирование в биобарабанах


Отработанный этиловый спирт 0,08 ж Этанол

48,0

Каталитическое дожигание

В качестве примера рассмотрим технологическую схему окисления кислородом воздуха [36]:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Рис.1 Принципиальная схема установки для очистки сточных вод от серосодержащих соединений окислением под давлением:

емкость;

насос;

теплообменник;

трубчатый реактор;

сепаратор.

9. Экономическая оценка проектных решений


Организация производства


Выбор и обоснование режима работы.

Режим работы цеха периодический. Режим работы предполагает работу объекта с остановкой оборудования в выходные и праздничные дни. Предусматривается пятидневная рабочая неделя с двумя сменами по 8 часов, в связи с возможностью прерывания технологического процесса в любое время без ущерба для производства продукции [37].

В данном технологическом процессе не целесообразно останавливать установку на ремонт межцеховых коммуникаций (их ремонт производится во время капитального ремонта).

Условия труда работающих - вредные.

Расчет фонда времени работы оборудования в году.

Годовой фонд времени работы рассчитывается только для основного технологического оборудования, определяющего производственную мощность проектируемого объекта. Расчет проводится путем составления баланса времени работы оборудования в год, в котором последовательно определяют номинальный (режимный) и эффективный фонды времени работы оборудования.

Календарный фонд времени Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год принимаем 365 дней в году.

Номинальный фонд времени Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год определяем путем исключения из календарного фонда времени числа праздничных и выходных дней и часов сокращения рабочих смен в предпраздничные дни. Для всех производств предусматриваются остановки оборудования на 10 праздничных дней. Для определения количества часов, соответствующих количеству дней работы по режиму, число этих дней умножается на продолжительность рабочей смены и на число смен в сутки.

Таблица№34

Баланс времени работы оборудования в году

Элементы времени Производство с периодическим режимом работы

Календарный фонд времени Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год:

в днях

в часах


365

8760

Нерабочие дни по режиму всего

В том числе:

праздничные

выходные

остановки на ремонт коммуникаций

115

11

104


Количество дней работы в году:

по режиму (Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год)

то же в часах


250

4000

Внутрисменные остановки 18
Номинальный (режимный) фонд, час 3982

Планируемые остановки оборудования в рабочие дни, час:

на капитальный ремонт

на текущий ремонт

по технологическим причинам


351

120

ИТОГО: 471

Эффективный фонд времени работы Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год, час

3511

Коэффициент экстенсивного использования оборудования Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

0,41

Эффективный фонд времени работы оборудования в году Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год определяем путем исключения из номинального фонд времени в часах длительности простоя оборудования во всех видах планово-предупредительного ремонта.

Таблица№35 Нормы межремонтных пробегов и простоев оборудования в ремонте

Наименование

оборудования

Нормы пробегов

оборудования между

ремонтами, ч

Нормы простоев

оборудования в ремонте, ч


текущими

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

капитальными

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


текущими

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

капитальными

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Реактор


2100

16800


16

320


Разбавитель


2100

16800


16

320


Кристаллизатор


2100

16800


16

320


Вакуум - фильтр 660 16800 8 160
Пропариватель 660 16800 8 160

На основании принятых норм определяется количество всех видов ремонтов за ремонтный цикл (Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год) и время простоя оборудования в среднем за год.

Количество ремонтов оборудования за ремонтный цикл:

а) общее количество ремонтов (Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год):


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год - количество ремонтов реактора

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год - количество ремонтов разбавителя

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год - количество ремонтов кристаллизатора

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год - количество ремонтов вакуум-фильтра

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год - количество ремонтов пропаривателя


Из общего количества ремонтов за ремонтный цикл один ремонт является капитальным, тогда:

б) количество текущих ремонтов (Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год):


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год - количество текущих ремонтов реактора

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год - количество текущих ремонтов разбавителя

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год - количество текущих ремонтов кристаллизатора

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год - количество текущих ремонтов фильтра

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год - количество ремонтов пропаривателя

Скорректированное количество текущих ремонтов:

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

где Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год - корректирующий коэффициент для двухсменной работы 0,46

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год - количество текущих ремонтов реактора

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год - количество текущих ремонтов разбавителя

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год - количество текущих ремонтов кристаллизатора

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год - количество текущих ремонтов фильтра

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год - количество ремонтов пропаривателя


Время простоя оборудования в ремонтах в среднем за год:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


где Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год - условный календарный годовой фонд времени (8640 часов).

В производствах с периодическим режимом работы проведение всех видов ремонтных работ приурочивается к выходным дням, если нормы простоя оборудования в ремонте не превышают продолжительности выходного дня, то время простоев в этих ремонтах не исключается при определенииПроектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год. Следовательно, в балансе не учитываем нормы простоев в текущем ремонте. Если же нормы простоя оборудования в ремонте превышают продолжительность выходного дня, то в балансе не учитываем время простоев в ремонте, приходящееся на выходные дни.

При норме простоя оборудования в капитальном ремонте 320 часов (20 дней по 16 часов) при 5-дневной рабочей недели по крайней мере 5 дней будут приходиться на выходные.


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/годч. - время простоя реактора

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/годч. - время простоя разбавителя

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/годч. - время простоя кристаллизатора

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/годч. - время простоя фильтра

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/годч. - время простоя пропаривателя


Коэффициент экстенсивного использования оборудования равен:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

Расчет сметной стоимости


Капитальные вложения в проектируемый объект принято называть полной сметной стоимостью этого объекта. Затраты рассчитываются по укрупненным нормативам.

Расчет сметной стоимости зданий и сооружений.

Для определения общей площади цеха необходимо учесть площадь вспомогательных и служебно-бытовых помещений. Их площадь может быть ориентировочно определена в процентах к размеру производственных площадей: вспомогательных помещений-35%, служебно-бытовых-25%. Высота производственных и вспомогательных помещений зависит от габаритов и расположения оборудования, а для служебно-бытовых она принимается 3м.

