Рефетека.ру / Физика

Курсовая работа: Проектирование силовых блоков полупроводникового преобразователя

Министерство образования Российской Федерации

Государственное образовательное учреждение высшего профессионального образования

Сибирский Государственный Индустриальный Университет

Кафедра автоматизированного электропривода и промышленной электроники


Курсовая работа

по преобразовательной технике

Проектирование силовых блоков полупроводникового преобразователя


Выполнил: студент гр. АЭП-022

Д.С. Мысков

Проверил: преподаватель

В.Т. Хромогин


Новокузнецк 2004


Введение


Преобразовательная техника является одним из наиболее эффективных направлений электротехники. Преобразовательные устройства служат для преобразования переменного напряжения (тока) в постоянное, постоянного напряжения (тока) в переменное, переменного напряжения одной частоты в переменное напряжение другой частоты и т.д.

В преобразовательных устройствах используются средства, осуществляющие фильтрацию и стабилизацию тока и напряжения. Основными характеристиками преобразовательных устройств являются коэффициент полезного действия, коэффициент мощности и другие энергетические характеристики.

Преимущества полупроводниковых преобразователей оп сравнению с другими преобразователями неоспоримы: они обладают высокими регулировочными характеристиками и энергетическими показателями, имеют малые габариты и массу, просты и надёжны в эксплуатации. Кроме преобразования и регулирования тока и напряжения такие установки обеспечивают бесконтактную коммутацию токов в силовых цепях.

Благодаря указанным преимуществам полупроводниковые преобразовательные устройства получают широкое применение в различных отраслях народного хозяйства.


Задание


Таблица 1. Исходные данные для проектирования преобразователя

U,КВ Uс,% Uн,В Iн,A Kп

tПроектирование силовых блоков полупроводникового преобразователя ,c

Kп t ,mc q,% Хар.нагр. Реж. раб.









я. двиг. выпр.,инв.
6 15 260 320 1,1 4 1,3 30 7 + +


Система защиты вентилей Способ воздушн. qc, C°
токовая перенапряжен. охлаждения
вну.кз кз=I ком.vs,vd ком.нгр. естественный 15

1) U- напряжение питающей сети.

Uc- колебания напряжения питающей сети.

Uн - номинальное значение выпрямленного напряжения на нагрузке.

Iн - номинальное значение выпрямленного тока в нагрузке.

Kп - кратность кратковременной технологической перегрузки.

t - длительность кратковременной технологической перегрузки.

Kп - кратность длительной технологической перегрузки.

t - продолжительность действия длительной технологической перегрузки.

q - коэффициент пульсации выпрямленного напряжения на нагрузке.

Характер нагрузки: Я - якорь двигателя.

11) Режим работы:

В- выпрямительный , И- инверторный.

12) Способ управления преобразователем: Управляемый.

Система защиты:

вну. кз - внутренние короткие замыкания.

кз = I - короткие замыкания на стороне постоянного тока.

кз ~ I - короткие замыкания на стороне переменного тока.

ком.vs,vd - коммутационные перенапряжения в вентилях.

ком.нгр.- коммутационные перенапряжения со стороны нагрузки.

qс - температура окружающей среды.

h - коэффициент полезного действия установки.

c - коэффициент мощности установки.


1. Разработка принципиальной схемы


1.1 Выбор и обоснование схемы соединения вентилей


Разрабатываемый мной преобразователь, является преобразователем средней мощности: Pн = Iн ЧUн =83,2 кВт, следовательно целесообразно взять трёхфазную схему.

Источником питания выбираем сеть трёхфазного переменного тока.

Из трёхфазных схем выпрямления отдаю предпочтение трёхфазному мостовому выпрямителю, т.к. он обеспечивает коэффициент пульсации q=5,7% от Uн, при требуемом q=7%, т.е. отпадает необходимость применения сглаживающего фильтра. В виду расхождения напряжения питающей сети Uc=6 кВ и Uн=260В возникает необходимость включения в схему понижающего трансформатора. Обмотки трансформатора соединены звездой. При соединении вентилей в трёхфазную мостовую схему постоянные составляющие токов вторичной обмотки не создают ПВН.

Для защиты вентилей от внутренних КЗ применяются специальные быстродействующие плавкие предохранители; предохранители устанавливаются последовательно в цепи каждого тиристора; от КЗ на постоянном токе – автоматический выключатель.

Коммутационные перенапряжения в вентилях устраняются выключением R-C цепей параллельно каждому тиристору; перенапряжения в нагрузке – включением нулевого диода.


2. Расчёт параметров и выбор элементов схем


2.1 Основные соотношения, характеризующие трёхфазную мостовую схему трансформатора


Iа = 1/3 Ч Iн=1/3 Ч 320 = 106,7 А (2.1.1), [1, c.217]

U2= Uо*0,427=260*0,427=111,02В (2.1.2), [1, c.217]

I2= 0,817Ч Iн = 0,817 Ч 320 = 261,44А (2.1.3), [1, c.217]


Мощность, передаваемая в нагрузку:


Рн = Uн Ч Iн = 260 Ч320 = 83,2 кВт (2.1.4), [1, с.217]


Типовая мощность трансформатора:


Sт = 1,05Рн = 1,05Ч 83200 = 87,36 кВ Ч А (2.1.5), [1, c.217]


Iа- средний ток протекающий через вентиль;

U2- действующее значение напряжения вторичной обмотки трансформатора;

I2 - действующее значение тока вторичной обмотки трансформатора;


2.2 Расчёт электрических параметров трансформатора


С учётом типовой мощности трансформатора и напряжения питающей сети выбираю трансформатор ТМ-100/10 [ 2, табл .29-1, c.246]


Таблица 2. Технические данные трансформатора

Параметр Значение
Мощность 100 кВА
Напряжение силовой обмотки 6 кВ
Напряжение вторичной обмотки 230 В
Потери холостого хода 0,365 кВт
Потери короткого замыкания 2,27 кВт
Напряжение короткого замыкания 4,7 %
Ток холостого хода 2,6 %

Для отключения преобразователя от сети необходим выключатель на ток

Проектирование силовых блоков полупроводникового преобразователя.

