Задача №1.
Двумерная случайная величина (X,Y) имеет равномерное распределение вероятностей в треугольной области ABC:
где S – площадь треугольника ABC.
Определить плотности случайных величин X и Y, математические ожидания M(X) и M(Y), дисперсии D(X) и D(Y), а также коэффициент корреляции . Являются ли случайные величины X и Y независимыми?
Решение.
Разделим область ABC на две равные части вдоль оси OX, тогда из условия
или
следует, что
Тогда плотность двумерной случайной величины (X,Y):
Вычислим плотность составляющей X:
при ,
откуда плотность составляющей X –
Вычислим плотность составляющей Y:
при ,
при ,
Поэтому плотность составляющей Y –
Найдем условную плотность составляющей X:
при , случайные величины X и Y зависимы.
Найдем математическое ожидание случайной величины X:
Найдем дисперсию случайной величины X:
Найдем среднеквадратическое отклонение случайной величины X:
Найдем математическое ожидание случайной величины Y:
Найдем дисперсию случайной величины Y:
Найдем среднеквадратическое отклонение случайной величины Y:
Найдем математическое ожидание двумерной случайной величины (X,Y):
Тогда ковариация: ,
а значит и коэффициент корреляции
Следовательно, случайные величины X и Y - зависимые, но некоррелированные.
Задача №2
Двумерная случайная величина (X,Y) имеет следующее распределение вероятностей:
Y | X | |||
3 | 6 | 8 | 9 | |
-0,2 | 0,035 | 0,029 | 0,048 | 0,049 |
0,1 | 0,083 | 0,107 | 0,093 | 0,106 |
0,3 | 0,095 | 0,118 | 0,129 | 0,108 |
Найти коэффициент корреляции между составляющими X и Y.
Решение.
Таблица распределения вероятностей одномерной случайной величины X:
X | 3 | 6 | 8 | 9 |
0,213 | 0,254 | 0,270 | 0,263 |
Проверка: + + + = 0,213 + 0,254 + 0,270 + 0,263 = 1.
Таблица распределения вероятностей одномерной случайной величины Y:
Y | -0,2 | 0,1 | 0,3 |
|
0,161 | 0,389 | 0,450 |
Проверка: + + = 0,161 + 0,389 + 0,450 = 1.
Вычислим числовые характеристики случайных величин X и Y.
1. Математическое ожидание случайной величины X:
2.
Математическое ожидание случайной величины Y:
3. Дисперсия случайной величины X:
4. Дисперсия случайной величины Y:
5. Среднеквадратическое отклонение случайной величины X:
6. Среднеквадратическое отклонение случайной величины Y:
Таблица распределения вероятностей случайной величины X-M(X):
X-M(X) | 3-M(X) | 6-M(X) | 8-M(X) | 9-M(X) |
|
0,213 | 0,254 | 0,270 | 0,263 |
Таблица распределения вероятностей случайной величины Y-M(Y):
Y-M(Y) | -0,2-M(Y) | 0,1-M(Y) | 0,3-M(Y) |
|
0,161 | 0,389 | 0,450 |
Таблица распределения вероятностей случайной величины [X-M(X)][Y-M(Y)]:
[X-M(X)][Y-M(Y)] | 1,260873 | 0,153873 |
P | 0,035 | 0,083 |
-0,584127 | 0,235773 | 0,028773 | -0,109227 | -0,447627 |
0,095 | 0,029 | 0,107 | 0,118 | 0,048 |
-0,054627 | 0,207373 | -0,789327 | -0,096327 | 0,365673 |
0,093 | 0,129 | 0,049 | 0,106 | 0,108 |
Найдем ковариацию:
Найдем коэффициент корреляции:
Ответ: -0,028.
Задача №3
Рост, см (X) |
Вес, кг (Y) | ||||
22,5-25,5 | 25,5-28,5 | 28,5-31,5 | 31,5-34,5 | 34,5-37,5 | |
117,5-122,5 | 1 | 3 | - | - | - |
122,5-127,5 | - | 2 | 6 | 1 | - |
127,5-132,5 | - | 1 | 5 | 5 | - |
132,5-137,5 | - | 1 | 6 | 7 | 2 |
137,5-142,5 | - | - | 1 | 4 | 2 |
142,5-147,5 | - | - | - | 1 | 1 |
147,5-152,5 | - | - | - | - | 1 |
Результаты обследования 50 учеников:
По данным таблицы требуется:
написать выборочные уравнения прямых регрессии Y на X и X на Y;
вычертить их графики и определить угол между ними;
по величине угла между прямыми регрессии сделать заключение о величине связи между X и Y.
Решение.
Принимая рост всех учеников, попавших в данный интервал, равным середине этого интервала, а вес – равным середине соответствующего интервала, получим так называемую корреляционную таблицу:
Для роста X получим:
1. Выборочная средняя –
2. Дисперсия выборочная исправленная –
Для веса Y получим:
Выборочная средняя -
Дисперсия выборочная исправленная –
Найдем выборочный коэффициент корреляции:
Найдем значения коэффициентов регрессии:
Уравнение прямой регрессии Y на X имеет вид:
Уравнение прямой регрессии X на Y имеет вид:
- угол между прямыми регрессии.
Следовательно, связь между X и Y не тесная.