Так как строительный объем зданий определяется по наружному обмеру, то (для учета высоты ферм и толщины стен и перекрытий) объем зданий, следует увеличить для производственных и вспомогательных помещений на 10%, для служебно-бытовых на 20%.

Капитальные вложения на строительство зданий и сооружений (их полная сметная стоимость) складывается из затрат на общестроительные работы (укладка фундаментов, возведение стен, перекрытий и т.п.), на санитарно-технические и прочие строительные работы (устройство отопления, водопровода, канализации, освещения, противопожарной защиты, вентиляции и т.п.), и так называемых, вне объёмных затрат (подготовка и благоустройство территории, проектно-изыскательские работы, сезонное удорожание строительных работ и т.д.).

Капитальные затраты на общестроительные работы определяется по укрупненным показателям затрат на Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год зданий или сооружений.

Капитальные затраты на санитарно-технические и прочие строительные работы составляют 30% для производственных, 15% для служебно-бытовых помещений и 10% для сооружений.

Внеобъёмные затраты принимаем в размере 40% к сумме затрат на общестроительные, санитарно-технические и прочие строительные работы.

Нормы амортизационных отчислений для зданий принимаем 1.5%, для сооружений - 4%.


Таблица №36

Расчет капитальных затрат на строительство зданий и сооружений

Наименование зданий и сооружений Тип строительных конструкций зданий и сооружений Строительный объём, м3 Укрупненная стоимость общестроительных работ, руб. Общая стоимость общестроительных работ тыс., руб. Санитарно-технические и прочие работы, тыс. руб. ИТОГО, тыс. руб. Внеобъёмные затраты, тыс. руб. Полная сметная стоимость, тыс. руб. Годовая сумма амортизационных отчислений. Норма, %. Годовая сумма амортизационных отчислений, тыс. руб.
Здания: производственные и вспомогательные

Железобетонные


2376,0

2500,0


5940,0 1782,0 7722,0 3088,8 10810,8 1,5 162,2
Служебно-бытовые

Железобетонные


829,4
2073,5 311,1 2384,6 953,8 3338,4
50,1
ИТОГО




10106,6
14149,2
212,3

Расчет сметной стоимости оборудования.

Общая величина капитальных затрат на оборудование определяется как сумма капиталовложений в технологическое оборудование, КИП и средства автоматизации, технологические внутрицеховые трубопроводы, инструменты, приспособления и производственный инвентарь и электрооборудование.

Капиталовложения в технологическое оборудование (его сметная стоимость) складываются из затрат на приобретение оборудования, его доставку (транспортные и заготовительно-складские расходы) и монтаж (включая футеровку, изоляцию и антикоррозийные покрытия).

Затраты на приобретение технологического оборудования рассчитываются на основе спецификации, составленной при выборе оборудования в курсовом проекте по технологии и действующих оптовых цен на оборудование.

Затраты на доставку технологического оборудования и его монтаж примем в размере 29% от затрат на приобретение оборудования.

Годовая сумма амортизационных отчислений - 15%.

Поскольку в спецификации оборудования указывается только основное технологическое оборудование, то к его сметной стоимости необходимо сделать надбавку на неучтенное технологическое и транспортное оборудование в размере 40%.

Капитальные затраты на приобретение и монтаж КИП и средств автоматизации, технологических трубопроводов, инструмента, приспособлений и производственного инвентаря принимаем соответственно 10, 16 и 7%.

Капитальные затраты на приобретение и монтаж силового электрооборудования рассчитываем исходя из суммарной мощности установленного силового электрооборудования и укрупненного показателя удельных капиталовложений на 1 кВт установленной мощности, принимаем его в размере 1900 руб. /кВт. Четыре электродвигателя установки потребляют в общей сложности 40 кВт электроэнергии.

Годовая амортизация составляет:

основное технологическое оборудование по нормам;

КИП и средства автоматизации 10%;

технологические и внутрицеховые трубопроводы 8%;

инструменты, приспособления, инвентарь 10%;

силовое электрооборудование 7%.


Таблица №37

Расчет капитальных затрат на оборудование

Наименование оборудования и его краткая характеристика Количество единиц оборудования Оптовая цена единицы оборудования, тыс. руб. Сумма затрат на приобретение оборудования, тыс. руб. Дополнительные затраты на доставку и монтаж, % Дополнительные затраты на доставку и монтаж, тыс. руб. Сметная стоимость, т. руб. Годовая сумма амортизационных отчислений. Норма, %. Годовая сумма амортизационных отчислений. Сумма, т. руб. Примечание
Основное технологическое и подъёмно-транспортное оборудование:







Оптовая цена из задания
Аппарат с мешалкой V=1м3 1 183,4 183,4 29 53,2 236,6 15 35,5
Аппарат с мешалкой V=3,2м3 1 584,2 584,2 29 169,4 753,6 15 113,1
Аппарат с мешалкой V=0,63м3 2 126,0 252,0 29 73,1 325,1 15 48,8
Сборник V=0,63м3 2 52,4 60,3 29 17,5 77,8 15 11,7
Сборник V=0,32м3 1 27,1 27,1 29 7,9 35,0 15 5,2
Сборник V=2,5м3 2 265,3 530,6 29 153,9 684,5 15 102,6
Фильтр 3 385,0 1155,2 29 335,1 1490,3 15 223,5
Мерник V=0,32м3 3 73,0 219,0 29 63,5 282,5 15 42,3
Мерник V=0,08м3 3 36,7 110,1 29 32,0 142,1 15 21,3
ИТОГО:

3121,9

4030,5
604,0
Неучтённое технологическое и подъёмно-транспортное оборудование:




1612,2 15 241,8 40% от сметной стоимости основного оборудования

ИТОГО:

технологическое и подъёмно-транспортное оборудование.