C учетом возможных перегрузок в качестве QS1 из [ 5, c.589] выбираем выключатель ВНП-16 на напряжение 6 кВ и ток 30 А.


2.2.1 Расчёт сопротивлений трансформатора

X2k, R2k-приведённые к вторичной стороне реактивное и активное сопротивление одной фазы трансформатора и питающей сети переменного тока, т.е. X2k=Х2к,т + Х2к,с и R2k=R2k,т + R2k,с . Так как мощность моего преобразователя Sт = 87,36 кВт < 500 кВт , то сопротивлением питающей сети можно пренебречь : X2k=Х2к,т , R2k=Rk, 2т . [3,c.105] .

Активное сопротивление трансформатора приведённые к вторичной обмотке:


R2k,т = Проектирование силовых блоков полупроводникового преобразователяОм (2.2.1.1) , [3,c.105]


Pk = 2,27 кВт - потери короткого замыкания (см . табл.2).

I2ф = 261,44 А - фазный ток вторичной обмотки трансформатора (см. 2.1.3).

Полное сопротивление трансформатора , приведённое ко вторичной обмотке:


Zk, 2т = Проектирование силовых блоков полупроводникового преобразователя= Проектирование силовых блоков полупроводникового преобразователяПроектирование силовых блоков полупроводникового преобразователя= 0,0248 Ом (2.2.1.2), [3,c.105]


Uk , % = 4,7 % - напряжение короткого замыкания.

U2л =230 В - фазный напряжение вторичной обмотки трансформатора.

Sн = 100 кВЧА - номинальная мощность трансформатора.

Индуктивное сопротивление трансформатора, приведённое к вторичной обмотке:


Х2к,т = Проектирование силовых блоков полупроводникового преобразователя = Проектирование силовых блоков полупроводникового преобразователя = 0,022 Ом (2.2.1.3), [3,c. 105]


Индуктивность трансформатора, приведённая ко вторичной обмотке:


L2k,т= Проектирование силовых блоков полупроводникового преобразователя = 0,07 мГн (2.2.1.4), [3,c.105].


2.3 Расчёт электрических параметров вентилей


2.3.1 Расчёт ударного тока и интеграла предельной нагрузки внешнего, короткого замыкания

Амплитуда базового тока короткого замыкания:


Ik, m = Проектирование силовых блоков полупроводникового преобразователя=Проектирование силовых блоков полупроводникового преобразователя =7572,35 А (2.3.1.1), [3,c.105].


U2ф = 132,8 В - фазный напряжение вторичной обмотки трансформатора .

R2k,т = 0,012 Ом - активное сопротивление трансформатора приведённые к вторичной обмотке (см. 2.2.1.1).

Х2к,т = 0,022 Ом - индуктивное сопротивление трансформатора , приведённое ко вторичной обмотке (см . 2.2.1.3).

Ударный ток предельной нагрузки внешнего, короткого замыкания:


Iуд = Ik, m Ч i уд =7572,35Ч 0,86 = 6512,2А (2.3.1.2), [3,c.105] .


i уд =0,86- ударный ток в относительных единицах, берётся с кривой [3, с.105, рис.1- 127 а], при ctg jk = Проектирование силовых блоков полупроводникового преобразователяПроектирование силовых блоков полупроводникового преобразователя= 0,545

Интеграл предельной нагрузки при глухом внешнем, коротком замыкании:


I?Ч t = I? k, m (I?Ч t) (2.3.1.3), [3,c.105],


где I?Ч t определяется в зависимости от ctg jk по кривой [3 , с.105, рис.1- 127 б] I?Ч t = 0,004

I?Ч t = Проектирование силовых блоков полупроводникового преобразователяПроектирование силовых блоков полупроводникового преобразователяЧ 0,004 = 229,4 kА?Ч с

I k, m - амплитуда базового тока короткого замыкания .

I?Ч t - интеграл предельной нагрузки в относительных единицах .


2.3.2 Расчёт ударного тока и интеграла предельной нагрузки внутреннего, короткого замыкания

Ударный ток предельной нагрузки внутреннего, короткого замыкания:


Iуд = Ik, m Ч i уд = 7572,35Ч 1,08 = 8178,12 А (2.3.2.1), [3,c.105]


i уд = 1,08 - ударный ток в относительных единицах , берётся с кривой [3, с.105, рис.1- 129 а], при ctg jk = 0,545.

Интеграл предельной нагрузки при глухом внутреннем, коротком замыкании


I?Ч t = I? k, m Ч (I?Ч t) = 7572,35ІЧ 0,005 =286,7 к А?Чс (2.3.2.2), [3,c.105] ,


где I?Ч t определяется в зависимости от ctg jk по кривой[3, с.105, рис. 1- 129 б] I?Ч t = 0,005 - интеграл предельной нагрузки в относительных единицах.

I k, m - амплитуда базового тока короткого замыкания.