5642,7
845,8
КИП и средства автоматизации




564,2 10 56,4
Технологические внутрицеховые трубопроводы




902,8 8 72,2
Инструменты, приспособления, производств. Инвентарь




395,0 10 39,5
Силовое электро- оборудование




76,0 7 5,3

1900

р. /кВт

Всего капитальных затрат на оборудование




7580,7
1019,2

На основании приведенных выше расчетов составим сводную смету капитальных вложений в проектируемый объект, определим структуру основных фондов, сумму амортизационных отчислений и удельное капиталовложения на единицу продукции.


Таблица №38

Сводная смета капитальных вложений в проектируемый объект

Элементы основных фондов Сметная стоимость основных фондов, т. руб. Сметная стоимость основных фондов, %.

Удельные капиталовложения,

руб/кг.

Годовая сумма амортизационных отчислений, т. руб.
Здания и сооружения 14149,2 65,0
212,3
Оборудование 7580,7 35,0
1019,2
ИТОГО: 21729,9 100 1671,5 1231,5

Удельные капиталовложения рассчитываются на единицу продукции:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/годруб/кг.


Расчёт численности работающих


Составление баланса рабочего времени одного среднесписочного рабочего.

Численность трудящихся проектируемого объекта рассчитывается по категориям и группам работников: основные рабочие, вспомогательные рабочие (включая дежурный и ремонтный персонал), инженерно-технические работники, служащие и младший обслуживающий персонал.

Баланс рабочего времени составляется в днях и часах для групп рабочих, имеющих одинаковые режимы работы с целью определения эффективного фонда времени работы в году и средней продолжительности рабочей смены одного среднесписочного рабочего.

Режим работы установки периодический, рабочие работают 2 смены, 8 - ми часовая рабочая смена.

Номинальный фонд рабочего времени в часах (Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год) определяется умножением этого фонда в днях (Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год) на продолжительность рабочей смены.

Эффективный фонд рабочего времени в днях (Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год) представляет собой разницу между номинальным фондом и количеством целодневных невыходов на работу (в днях) в связи с очередными отпусками. Умножением эффективного фонда рабочего времени в днях на продолжительность рабочей смены определяется максимальное количество рабочих часов в год на одного среднесписочного рабочего (Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год).

Средняя продолжительность рабочей смены определяется делением эффективного фонда рабочего времени в часах на эффективный фонд в днях.


Таблица №39

Баланс рабочего времени одного среднесписочного рабочего

Элементы времени Производство с периодическим режимом
Календарный фонд времени T, дни 365

Нерабочие дни всего

в том числе:

праздничные

выходные

115

11

104

Номинальный фонд рабочего времени, Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год:

в днях, Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

в часахПроектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год,


250

2000

Целодневные невыходы на работу, Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год:

очередные и дополнительные отпуска

невыходы на работу по болезни

отпуска учащимся

декретные отпуска


26

8

2

1

ИТОГО целодневных невыходов 37

Эффективный фонд рабочего времени Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

213

Максимальное кол-во рабочих часовПроектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/годв год

1704

Внутрисменные потери рабочего времени:

В предпраздничные дни

Кормящим матерям и подросткам


9

10

ИТОГО: 19

Эффективный фонд рабочего времени Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год

1685
Средняя продолжительность рабочей смены, ч 7,91

Расчет численности основных производственных рабочих.

К основным производственным рабочим относятся рабочие основных цехов, выполняющие основные (технологические) операции.

При аппаратурных процессах производства применяются два вида обслуживания оборудования:

а) зонно-агрегатное обслуживание;

б) комплексно-технологическое взаимозаменяемое обслуживание (КВО).

При зонно-агрегатном обслуживании за каждым рабочим (бригадой) закрепляется отдельный аппарат, или группа однотипного оборудования, или зона обслуживания, включающая как основное технологическое оборудование (реактор, печь, и т.п.), так и вспомогательное оборудование (мерники, насосы, бункера, сборники, накопители, и т.п.). При зонно-агрегатном обслуживании численность рабочих определяется по нормам обслуживания (Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год) аппаратов и машин. Необходимо рассчитать норму обслуживания для узла нитрования. Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год рассчитываем как отношение времени оперативной работы рабочего за смену (Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год) к времени оперативной работы по обслуживанию одного аппарата в смену (Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год)


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Время оперативной работы за смену рассчитывается путем вычитания из продолжительности смены (Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год=8ч.) устанавливаемых по проектируемому балансу нормируемых затрат времени на работу подготовительно-заключительную (Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год) и по обслуживанию рабочего места (Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год), а также перерывов на отдых и личные надобности (Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год). Примем, что Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год-7%, Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год-10%, Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год-10% от длительности смены.


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/годч.


Таблица №40

Расчет времени оперативной работы аппаратчика процесса нитрования за цикл

Наименование трудовых операций Периодичность выполнения операций Количество операций за цикл Средняя продолжительность операций Общее время на выполнение операций за смену, мин.
Подготовка аппарата Каждые 16 часов 1 90 90
Контроль температуры Каждые 20 мин. 48 5 240
Контроль давления газов Каждые 16 часов 1 30 30
Отбор пробы на анализ Каждые 16 часов 1 30 30
ИТОГО:


390

За смену время оперативной работы:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год,


где Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год - количество циклов за смену


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/годмин.


При комплексно-технологическом взаимозаменяемом обслуживании бригада основных рабочих различных специальностей на основе совмещения профессий обслуживает целый комплекс аппаратов и машин как единый объект.

Этот комплекс может охватывать весь технологический процесс в цехе или его часть - на участке, в отделении.

На данной установке применяется зонно-агрегатное обслуживание, в соответствии с выбранным видом обслуживания рассчитываем численность основных производственных рабочих.

Затем, с учетом Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год и количества аппаратов определяем явочный состав рабочих в смену:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год,


где Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год - число аппаратов, обслуживаемых одним рабочим.

Явочный состав рабочих в сутки определяем по формуле:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год,


где Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год - число смен в сутки.

Штатный состав для периодического процесса равен явочному составу:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год.


Для расчета списочного состава необходимо рассчитать коэффициент списочного состава Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год, учитывающий число резервных рабочих на подмену находящихся в отпуске, больных и т.п.