2.3.3 Выбор вентиля

Вентиль выбирается исходя из среднего тока протекающего через него.

Iа = 106,7 А (см. 2.1.1)

Так же учту максимальный ударный тока и интеграла придельной нагрузки при коротком замыкании.


Iуд =8178,12 A (2.3.2.1)

I?Ч t =286,7 кА?Чс (2.3.2.2)


Исходя из этого, выбираем тиристор T2-320. [4 , c.116]

Основные параметры тиристора приведены в таблице 3.


Таблица 3 .

Пороговое напряжение 1,36 В
Время обратного восстановления 8 мкс
Динамическое сопротивление в открытом состоянии 0,9 мОм
Тепловое сопротивление переход - корпус 0,05°С/Вт
Максимально допустимое постоян. обратное напряжение ( 100 - 1400 )В
Максимально допустимый средний ток в откр. cостоянии 320 А
Максимально допустимый действующий ток в откр. сост. 785 А
Ударный неповторяющийся ток в открытом состоянии 8500 А
Защитный показатель 361,25 кА?Чс
Заряд обратного восстановления 300 мк Кл

2.3.4 Расчёт допустимого тока нагрузки на вентиль в установившемся режиме


[ I в] = Проектирование силовых блоков полупроводникового преобразователя; (2.3.4.1),


Uo = 1,36 В - пороговое напряжение (см. таб.3).

Rд = 0,9 мОм - динамическое сопротивление в открытом состоянии (см. табл .3).

Кф = 1,77 - коэффициент формы тока.

Мощность электрических потерь:


[ D P ] = Проектирование силовых блоков полупроводникового преобразователя ; (2.3.4.2), [6, c.29 ].


[ qн ] = 125°С - номинальная температура кристалла.

qс = 15°С - температура окружающей среды (см. табл.1).

Тепловое сопротивление вентиль - охладитель:


R = R пк + R ос + R ко (2.3.4.3), [6, c.28]


R пк = 0,05 °С/Вт - тепловое сопротивление переход - корпус.

R ос - установившееся тепловое сопротивление охладитель - среда.

R ко - установившееся тепловое сопротивление корпус - охладитель.

Выберу охладитель ОA-034 [3 ,с.114, табл.1-26], с учётом мощности отводимого тепла Pн = 240 Вт. Где Rос = 0,3°С/Вт,

R = 0,05 + 0,3 = 0,35°С/Вт.

Тогда

[D P] = Проектирование силовых блоков полупроводникового преобразователя =314,29 Вт;

[ I в] = Проектирование силовых блоков полупроводникового преобразователя = 151,93 A;

Максимально допустимый средний ток тиристора I а = 320А (см. таблицы 3).

Следовательно, тиристор в установившемся режиме выдерживает проходящий через него ток.


2.3.5 Температурный расчёт тиристоров в различных режимах работы

а) Номинальный режим:


Мощность электрических потерь:


DPн = UO Ч Iа + К? ф Ч Rд Ч I?а = 1,2 Ч 16,5 + 1,73?Ч 0,008 Ч 16,5?= 22 Вт (2.3.5.1)


Uo = 1,36 В - пороговое напряжение (см . табл .3).

Iа = 106,7 А - средний ток протекающий через вентиль (см .2.1.1).

Кф = 1,77 - коэффициент формы [2, c.79, табл.1-20]

Rд = 0,9 мОм - динамическое сопротивление в открытом состоянии (см. табл.3).

Перегрев вентиля :


Dqн = DPн Ч R = 175,8Ч0,35 =61,53 °С (2.3.5.2).


R - тепловое сопротивление вентиль - охладитель (см.2.3.4.3).

Температура монокристаллической структуры вентиля:


qн = qс + Dqн = 15+ 61,53 =76,5 °С (2.3.5.3).


qс = 15°С - температура окружающей среды (см. табл.1).

Данный перегрев не превышает допустимый, в номинальном режиме.

б) Проверка вентилей при кратковременной технологической перегрузке:

Мощность электрических потерь:


DPн max = UO Ч (Kп Ч Iа) + К? ф Ч Rд Ч (Kп Ч I?а) = 1,36 Ч (1,3Ч 106,7) +3Ч0,0009 Ч (1,3 Ч 106,7?)= 228,6 Вт (2.3.5.4).


Kп = 1,3- кратность кратковременной технологической перегрузки(см. табл.1).

Перегрев вентиля:


Dqн max = Dqн +(DPн max - DPн ) Ч Rtкп = 61,53 +(228,6-175,8) Ч 0,0125=62,19°С (2.3.5.4)


Dqн - перегрев вентиля при номинальном режиме.

DPн - мощность электрических потерь при номинальных перегрузках.

Rtкп = 0,0125 °С/Вт , при t =30 мс , по графику. [3 , c.120]

Температура монокристаллической структуры вентиля:


qн max = qс + Dqн max = 15 + 62,19 = 77,19 °С (2.3.5.5).


qс = 15 °С - температура окружающей среды (см . табл.1).

Данный перегрев не превышает допустимый , в данном режиме.

в) Проверка вентилей при длительной технологической перегрузке:

Мощность электрических потерь:


DPн max = UO Ч (Kп Ч Iа) + К? ф Ч Rд Ч (Kп Ч I?а) = 1,36 Ч (1,1Ч 106,7) +3 Ч0,0009 Ч (1,1 Ч 106,7?)= 193,4 Вт .


Kп = 1,1- кратность длительной технологической перегрузки (см. табл.1).