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Списочный состав рабочих определяем по формуле:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Списочный состав рабочих рассчитанный умножением Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год на коэффициент списочного состава округляется до целого числа таким образом, чтобы суммарная списочная численность основных рабочих была равна произведению их суммарной штатной численности на Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год.

Таблица №41

Расчет численности рабочих по нормам обслуживания

Наименование профессий и специальностей Тарифный разряд Норма обслуживания Количество аппаратов Явочный состав рабочих в смену Количество смен в сутки Явочный состав рабочих в сутки Штатный состав Коэффициент списочного состава Списочный состав
Аппаратчик нитрования 5 2 2 1 2 2 2 1, 19 3
Аппаратчик кристаллизации 4 2 2 1 2 2 2 1, 19 3
Аппаратчик фильтрации 4 2 3 2 2 4 4 1, 19 4
Всего






8



10
Вспомогательные








Слесарь по ремонту 5 - - 2 2 2 4 1, 19 5
Лаборант 4 - - 2 2 2 4 1, 19 4
Слесарь КИП 5 - - 2 2 2 4 1, 19 5
Всего





12
14

Расчет численности ИТР, служащих и МОП.

Для расчета численности трудящихся этих категорий необходимо установить рациональную схему управления цехом.

В соответствии со схемой управления составляется штатное расписание цеха с перечнем всех должностей и указанием числа штатных единиц.


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Таблица №42

Расчет численности ИТР, служащих и МОП

Наименование должностей Категория Число штатных единиц в смену Количество смен Штатная численность, чел.
Начальник цеха ИТР 1 1 1
Главный механик ИТР 1 1 1
Начальник лаборатории ИТР 1 2 2
Старший мастер ИТР 1 2 2
Кладовщик МОП 1 2 2
Уборщица МОП 1 2 2
ИТОГО:


10

Расчет производительности труда


Производительность труда рассчитывается в натуральном выражении как выработка в год на одного рабочего Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год, на одного основного рабочего Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год и на одного работающего в целом Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год.

Производительность труда определяется как по проектируемому объекту, так и по базисному предприятию, принимаемому в качестве аналога.


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год,


где Q - годовой выпуск продукции в натуральном выражении (т, шт., м2 и т.п.)

Л - списочная численность работников

Производительность труда основных рабочих:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/годт/чел.


Производительность труда основных и вспомогательных рабочих:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год т/чел.


Производительность труда основных, вспомогательных рабочих, ИТР, служащих и МОП:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год т/чел.

Расчет фонда заработной платы работающих


Расчет фонда заработной платы рабочих.

В таблице профессии, специальности, тарифные разряды, условия труда, численность рабочих и эффективный фонд времени их работы принимаются в соответствии с предыдущими расчетами. Формы и системы оплаты труда и соответствующие им тарифные ставки, а также размер премий (в %) принимаются:

форма оплаты труда повременно-премиальная;

премия 30% от фонда прямой заработной платы;

В таблице последовательно рассчитываются прямой (тарифный), часовой, дневной, годовой фонды заработной платы рабочих. Для определения размеров часового, дневного и годового фондов заработной платы предварительно рассчитываются доплаты до часового, до дневного и до годового фондов.

К числу рассчитываемых доплат до часового фонда относятся:

премии;

доплаты за работу в вечернее и ночное время;

за работу в праздничные дни;

бригадирам за руководство бригадой;

оплата очередных и дополнительных отпусков.

Прямой, часовой, дневной и годовой фонды заработной платы рассчитываются в следующем порядке.

Сначала определяется эффективный фонд рабочего времени всех рабочих (Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год) как произведение эффективного фонда времени одного среднесписочного рабочего (в днях или часах - по балансу рабочего времени) на списочную численность рабочих.

динитробензойная кислота оборудование стандартизация

Прямой (тарифный фонд) (Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год) заработной платы определяется умножением часовой тарифной ставки (Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год) на эффективное время работы в часах всех рабочих соответствующей профессии и квалификации:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Размер премий из фонда заработной платы (Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год) исчисляется в определенном проценте от прямого фонда (на основании премиальных положений, существующих на действующих предприятиях).


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год,


где Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год - установленный согласно премиальному положению процент премий из фонда заработной платы для данной группы рабочих (30%).

Доплата за работу в вечернее и ночное время предусматривается при двух и более сменной работе.

Число вечерних смен на одного рабочего определяется следующим расчетом: Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год,


где Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год - соответственно число целодневных невыходов на работу, выходных и праздничных дней;

1/3 - коэффициент, учитывающий число вечерних смен в сутки

Количество вечерних часов подлежащих отработке всеми рабочими данной профессии:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год,


где Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год - продолжительность вечерней смены, ч.

Доплата за работу в вечернее время:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год,

где Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год - коэффициент доплат к тарифной ставке за каждый час вечерней работы (при равномерном распределении вечерних и часов (Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год).

Доплата не освобожденным бригадирам за руководство бригадой устанавливается в размере 10-15% от прямого фонда их заработной платы.

После расчета всех видов доплат до часового фонда определяется часовой фонд заработной платы (как сумма прямого фонда и доплат до часового фонда) и среднечасовая заработная плата (путем деления часового фонда на эффективный фонд времени всех рабочих данной специальности в часах).

Доплаты за перерывы кормящим матерям и сокращенные часы работы подросткам (Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год) рассчитываются по среднечасовой заработной плате:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год,


гдеПроектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год - среднечасовая заработная плата, руб.

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год - перерывы кормящим матерям и сокращенные часы подросткам, час.

Дневной фонд заработной платы определяется как сумма часового фонда и доплат до дневного фонда. Среднедневная заработная плата определяется делением дневного фонда на фонд рабочего времени всех рабочих данной специальности.

Доплата за очередные и дополнительные отпуска (Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год) определяется по формуле:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год,


где Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год - среднедневная заработная плата, руб.;

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год - количество дней очередного и дополнительного отпуска (27 дней), дни.