Перегрев вентиля:


Dqн max = Dqн +(DPн max - DPн ) Ч Rtкп = 61,53 + (193,4 –175,8 ) Ч 0,04 = 62,23°С


Dqн - перегрев вентиля при номинальной перегрузке.

DPн - мощность электрических потерь при длительной перегрузке.

Rtкп = 0,04 °С/Вт , при t = 4 с , по графику. [3, c. 120]

Температура монокристаллической структуры вентиля:

qн max = qс + Dqн max = 15 + 62,23 = 77,23 °С.

qс = 15 °С - температура окружающей среды (см. табл.1).

Данный перегрев не превышает допустимый, в данном режиме.


2.3.6 Проверка вентилей по обратному напряжению

Выбор допустимого обратного напряжения выполняется ориентировочно так:


Uобр. max = Uн Ч1,05 = 260 Ч 1,05 = 273 В . [1, c. 217]


Уточнённое значение:

Uобр. max = Кхх Ч U2m (2.3.6.1) , [1, c. 12].


U2m = Ц 2 Ч U2 = Ц 2 Ч 230 = 325,3 В - амплитуда напряжения вторичной обмотки трансформатора .


Проектирование силовых блоков полупроводникового преобразователя= 2,44 (2.3.6.2) , [1, c. 13].


А = 0,5 – коэффициент, характеризующий кратность падения напряжения на стороне выпрямленного тока по отношению к Uk , % . [3, c.76].

Uk , % = 4,7 % - напряжение короткого замыкания (см .табл.2).

Проектирование силовых блоков полупроводникового преобразователя- падение напряжения на вентиле.


Проектирование силовых блоков полупроводникового преобразователяВ (2.3.6.3) .


[ I а] = 106,7А - допустимый ток нагрузки на вентиль (2.3.4.1).

Uo = 1,36 В - пороговое напряжение (см. табл.3).

Rд = 0,9 мОм - динамическое сопротивление в открытом состоянии (см. табл.3).

b = 1- коэффициент зависящий от схемы соединения вентилей [3 , табл.3]

Uн =260 В - номинальное значение выпрямленного напряжения на нагрузке (см. табл.1).

е UК=1 В - суммарное падение напряжения во всех элементах выпрямителя.

DUС % = 15 % - колебание напряжения питающей сети (см .табл.1).

Нахождение номинального угла регулирования:

UН = UНО Ч CosПроектирование силовых блоков полупроводникового преобразователя (2.3.6.4), [ 3, c.83]


UНО = U2 Ч 2,34= 230 Ч 2,34= 538,2 В- напряжение холостого хода [1, c.217]

U2 = 230 В - фазное напряжение вторичной обмотки трансформатора.

Проектирование силовых блоков полупроводникового преобразователя - номинальный угол регулирования.

Тогда:


CosПроектирование силовых блоков полупроводникового преобразователя= Проектирование силовых блоков полупроводникового преобразователя; Проектирование силовых блоков полупроводникового преобразователя = arcCos(0,483) = 61,1 ° (2.3.6.5).


Тогда:

Uобр. max = 2,44Ч 325,3 = 794,36 В.

Максимально допустимое постоянное обратное напряжение вентиля 1400 В, значит вентиль выдерживает прикладываемое к нему обратное напряжение.


2.4 Расчёт электрических параметров уставок автоматов защиты от токов КЗ перегрузок и элементов схем защиты от перенапряжений


2.4.1 Выбор защиты от внутренних, коротких замыканий


Проектирование силовых блоков полупроводникового преобразователя

Рис.2 Схема замещения аварийного контура при внутреннем К.З.


Проектирование силовых блоков полупроводникового преобразователяКривую мгновенного тока внутреннего К.З. строю по графику Проектирование силовых блоков полупроводникового преобразователя при заданном угле Проектирование силовых блоков полупроводникового преобразователя[3,с.106,рис.1-130] для Проектирование силовых блоков полупроводникового преобразователя


Рис.3 Кривая мгновенного значения тока внутреннего К.З.


Для защиты тиристоров от внутренних К.З. применяют быстродействующие плавкие предохранители, включаемые в плечо каждого тиристора.

Плавкие предохранители выбираются исходя из действующего значения первой полуволны тока внутреннего К.З.


Проектирование силовых блоков полупроводникового преобразователя (2.4.1.1), [3,с.108]


где Iуд=8178.12 (A) -ударный ток, рассчитанный по формуле (2.3.2.1)

Проектирование силовых блоков полупроводникового преобразователяA

Для защиты плавкими предохранителями тиристоров должно выполняться защитное соотношение:


Проектирование силовых блоков полупроводникового преобразователя ( 2.4.1.2) [7,с.321]

Здесь Проектирование силовых блоков полупроводникового преобразователя- верхнее значение полного Джоулева интеграла отключения.

Проектирование силовых блоков полупроводникового преобразователядопустимый перегрузочный параметр тиристора Т2-320

n – число параллельно включенных в плечо тиристоров; n=1.


Проектирование силовых блоков полупроводникового преобразователя (2.4.1.3)


Для защиты вентилей от внутренних К.З. применим быстродействующие плавкие предохранители серии ПНБ 5.

При данном действующем токе Проектирование силовых блоков полупроводникового преобразователя A и Проектирование силовых блоков полупроводникового преобразователя

По характеристике полных интегралов предохранителей серии ПНБ5, выбираю плавкую вставку на номинальный ток Iном=160 A , что удовлетворяет условию:

Проектирование силовых блоков полупроводникового преобразователя [7,с.14, рис. 1-10]

Проверка условия селективности защиты.