Годовой фонд заработной платы рабочих определяется как сумма дневного фонда и доплат до годового фонда.

Условия труда для всех категорий работающих принимаются как вредные, оплата-повременно - премиальная.

Расчет фонда заработной платы ИТР, служащих и МОП.

Должностные оклады приняты по данным действующего предприятия. Для ИТР, непосредственно связанных с процессом производства и работающих во вредных условиях, предусматриваются доплаты за вредность в размере 20% к должностному окладу.

Годовой фонд заработной платы по окладам определяется умножением месячных должностных окладов с учетом доплат за вредность на штатную численность работников и на 12 месяцев.

Премии ИТР, служащим и МОП выплачиваются из фонда заработной платы. Размер премии (20%) исчисляется в % к фонду оплаты труда по окладам с учетом доплат за вредность.

Полный годовой фонд заработной платы определяется как сумма годового фонда заработной платы по окладам, доплат за вредность и работу в праздничные дни и премий.

Таблица №44

Расчет фонда заработной платы ИТР, служащих и МОП

№ п/п Должность Категория Месячный должностной оклад, руб. Доплата за вредность, руб. Штатная численность Годовой фонд заработной платы по окладам, т. руб. Премии из фонда заработной платы т. руб. Полный годовой фонд заработной платы, т. руб.
1 Начальник цеха ИТР 32000 6400 1 460,8 92,1 552,9
2 Главный механик ИТР 23000 4600 1 331,2

66,2

397,4
3 Начальник лаборатории ИТР 20000 4000 2 576,0 115,2 691,2
4 Старший мастер ИТР 18000 3600 2 518,4 103,7 622,1
5 Кладовщик МОП 15000 3000 2 432,0 86,4 518,4
6 Уборщица МОП 7000 1400 2 201,6 40,3 241,9

ИТОГО



2520,0
3023,9


Сводные показатели по труду и заработной плате.

В завершение расчета численности и фонда заработной платы трудящихся проектируемого объекта составляется сводная таблица показателей по труду и заработной плате. Рассчитанные в этой таблице показатели производительности труда и среднегодовой заработной платы используются в дальнейшем для технико-экономической характеристики проектируемого объекта.

Среднегодовая заработная плата рассчитывается путем деления полного годового фонда заработной платы на списочную численность работников соответствующей категории.

Таблица №45

Сводные показатели по труду и заработной плате

Категория работников

Списочная численность


Производительность труда, т/чел Полный годовой фонд заработной платы, тыс. руб. Среднегодовая заработная плата, тыс. руб.

Чел.


%


1. Рабочие всего:


24 70,6 0,9 5549,0 231,2
В том числе:




Основные 10 29,4 1,3 2292,9 229,2
Вспомогательные 14 41,2 - 3256,1 232,5
2. ИТР, служащие, МОП 10 29,4 - 3023,9 302,4
Итого трудящихся 34 100 0,5 8572,9 252,1

Расчет годового расхода электроэнергии


Определим годовой расход электроэнергии на технологические и двигательные цели, расход на калькуляционную единицу продукции и рассчитаем по двухставочному тарифу себестоимость единицы электроэнергии.

На установке действуют:

5 электродвигателей к аппаратам;

Т.к. производство периодическое, то коэффициент одновременности загрузки примем 0,8.

Примем коэффициент среднего использования максимальной мощности электрооборудования 0,90.

Тогда коэффициент спроса равен Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год.

Примем коэффициент увеличения заявленной мощности за счет потерь электроэнергии в оборудовании и кабельных сетях равным 1,1.

Таблица №46

Расчет годового расхода электроэнергии

Примем расход электроэнергии на неучтенное электрооборудование 20% от заявленной мощности силового электрооборудования

Для расчета себестоимости электроэнергии по двухставочному тарифу определим плата за всю электроэнергию (Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год), получаемую в год от энергосистемы, учитывая затраты предприятия на содержание собственного энергохозяйства:


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год,


где Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год - суммарная заявленная мощность электрооборудования, кВт;

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год - годовой расход электроэнергии, тыс. кВт*ч;

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год - основная плата за каждый кВт заявленной мощности, руб. (1900Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год);

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год - дополнительная плата за каждый кВт*ч потребленной электроэнергии, руб. (0,75Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год);

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год - коэффициент, учитывающий затраты на содержание энергохозяйства предприятия (Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год).


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год тыс. рублей/год.


Рассчитаем себестоимость 1кВт*ч электроэнергии, используемой проектируемым объектом (Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год):


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год,


где Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год - годовой расход электроэнергии, кВт*ч.


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год.


Расчет сметы “Расходов на содержание и эксплуатацию оборудования”


Основная и дополнительная плата дежурного и ремонтного персонала принимается из расчета фонда заработной платы. Отчисления на социальные нужды составляют 26% от заработной платы этих рабочих. Расходы на содержание производственного оборудования принимаются в размере 3%, а затраты на ремонт в размере 15% от его полной сметной стоимости.

Амортизационные отчисления на реновацию от стоимости производственного оборудования включаются в смету в соответствии с расчетами, выполненными при определении капитальных вложений.

Прочие расходы, связанные с содержанием и эксплуатацией производственного оборудования, принимаются в размере 20% от суммы всех предыдущих затрат по данной смете.


Таблица №47

Смета “ Расходов на содержание и эксплуатацию оборудования”.

Наименование статей расходов Исходные данные для расчета Сумма, тыс. руб.
Основная и дополнительная зарплата дежурного и ремонтного персонала Таблица 10 2403,0
Отчисления на социальные нужды 26% от зарплаты 624,8
Содержание производственного оборудования 3% от сметной стоимости 227,4
Ремонт производственного оборудования 15% от сметной стоимости 1137,1
Амортизация производственного оборудования Таблица 4 1019,2
Прочие расходы на содержание и эксплуатацию оборудования 20% от суммы предыдущих затрат 1082,3
ИТОГО:
6493,8

Расчет сметы “Общецеховые расходы”


Для определения годовой величины “Общецеховых расходов” составляется смета.

В этой смете заработная плата цехового персонала (ИТР, служащих, МОП) и вспомогательных рабочих (кроме дежурных и ремонтных рабочих) принимается из предыдущих расчетов; отчисления на социальные нужды 26% от их заработной платы. Затраты на содержание зданий и сооружений принимаются в размере 4,0 %, а затраты на их ремонт 5 % к полной сметной стоимости зданий и сооружений.

Амортизационные отчисления на реновацию от стоимости зданий и сооружений включаются в смету в соответствии с расчетами, выполненными при определении капиталовложений.

Расходы на охрану труда и технику безопасности исчисляются в процентах от суммы основной и дополнительной заработной платы всех работающих. При вредных условиях труда 15%.

Прочие общецеховые расходы принимаем в размере 20% от суммы затрат по предыдущим статьям цеховых расходов.


Таблица №48

Смета “Общецеховые расходы”

Наименование статей расходов Исходные данные для расчета Сумма, тыс. руб.
Содержание цехового персонала: Таблица 11

3023,9


Основная и дополнительная зарплата ИТР, служащих, МОП.




Основная и дополнительная заработная плата вспомогательных рабочих Таблица 10 853,1
Отчисления на социальные нужды 26% от зарплаты 1008,0
Содержание зданий и сооружений 4% от стоимости зданий 566,0
Ремонт зданий и сооружений 5% от стоимости здания 707,5
Амортизация зданий и сооружений Таблица 3 212,3
Расход по охране труда 15% от з/п всех работающих 1285,9
Прочие общецеховые расходы 20% от суммы предыдущих затрат 1531,3
ИТОГО:
9188,2

Расчет проектной себестоимости продукции


Выпускаемая продукция является товарной, соответственно необходимо рассчитать ее полную себестоимость. Для расчета себестоимости продукции или затрат на передел составляется проектная калькуляция, в которой последовательно определяются затраты по каждой статье на годовой выпуск продукции и на калькуляционную единицу. Нормы расхода сырья и основных материалов на калькуляционную единицу продукции, принимаются по данным режимных листов установки.

Планово-заготовительные цены принимаются по данным действующего предприятия.

Затраты на вспомогательные материалы рассчитываются аналогично затратам на сырье и основные материалы.

При расчете затрат на топливо и энергию, расходуемые на технологические цели, нормы расхода, цены и тарифы на все виды топлива и энергетических средств (кроме электроэнергии) приняты по аналогии с действующим производством.

В статью “Заработная плата основных производственных рабочих" включена основная и дополнительная заработная плата этих рабочих, рассчитанная в соответствующем разделе предыдущих расчетов.

Отчисления на социальные нужды (ЕСН) рассчитываются в процентах к заработной плате основных производственных рабочих (26%).

“Расходы на подготовку и освоение производства” принимаются в размере 30% от сметной стоимости основного технологического оборудования.

Суммируя расходы смет “Расходов на содержание и эксплуатацию оборудования” и “Общецеховые расходы”, определяем годовую сумму “Общепроизводственных расходов” цеха.

Затраты по статье “Общехозяйственные расходы" принимаем 30% от суммы всех расходов на передел (которые определяются как сумма затрат по статьям “Топливо и энергия”, “Заработная плата”, “Отчисления на социальные нужды" и “Общепроизводственные расходы”).

“Прочие производственные расходы" принимаем 3% от суммы затрат по всем предыдущим статьям расходов. Для расчета общезаводских и прочих производственных расходов принимаем их размер 20% от суммы затрат по всем предыдущим статьям расходов.

Абсолютный размер “Коммерческих расходов” на единицу данной продукции принимаем 1,2% от производственной себестоимости.


Таблица №49

Проектная калькуляция себестоимости производства 3,5-динитробензойной кислоты. Проектируемый годовой выпуск 13 тонн в год. Калькуляционная единица 1 тонн

№ п/п Наименование статей затрат Единицы измерения Планово-заготовительная цена единицы, руб. Затраты на годовой выпуск продукции Затраты на калькуляционную единицу




Количество Сумма, тыс. руб. Количество Сумма, тыс. руб.
1 Сырье и материалы:






а) олеум Кг 0,8 106272,4 85,0 8174,8 6,5

б) азотная кислота кг 7,0 26215,8 183,5 2016,6 14,1

в) бензойная кислота кг 45,0 19526,0 878,7 1502,0 67,6

г) этиловый спирт кг 75,3 65648,7 4943,3 5049,9 380,2

Итого:


6090,5
468,4

Вспомогательные материалы:






а) фильтровальная ткань м 10 1848 18,5 142,1 1,4

б) полиэтиленовые пакеты шт 5 1680 8,4 129,0 0,6
2 Топливо и энергия на технологические цели






а) электроэнергия кВт*ч 0,6 354675 212,8 27282,7 16,3

б) вода м3 26,0 23481 610,5 1806,2 46,7

в) сжатый воздух м3 20 1764 35,3 135,7 2,7

г) пар Гкал 500 2520 1260,0 193,8 96,9

ИТОГО:


8236,0
633,5
4 Заработная плата основных производственных рабочих руб.

2292,9
176,3
5 Отчисления на социальные нужды (ЕСН) руб.

596,1
45,8
7 Общепроизводственные расходы руб.

15682,0
1206,3
8 Итого цеховая себестоимость руб.

26807,0
2062,1
9 Расходы на передел руб.

20689,6
1591,5
10 Общехозяйственные расходы (15% от расходов на передел) руб.

3103,4
238,7
11 Прочие производственные расходы (3% от предыдущих статей) руб.

2322,2
178,6
12 ИТОГО себестоимость производства руб.

52922,2
4070,9
13 Коммерческие расходы (1,5% от себестоимости производства) руб.

793,8
61,1
14 Полная себестоимость продукции руб.

53716,0
4132,0
15 Оптовая цена продукции руб.