Селективность- отключение только поврежденных вентилей без нарушения работы исправных вентилей и преобразователя в целом.

Т.е. за время срабатывания предохранителя поврежденной ветви не должны плавиться предохранители не поврежденных ветвей:


Проектирование силовых блоков полупроводникового преобразователя (2.4.1.4) [8.с.108]


где Проектирование силовых блоков полупроводникового преобразователя

К – коэффициент неравномерности загрузки тиристоров Проектирование силовых блоков полупроводникового преобразователя, [4,с.108] берем К=1,2

Проектирование силовых блоков полупроводникового преобразователя

Проектирование силовых блоков полупроводникового преобразователяПроектирование силовых блоков полупроводникового преобразователя

Плавкие предохранители условию селективности удовлетворяют.


2.4.2 Расчет К.З. со стороны постоянного тока


Проектирование силовых блоков полупроводникового преобразователя

Рис 4. Схема замещения аварийного контура при К.З. со стороны постоянного тока.


Кривую мгновенного тока К.З. со стороны постоянного тока строю по графикуПроектирование силовых блоков полупроводникового преобразователя при заданном угле Проектирование силовых блоков полупроводникового преобразователя[3,с.106,рис.1-130] для Проектирование силовых блоков полупроводникового преобразователя


Проектирование силовых блоков полупроводникового преобразователя

Рис.5.Мгновенное значение тока в тиристорах при внешнем К.З. со стороны постоянного тока.


Для защиты от внешних К.З. на постоянном токе выбираю автоматический выключатель А3730 на ток 400 А, с собственным временем отключения 13 мс.

Параметры автоматического выключателя А3730.


Таблица 4.

Параметр Значение
Номинальное напряжение

Проектирование силовых блоков полупроводникового преобразователя

Номинальный ток

Проектирование силовых блоков полупроводникового преобразователя

Ток уставки

Проектирование силовых блоков полупроводникового преобразователя

Время срабатывания

Проектирование силовых блоков полупроводникового преобразователя


Интеграл полного отключения автоматического выключателя:


Проектирование силовых блоков полупроводникового преобразователя ,


где Проектирование силовых блоков полупроводникового преобразователя- время нарастания тока до тока уставки. (2.4.2.1)

Проектирование силовых блоков полупроводникового преобразователя- время срабатывания выключателя, Проектирование силовых блоков полупроводникового преобразователя [табл.4];

Из рис.5. Проектирование силовых блоков полупроводникового преобразователяA

Тогда по формуле (2.4.2.1):

Проектирование силовых блоков полупроводникового преобразователя

Условие защиты вентилей: Проектирование силовых блоков полупроводникового преобразователя

Условие селективности: Проектирование силовых блоков полупроводникового преобразователя

Следовательно, автоматический выключатель предъявляемым требованиям удовлетворяет.


2.5 Расчет элементов схемы защиты от перенапряжений


2.5.1 Расчет элементов защиты коммутации в VS

Для защиты тиристоров преобразователя от коммутационных перенапряжений, необходимо параллельно каждому тиристору включить R-C цепочку, параметры которой определим по формулам: [8,с.375]


Проектирование силовых блоков полупроводникового преобразователя

Рис.6. Включение R-С цепей для защиты VS от перенапряжений.


Проектирование силовых блоков полупроводникового преобразователяПроектирование силовых блоков полупроводникового преобразователя (2.5.1.1) [8,с.375]


Проектирование силовых блоков полупроводникового преобразователя=300Кл [3,с.174], где Проектирование силовых блоков полупроводникового преобразователя-заряд переключения тиристора Т2-320

Проектирование силовых блоков полупроводникового преобразователя-амплитуда рабочего напряжение на вентиле

Проектирование силовых блоков полупроводникового преобразователя

По формуле (2.5.1.1)

Проектирование силовых блоков полупроводникового преобразователя

По каталожным данным выбираю конденсатор типа К42-4, с номинальным напряжением Uн=300 (В) и С=0.5мкФ [7,с.221]

Величину сопротивления определим из соотношения:


Проектирование силовых блоков полупроводникового преобразователя (2.5.1.2) [8,с.375]

где L- индуктивность обмотки трансформатора


Проектирование силовых блоков полупроводникового преобразователя,


где Проектирование силовых блоков полупроводникового преобразователя-угловая частота питающей сети

L=0.07 (мГн)

По формуле (2.5.1.2):

Проектирование силовых блоков полупроводникового преобразователя

Мощность рассеиваемая резистором определим по формуле:


Проектирование силовых блоков полупроводникового преобразователя (2.5.1.3)


Проектирование силовых блоков полупроводникового преобразователя

выбираем резистор типа ОМЛТ, номинальная мощность Pн=0.125(Вт), сопротивление которого Rн=12(Ом) [7,с.17]


2.5.2 Расчет элементов защиты от коммутации в нагрузке

Защиту от перенапряжений в нагрузке осуществим включением в цепь выпрямленного тока параллельного тиристора.

Выбор и расчет тиристора производим по методике, приведенной в [2,с.40]

Среднее значение тока тиристора определим по формуле:


Проектирование силовых блоков полупроводникового преобразователя, (2.5.2.1)


где Проектирование силовых блоков полупроводникового преобразователя- угол регулирования;

Максимум тока Проектирование силовых блоков полупроводникового преобразователя будет при равенстве нулю производной Проектирование силовых блоков полупроводникового преобразователя

т.е.Проектирование силовых блоков полупроводникового преобразователя

Данное уравнение решим графически:

зависимость Проектирование силовых блоков полупроводникового преобразователя;

зависимость Проектирование силовых блоков полупроводникового преобразователя;


Проектирование силовых блоков полупроводникового преобразователя


Из рисунка видно, что Проектирование силовых блоков полупроводникового преобразователя максимален при Проектирование силовых блоков полупроводникового преобразователя=1.3 рад.[74.4 эл.град]

В этом случае величина максимального тока тиристора определима по формуле (2.5.2.1):

Проектирование силовых блоков полупроводникового преобразователя

Максимальное обратное напряжение на тиристоре с учетом перегрузки:


Проектирование силовых блоков полупроводникового преобразователя, (2.5.2.2)


где Проектирование силовых блоков полупроводникового преобразователя- кратность кратковременной перегрузки, [табл.1]

В качестве нулевого диода можно использовать 2Д203А [3,с.84], Проектирование силовых блоков полупроводникового преобразователяПроектирование силовых блоков полупроводникового преобразователя.

Т. к. нагрузка якорь двигателя, нужно поставить параллельно ему сглаживающий дроссель.

Проектирование силовых блоков полупроводникового преобразователя

Выбираем дроссель марки СРОСЗ-6300УХЛ 4 с номинальным током 6300А и индуктивностью L=0.252мГн.


2.5.3 Согласование перегрузочных характеристик выпрямителя и элементов защиты

Построим время-токовые характеристики для тиристора Т2 – 320 и предохранителя ПНБ5.

Зависимость I(t) для плавкой вставки предохранителя ПНБ5 на Проектирование силовых блоков полупроводникового преобразователя приведена в справочной литературе [9, с.13, рис.1-8], для тиристора Т2–320 по графику Iос уд (t) [3, c. 121]

Здесь Iос уд – ударный неповторяющийся ток тиристора в открытом состоянии.

Характеристика предохранителя ПНБ5 имеет вид: Проектирование силовых блоков полупроводникового преобразователя, автоматического выключателя А3740: Проектирование силовых блоков полупроводникового преобразователя

Максимальное значение допустимого тока в установившемся режиме:

Определим амплитуду тока тиристора:


Проектирование силовых блоков полупроводникового преобразователя (2.5.3.1) [1, с. 19]


Проектирование силовых блоков полупроводникового преобразователя

Амплитуда тока кратковременной перегрузки:


Проектирование силовых блоков полупроводникового преобразователя (2.5.3.2)


Проектирование силовых блоков полупроводникового преобразователя

Амплитуда тока длительной перегрузки:

Проектирование силовых блоков полупроводникового преобразователя, (2.5.3.3)


Проектирование силовых блоков полупроводникового преобразователя


Проектирование силовых блоков полупроводникового преобразователя

Рис.7 Согласование перегрузочных характеристик.


На рис.7 показаны:

1) Перегрузочная кривая тиристора.

2) Характеристика плавких предохранителей

3) Характеристика автомата со стороны постоянного тока.

4) Рабочая характеристика преобразователя.


3. Расчет характеристик выпрямителя


3.1 Расчет внешних характеристик


Внешняя характеристика описывается выражением :


Проектирование силовых блоков полупроводникового преобразователя (3.1.1) [3, с. 83]


где Проектирование силовых блоков полупроводникового преобразователя- напряжение холостого хода;

Проектирование силовых блоков полупроводникового преобразователя- уменьшение выпрямленного напряжения за счет перекрытия при индуктивной нагрузке;

R-активное сопротивление цепи

Проектирование силовых блоков полупроводникового преобразователя падение в вентилях; в полупроводниковых преобразователях Проектирование силовых блоков полупроводникового преобразователя мало и им можно пренебречь, кроме того, в установках средней мощности Проектирование силовых блоков полупроводникового преобразователя, поэтому:


Проектирование силовых блоков полупроводникового преобразователя (3.1.2)


В относительных единицах формула (3.1.2) будет иметь вид:


Проектирование силовых блоков полупроводникового преобразователяПроектирование силовых блоков полупроводникового преобразователя (3.1.3)


где Проектирование силовых блоков полупроводникового преобразователя - отношение тока нагрузки к току К.З.

Тогда формула (3.1.3) будет иметь вид:


Проектирование силовых блоков полупроводникового преобразователя,(3.1.4)

где Проектирование силовых блоков полупроводникового преобразователя

По формуле (3.1.4):


Проектирование силовых блоков полупроводникового преобразователя (3.1.5)


Определим по формуле (3.1.5) и заносим в табл. 5. значение Проектирование силовых блоков полупроводникового преобразователя для разных углов Проектирование силовых блоков полупроводникового преобразователя.

Внешняя характеристика в выпрямительном режиме


Таблица 5

Проектирование силовых блоков полупроводникового преобразователя

Проектирование силовых блоков полупроводникового преобразователя

0 0.2 0.4 0.6 0.8 1.0
Ud’ 1 0.995 0.9906 0.986 0.981 0.977
30°
0.866 0.861 0.857 0.852 0.847 0.842
40°
0.766 0.761 0.757 0.752 0.747 0.742
50°
0.642 0.638 0.633 0.628 0.624 0.619
60
0.5 0.495 0.491 0.486 0.481 0.476
61,1
0.483 0.479 0.474 0.469 0.464 0.459
70°
0.342 0.337 0.332 0.328 0.323 0.318
80°
0.173 0.169 0.164 0.159 0.155 0.15

В инверторном режиме внешняя характеристика описывается выражением:


Проектирование силовых блоков полупроводникового преобразователя (3.1.6)