59087,6
4545,2

Технико-экономические показатели и определение экономической эффективности проектируемого производства


При составлении сводной таблицы часть показателей переносится в нее из расчетов, выполненных в предыдущих разделах курсового проекта, а другие показатели рассчитываются непосредственно при составлении таблицы.

1. Годовой выпуск продукции в оптовых ценах (Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год):


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год,


где Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/годгодовой выпуск продукции, натуральные единицы; Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год оптовая цена единицы продукции, руб.

2. Нормируемые оборотные средства (Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год):


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год,


где Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год - основные производственные фонды, руб.; Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/годдоля основных фондов в общей сумме производственных фондов (80%); Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/годто же, нормируемых оборотных средств (20%), %.

3. Прибыль от реализации продукции (Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год):


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год,


где Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/годполная себестоимость единицы продукции, руб.

4. Чистая прибыль (Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год):


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год,


где Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год - централизованно установленная ставка налога на прибыль (24%),%.

5. Рентабельность:

а) производственных фондов:

по среднегодовой прибыли (Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год):


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


по чистой прибыли (Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год):


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


б) продукции (Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год):


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


5. Срок окупаемости капиталовложений:

по прибыли от реализации (Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год):


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год,


где Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/годобщая сумма капиталовложений в основные и оборотные производственные фонды проектируемого объекта (Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год), руб.

по чистой прибыли (Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год):


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год.


7. Фондоотдача основных фондов (Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год):


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год или Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год.


Таблица №50

Сводная таблица основных технико-экономических показателей

Наименование показателей Значение показателей по проекту
Годовой выпуск продукции:
-в натуральном выражении, т 13
- в оптовых ценах, тыс. руб. 59087,6
-по себестоимости, тыс. руб. 53716,0
Капитальные затраты на основные фонды, тыс. руб.: 21729,9
-здания и сооружения 14149,2
-оборудование 7580,7
Нормируемые оборотные средства, тыс. руб.: 5432,4
Удельные капиталовложения, тыс. руб. /т 1671,5
Численность работающих: 34
-рабочих 24
из них - основных 10
- ИТР, служащие, МОП 10
Производительность труда:
-выработка на одного работающего, т/чел. 0,5
-выработка на одного рабочего, т/чел. 0,9
Средняя годовая заработная плата:
-одного работающего, тыс. руб. 252,1
-одного основного рабочего, тыс. руб. 229,2
Полная себестоимость единицы продукции, тыс. руб. 4132,0
Оптовая цена единицы продукции, тыс. руб. 4545,2
Прибыль (годовая сумма), тыс. руб. 5371,6
Чистая прибыль, тыс. руб. 4082,4
Рентабельность:

-производственных фондов, %

по чистой прибыли

19,7

15,0

-продукции, % 10,0

Срок окупаемости капиталовложений, годы

по чистой прибыли

5

7

Фондоотдача, руб. /руб. 2,7

Экономическая эффективность производства может быть оценена путем расчета точки безубыточности, характеризующий минимальный объем реализации продукции Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год, при котором выручка от реализации совпадает с затратами на производство и реализацию продукции.

1) аналитический способ


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год,


где Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год - максимальный объем производства продукции, соответствующий принятой производственной мощности объекта, натуральные единицы;

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год-условно-постоянные расходы в себестоимости единицы продукции, руб.;

Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год - условно-переменные расходы в себестоимости единицы продукции, руб.;


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/годт


2) графический метод

На горизонтальной оси графика откладываем проектируемый объем производства в натуральном выражении, а на вертикальной оси - годовой выпуск продукции в денежном выражении (в оптовых ценах и по полной себестоимости)


Проектирование мастерской по производству 3,5-динитробензойной кислоты мощностью 13 тонн/год


Точка пересечения прямых, выражающих соответственно годовой выпуск по полной себестоимости и в оптовых ценах будет указывать точку безубыточности. Проекция этой точки на горизонтальную ось графика показывает минимальный годовой выпуск продукции в натуральных единицах (7,8 т), при котором производство данной продукции становится для предприятия безубыточным. Проекция на вертикальную ось графика показывает этот же выпуск, исчисленный в оптовых ценах и по себестоимости.

Выводы по проекту


В данном дипломном проекте был разработан возможный вариант производственного цеха по получению 3,5-динитробензойной кислоты. Был создан возможный проект периодического производства продукта с малой производительностью - 13 тонн/год. В ходе выполнения курсового проекта были произведены расчеты:

материального баланса (суточного, операционного и на одну тонну готовой продукции);

теплового баланса;

выбрано основное и вспомогательное оборудование.

При расчете материального баланса было установлено, что количество азотной кислоты, приведенное в методике [8], недостаточно ввиду значительного количества образующихся нераскисленных орто - и пара-нитробензойных кислот и непрореагировавшей мета - нитробензойной кислоты. В результате был произведен перерасчет материального баланса на количество азотной кислоты достаточного для полного раскисления кислот.

При проектировании цеха объемно-планировочное решение здания было продиктовано требованиями технологического процесса и габаритами оборудования. Производственное оборудование размещено с учетом удобства его эксплуатации и ремонта. При проектировании производственного объекта учтены пожарные требования, требования ГО и санитарно-гигиенические нормы.

При выборе приборов и средств автоматизации учитывались условия функционирования приборов и систем (степень пожаро- и взрывоопасности процесса, агрессивность среды и т.п.), предельные значения и диапазон изменения параметров процесса, требования к точности контроля и регулирования, надежности и другие факторы. При проектировании схемы преимущественно выбирались самые распространённые средства автоматизации.

Была дана объективная оценка влияния химических веществ, применяемых в производстве, на окружающую среду. Также были предложены методы минимизации вредного воздействия химических веществ на окружающую среду и возможные варианты утилизации отходов производства.

В ходе расчета экономической части были определены: сметная стоимость основных зданий и сооружений, численность основных и вспомогательных рабочих, МОП, служащих и ИТР, их заработная плата, а также была рассчитана проектная калькуляционная себестоимость единицы готовой продукции. На основании экономического анализа полученных результатов для разрабатываемого цеха необходимо сделать вывод, о возможной целесообразности строительства проектируемого объекта, как вследствие не только высокой рентабельности производства, так и низкого срока окупаемости капиталовложений.

Список использованной литературы


Беркман Б.Е. Промышленный синтез ароматических нитросоединений и аминов. - М.: Химия, 1964. - 344с.

Горелик М.В., Эфрос Л.С. Основы химии и технологии ароматических соединений. - М.: Химия, 1992. - 640с.

Чекалин М.А., Пасет Б.В. Технология органических красителей и промежуточных продуктов: Учебное пособие для техникумов. - Л.: Химия, 1980. - 472с.

Фоейр Г. Химия нитро - и нитрозогрупп. - М.: Мир, 1972. - 523с.

Альперт Л.З. Основы проектирования химических установок. - М.: Высшая школа, 1989. - 304с.

Ворожцов Н.Н. Основы синтеза промежуточных продуктов и красителей. - Л. - М.: ОНТИ, 1934. - 540с.

Горст А.Г. Изготовление нитросоединений. - Киев: Оборонкнига, 1939. - 623с.

Беляков С.А. Получение 3,5-динитробензойной кислоты. - Украинский химический журнал, т.50 - Киев, 1984. - 995с.

Веретенников Е.А. Введение в курсовое и дипломное проектирование: Методические указания. - СПбГТИ (ТУ) - СПб., 2003. - 54с.

Справочник химика - 1,2 том. - Л., Химия, 1963.

Краткий справочник физико-химических величин. Под ред.А. А. Равделя. - Л.: Химия, 1983. - 232с.

Романков П.Г., Павлов К.Ф., Носков А.А. Примеры и задачи по курсу процессов и аппаратов химической технологии. Л.: Химия, 1987. - 576 с.

Вертикальные аппараты с перемешивающими устройствами: Каталог/ ЦИНТИ ХИМНЕФТЕМАШ.М., 1971.

Емкостные стальные сварочные аппараты: Каталог/ ЦИНТИ ХИМНЕФТЕМАШ.М., 1982.

ОСТ 26-01-1228-76. Приводы вертикальные для аппаратов с перемешивающими устройствами.

Нестандартизованное оборудование производств спецхимии. Каталог. - М.: ЦНИИНТИ.М., 1985. - 67 с.

Софинский И.Д. Основы промышленного строительства и санитарной техники. - М.: Стройиздат, 1975. - 237 с.

ГОСТ 12.0.003-74 ССБТ. Опасные и вредные производственные факторы. Классификация.

ГОСТ 12.1.005-88 ССБТ. Общие санитарно-гигиенические требования к воздуху рабочей зоны.

Пожаровзрывоопасность веществ и материалов и средства их тушения. Справочник в 2-х частях/под ред.А.Я. Корольченко. - М.: Пожнаука, 2000 - ч.1 - 709с.; ч.2 - 757 с.

Вредные вещества в промышленности. т.1, 2,3. / под ред. Н.В. Лазарева. - М.: Химия, 1976, 1977.

ГОСТ 12.3.002-75 ССБТ. Процессы производственные. Общие требования безопасности.

ГОСТ 12.2.003-91 ССБТ. Оборудование производственное. Общие требования безопасности.

НПБ 105-03 Определение категорий помещений, зданий и наружных установок по взрывопожарной и пожарной опасности.

Правила устройства электроустановок. - М.: Главгосэнергонадзор России, 1998. - 607 с.

СНиП 2.09.04-87 Административные и бытовые здания. Нормы проектирования. - М.: Стройиздат, 1987.

СН 305-77 Инструкция по проектированию и устройству молниезащиты зданий и сооружений.

СНиП 21-01-97 Пожарная безопасность зданий и сооружений.

НПБ 104-95 Системы оповещения людей о пожаре в зданиях и сооружениях.

НПБ 110-95 Перечень объектов, подлежащих защите автоматическими установками пожаротушения.

СНиП 31-03-2001 Производственные здания промышленных предприятий. Нормы проектирования. - M.: Стройиздат, 2002.

СНиП 2.04.05-91 Отопление, вентиляция и кондиционирование.

ГОСТ 12.1.003-83 ССБТ. Шум. Общие требования безопасности.

ГОСТ 12.1.029-90 ССБТ. Средства и методы защиты от шума. Классификация.

ГОСТ 12.1.012-90 ССБТ. Вибрационная безопасность. Общие требования.

Родионов А.И. и др. Техника защиты окружающей среды. - М.: Химия, 1989 - 368c.

Кочеров Н.И. Технико-экономическое обоснование инженерных решений при проектировании химических производств: Метод. указания. - СПб.: СПбГТИ (ТУ), 2001.

Похожие работы:

  1. • Технико-экономическое обоснование проектирования ...
  2. • Адипиновая кислота
  3. • Бизнес-стратегия как инструмент антикризисного ...
  4. • Анализ социально-экономической эффективности КНЗ ОАО ...
  5. • История становления и развития ОАО "Полиэф"
  6. • Тенденции развития потребительской кооперации в послевоенные ...
  7. • Проектирование колбасного цеха мощностью 9,5 тонн ...
  8. • Производство кондитерских изделий
  9. • Комплекс оборудования на добычном участке
  10. • Оценка эффективности инвестиционного проекта ...
  11. • Реализация технологии некаталитической очистки ...
  12. • Аммонизация кормов
  13. • Анализ территориальной организации населения и ...
  14. • Долгосрочный план экономического развития региона Российской ...
  15. • Выдающиеся деятели сельского хозяйства Липецкой области
  16. • Маркетинговый план холдинговой компании ТЕКО-Днепрометиз
  17. • История развития литейных технологий в России
  18. • Отчет по производственной практике по АХД на ГХЗ
  19. • Обоснование и оценка эффективности инновационного ...
Рефетека ру refoteka@gmail.com