где Проектирование силовых блоков полупроводникового преобразователя- угол опережения, Проектирование силовых блоков полупроводникового преобразователя

В относительных единицах (3.1.6) будет иметь вид:


Проектирование силовых блоков полупроводникового преобразователя (3.1.7)

В инверторе существует граница предельного тока, зависящая от углов Проектирование силовых блоков полупроводникового преобразователяи Проектирование силовых блоков полупроводникового преобразователя:


Проектирование силовых блоков полупроводникового преобразователя (3.1.8)


где Проектирование силовых блоков полупроводникового преобразователя,

Проектирование силовых блоков полупроводникового преобразователя- угол восстановления запирающих свойств вентиля


Проектирование силовых блоков полупроводникового преобразователя, (3.1.9)


где Проектирование силовых блоков полупроводникового преобразователя- частота питающей сети, Проектирование силовых блоков полупроводникового преобразователя;

Проектирование силовых блоков полупроводникового преобразователя- время выключения тиристора, Проектирование силовых блоков полупроводникового преобразователя [3,с.176]

По формуле (3.1.9):


Проектирование силовых блоков полупроводникового преобразователя


Для обеспечения устойчивой работы инвертора необходимо ограничить угол Проектирование силовых блоков полупроводникового преобразователя минимальным значением Проектирование силовых блоков полупроводникового преобразователя.

Примем Проектирование силовых блоков полупроводникового преобразователя и определим Проектирование силовых блоков полупроводникового преобразователя из соотношения


Проектирование силовых блоков полупроводникового преобразователя;(3.1.10)


По формуле (3.1.9):


Проектирование силовых блоков полупроводникового преобразователя

Уравнение границы предельного тока подсчитаем по формуле (3.1.8)


Проектирование силовых блоков полупроводникового преобразователя (3.1.11)


Тогда формула (3.1.7) примет вид:


Проектирование силовых блоков полупроводникового преобразователя (3.1.12)


Внешняя характеристика в инверторном режиме строится по формуле (3.1.12) и заполняется табл.6: граница предельного тока строится по формуле (3.1.11) и заполняется табл. 7. соответственно.

Внешняя характеристика в инверторном режиме


Таблица 6.

Проектирование силовых блоков полупроводникового преобразователя

Проектирование силовых блоков полупроводникового преобразователя

0 0.2 0.4 0.6 0.8 1.0
90°

Проектирование силовых блоков полупроводникового преобразователя

0 0.0047 0.0094 0.0141 0.019 0.0235
80°
0.173 0.178 0.183 0.188 0.192 0.197
70
0.342 0.346 0.351 0.356 0.361 0.366
60
0.5 0.505 0.509 0.514 0.519 0.524
50
0.642 0.647 0.652 0.657 0.662 0.666
40
0.766 0.771 0.775 0.78 0.785 0.789
30
0.866 0.871 0.875 0.88 0.885 0.889
20
0.939 0.944 0.949 0.954 0.958 0.963

Граница предельного тока


Таблица 7.

Проектирование силовых блоков полупроводникового преобразователя

0 0.2 0.4 0.6 0.8 1.0

Проектирование силовых блоков полупроводникового преобразователя

-0.968 -0.963 -0.959 -0.954 -0.949 -0.944

По данным из таблиц 5, 6, 7. строим внешнюю характеристику преобразователя в выпрямленном и инверторном режиме.


Проектирование силовых блоков полупроводникового преобразователя

Рис. 8. Внешняя характеристика преобразователя.


3.2 Расчет регулировочной характеристики


Регулировочная характеристика, т.е. зависимость выпрямленного напряжения от угла регулирования Проектирование силовых блоков полупроводникового преобразователя, определяется следующим выражением:


Проектирование силовых блоков полупроводникового преобразователя(3.2.1) [3,с.82]


В относительных единицах (3.2.1) примет вид:


Проектирование силовых блоков полупроводникового преобразователя(3.2.2),


т.е. регулировочная характеристика тиристорного комплекта имеет вид косинусоиды.


Таблица 8

Проектирование силовых блоков полупроводникового преобразователя

0 30 60 90 120 150 180

Проектирование силовых блоков полупроводникового преобразователя

1 0,866 0,5 0 -0,5 -0,866 -1

Проектирование силовых блоков полупроводникового преобразователя

Рис.9. Регулировочная характеристика.


4. Расчет энергетических показателей установки


4.1 Расчет коэффициента полезного действия


КПД выпрямителя характеризуется отношением активной мощности, отдаваемой в нагрузку к полной активной мощности, потребляемой выпрямительной установкой от питающей сети.

КПД выпрямителя определяется выражением


Проектирование силовых блоков полупроводникового преобразователяПроектирование силовых блоков полупроводникового преобразователя,(4..1.1)


где Проектирование силовых блоков полупроводникового преобразователя- суммарная мощность потерь выпрямителя


Проектирование силовых блоков полупроводникового преобразователя, (4.1.2) , где


Проектирование силовых блоков полупроводникового преобразователя-потери мощности в сглаживающем дросселе и реакторах

Проектирование силовых блоков полупроводникового преобразователя1500 Вт

Проектирование силовых блоков полупроводникового преобразователя- потери в вентилях

Потери в вентилях Проектирование силовых блоков полупроводникового преобразователя складываются из потерь при их отключении и потерь при протекании прямого тока. При работе на частоте 50 Гц потери при переключении можно не учитывать, поэтому можно записать:


Проектирование силовых блоков полупроводникового преобразователя,(4.1.3)


где Проектирование силовых блоков полупроводникового преобразователя- количество вентилей в схеме выпрямителя, Проектирование силовых блоков полупроводникового преобразователя;

Проектирование силовых блоков полупроводникового преобразователя- падение напряжения на вентилях, Проектирование силовых блоков полупроводникового преобразователя, примем Проектирование силовых блоков полупроводникового преобразователя;

Проектирование силовых блоков полупроводникового преобразователя- средний ток вентиля Проектирование силовых блоков полупроводникового преобразователя=106,7А

По формуле (4.1.3):

Проектирование силовых блоков полупроводникового преобразователя

Проектирование силовых блоков полупроводникового преобразователя- потери в силовом трансформаторе


Проектирование силовых блоков полупроводникового преобразователя,(4.1.4)


где Проектирование силовых блоков полупроводникового преобразователя- потери в стали: Проектирование силовых блоков полупроводникового преобразователя [табл.1]

Проектирование силовых блоков полупроводникового преобразователя- потери в меди: Проектирование силовых блоков полупроводникового преобразователя[табл.1]

По формуле (4.1.4):

Проектирование силовых блоков полупроводникового преобразователя

Проектирование силовых блоков полупроводникового преобразователя- потери во вспомогательных устройствах

Величина Проектирование силовых блоков полупроводникового преобразователя от Проектирование силовых блоков полупроводникового преобразователя,тогда примем Проектирование силовых блоков полупроводникового преобразователя

По формуле (4.1.2):

Проектирование силовых блоков полупроводникового преобразователя

По формуле (4.1.1):

Проектирование силовых блоков полупроводникового преобразователя


4.2 Расчет коэффициента мощности


Коэффициент мощности выпрямителя находится по формуле:


Проектирование силовых блоков полупроводникового преобразователя,(4.2.1)


где Проектирование силовых блоков полупроводникового преобразователя- коэффициент искажения формы кривой потребляемого тока, Проектирование силовых блоков полупроводникового преобразователя;

Проектирование силовых блоков полупроводникового преобразователя- угол сдвига первой гармоники тока относительно напряжения питания,


Проектирование силовых блоков полупроводникового преобразователя (4.2.2)


Проектирование силовых блоков полупроводникового преобразователя

Угол коммутации может быть определен:


Проектирование силовых блоков полупроводникового преобразователя,


где m=6

Проектирование силовых блоков полупроводникового преобразователя

Проектирование силовых блоков полупроводникового преобразователя

Тогда:

Проектирование силовых блоков полупроводникового преобразователя


Заключение


В результате технического задания был разработан полупроводниковый преобразователь, работающий в выпрямительном и инверторном режиме.

К.П.Д. преобразователя составляетПроектирование силовых блоков полупроводникового преобразователя, коэффициент мощности Проектирование силовых блоков полупроводникового преобразователя.

Установка выполнена по трехфазной мостовой схеме выпрямления. Обмотки трансформатора соединены звездой. Также в схеме предусмотрена защита от коммутационных перенапряжений в вентиле, от токов внутреннего К.З. и от КЗ на постоянном токе, от перенапряжений в нагрузке.

Преобразователь удовлетворяет заданным техническим требованиям.


Список используемой литературы


Промышленная электроника. Котлярский С.П., Миклашевский Л. Г. М. –1984.

Справочник по электроснабжению и электрооборудованию /Под редакцией Федорова А.А. М.: Энергоатомиздат, 1987.

Справочник по проектированию автоматизированного электропривода и систем управления технологическими процессами /Под редакцией Круповича В.И., Барыбина Ю.Г., Самовера М.Л. М.: Энергоиздат, 1982.

Замятин В.Я. Мощные полупроводниковые приборы. Тиристоры: Справочник. М.: Радио и связь, 1987г.

Электротехнический справочник под редакцией П.Г. Грудинского и др. М.-1971г.

Неуправляемые кремниевые вентили ВК-2, ВК-2 ВИ ВКДЛ. Отделение ВНИИЭМ по научно – технической информации, стандартизации и нормализации в электротехнике. М.: Информстандартэнерго. 1967г

Резисторы. Конденсаторы. Трансформаторы. Дроссели. Коммутацинные устройства. РЭА.Справочник/ под редакцией Н.Н.Акимов/ 1994г.

Чебовский О.Г., Моисеев Л.Г., Сахаров Ю.В. Справочник: Силовые полупроводниковые приборы. М.: Энергия, 1975.

Полупроводниковые выпрямители/Под редакцией Ковалева Ф.И., Мостковой Г.П., М.: Энергия, 1978.

Похожие работы:

  1. • Разработка ветроэнергетической установки
  2. • Статический преобразователь средней мощности
  3. • Методы поддержки длительной работоспособности ...
  4. • Полупроводниковый преобразователь тепловой энергии ...
  5. • Разработка системы управления механизма передвижения ...
  6. • Приборы полупроводниковые
  7. • Расчёт непосредственного преобразователя частоты
  8. • Полупроводниковый преобразователь
  9. • Безкорпусная герметизация полупроводниковых приборов
  10. • История иследования полупроводников
  11. • Применение полупроводниковых приборов
  12. • Технология изготовления кристаллов полупроводниковых ...
  13. • Полупроводниковые наноструктуры
  14. • Основные требования к полупроводниковым материалам
  15. • Полупроводниковые приборы
  16. • Полупроводниковые преобразователи
  17. • Трехфазный мостовой преобразователь
  18. • Разработка тиристорного преобразователя
  19. • Полупроводниковые материалы
Рефетека ру refoteka@gmail.com