Рефетека.ру / Коммуникации и связь

Контрольная работа: Разновидности биполярных транзисторов (БТ)

Промышленность выпускает большое число разновидностей БТ, отличающихся своими эксплуатационными свойствами и параметрами. Поскольку реальные свойства ЗТ зависят от множества эксплуатационных и конструктивных факторов, дать их полную и строгую классификацию затруднительно. Поэтому сделаем лишь общий обзор основных разновидностей БТ, при выделении которых учитывались только основные структурные, технологические и эксплуатационные показатели.

По типу рабочего материала выделяют группы германиевых, кремниевых и арсенидгаллиевых БТ. Основное различие между приборами указанных групп - в допустимой рабочей температуре, что связано с различиями исходных материалов в ширине запрещенной зоны. При этом если германиевые транзисторы могут работать при Тр<70...90 °С, то для кремниевых и арсенидгаллиевых транзисторов этот показатель достигает соответственно 120... 150 и 200...250 °С. При эксплуатации в области нормальных пабоч1х температур кремниевые и арсенидгалиевые транзисторы имеют при прочих равных условиях большие значения Тр.

По механизму передачи тока в структуре различают бездрейфовые и дрейфовые транзисторы. Свойства бездрейфовых БТ подробно рассмотрены ранее.

Дрейфовое транзисторы - это такие БТ, в базовых областях которых создано электрическое поле, ускоряющее движение носителей от ЭП к КП. Действие ускоряющего поля в базе приводит к уменьшению времени пролета носителей через базу tпр и к соответствующему увеличению предельных частот fa и fb. Одновременно о этим существенно улучшаются и усилительные свойства БТ, поскольку при меньшем времени пролета большая часть инжектированных носителей успевает дойти до коллектора без рекомбинации. По остальным показателям дрейфовые БТ аналогичны ранее рассмотренным бездрейфовым приборам.

Ускоряющее поле в базе дрейфовых транзисторов имеет диффузионную природу и создается в результате неравномерного распределения примесей в их базовых областях. Структуры и методы формирования дрейфовых БТ описаны далее. По электропроводности рабочих областей различают транзисторы р - п -р и /2 -р - п -чипов. Различие в свойствах этих транзисторов предопределяется тем, что рабочими носителями в п -р - п. -структурах являются электроны, которые имеют более высокую подвижность по сравнению с дырками. Поэтому транзисторы п - р- п. -типов всегда имеют лучшие усилительные и частотные свойства.

Технологические разновидности БТ. При производстве дискретных БТ чаще всего используются приемы сплавной, диффузионной и эпитаксиальной технологии. Среди множества известных конструктивно-технологических разновидностей БТ наиболее широко применяются сплавные, диффузионно-сплавнне, пленарные, мезапланарные и планапно-эпитаксиальные.

Сплавные транзисторы изготовляют методом вплавления р-п переходов; В качестве исходного материала для таких транзисторов обычно используют германий. Типичная отпуктуоа сплавного транзистора и распределение в ней легирующих примесей показаны на рис.1,а,б.


Разновидности биполярных транзисторов (БТ)


При оценке свойств сплавных БТ прежде всего необходимо учесть, что при их производстве используются исходные полупроводниковые кристаллы (подложки) с равномерным распределением примесей. Поскольку после вплавления эмиттера и коллектора они образует базу транзистора, распределение примесей в базе сплавного транзистора оказывается равномерным (см. линию NqБ на риc.1,б). Такие транзисторы - классический пример БТ о бездрейфовым механизмом передачи тока от эмиттера к коллектору.

Сплавные транзисторы (см.рис.1,6) имеют резкие р-п. переходы, образованные сильнолегированными областями эмиттера и коллектора. Такие переходы имеют небольшую ширину и отличаются сравнительно невыcокими пробивными напряжениями. Вторая вытекающая отсюда особенность - повышенные значения барьерной емкости коллектора. Благодаря примерному равенству концентраций акцепторной примеси Nаэ Nак соответственно в эмиттерной и коллекторной областях оба перехода сплавного транзистора имеют примерно одинаковые инжекционные свойства. Поэтому по сравнению с другими типами БТ эти транзисторы более приспособлены к работе в активном инверсном режиме.

При вплавлении р - п переходов очень трудно обеспечить однородность их фронтов. Так как расплавленная лигатура в одних местах внедряется в кристалл глубже, а в других - на меньшую глубину, то профиль р - п. Перехода реального сплавного транзистора отличается от идеальной плоской формы. Получить в этом случае БТ с очень тонкой базой невозможно ввиду опасности сплавления эмиттерной и коллекторной областей. По этой причине сплавные транзисторы, особенно при больших площадях переходов, имеют базовые области шириной порядка 10...15 мкм, что сравнимо с размером диффузионной длины носителей в кристалле. Поэтому сплавные транзисторы, как правило, являются низкочастотными. Другая причина ограничения диапазона рабочих частот сплавных транзисторов - инерционность бездрейфового механизма передачи тока между переходами и значительные емкости переходов.

Дифузионно-сплавные БТ являются простейшим БТ с дрейфовым механизмом передачи тока. Их структуру формируют в следующем порядке: сначала в исходной пластине полупроводника Р -типа методом диффузии создают базовую IX -область глубиной 10... 15 мкм, а далее в этой области методом обычной сплавной технологии фопмируют ЭП.

Как и раньше, в диффузионно-сплавных транзисторах трудно создать тонкую базу. Основное их преимущество - наличие ускоряющего поля в базовой области, что улучшает их частотные свойства по сравнению со сплавными БТ. Это поле имеет диффузионную природу и возникает благодаря неравномерности распределения примесей. Второе преимущество диффузионно-сплавных транзисторов - высокая электрическая прочность КП, что объясняется малой концентрацией примесей в коллекторе.

Планарные транзисторы являются вторым примером дрейфовых БТ, при производстве которых используетcя диффузионная технология. Отличительная особенность их структуры - наличие выхода всех рабочих областей на одну и ту же сторону кристалла. технологические этапы формирования планарного транзистора показаны на рис.2,а-д. В основе технологии планарных БТ лежит локальная диффузия примесей через защитные маски из пленок SiO2. Процесс завершается нанесением омических контактов. При этом возможны два варианта их размещения.


Разновидности биполярных транзисторов (БТ)Разновидности биполярных транзисторов (БТ)Разновидности биполярных транзисторов (БТ)Разновидности биполярных транзисторов (БТ)


В первом из них (рис.2,е) омические контакты располагают с двух сторон подложки. Такие транзисторы обычно отличаются низкими уровнями омических потерь (сопротивление 7^). Двухсторонняя система контактов характерна для дискретных БТ.

Во втором варианте планарного транзистора (рис.2,ж) все омические контакты формируются на верхней поверхности кристалла. Такая структура характерна для БТ, используемых в составе полупроводниковых интегральных схем, и отличается повышенным сопротивлением rкк (до сотен Ом).

В планарном транзисторе границы р-п переходов выходят на поверхность под слоем диэлектрика, который служит защитой от внешних воздействий и обеспечивает практически полное отсутствие токов утечки. В целом пленарная технология позволяет существенно улучшить практически все параметры транзисторов, особенно их частотные характеристики. Последнее можно объяснить тем, что благодаря применению локальной диффузии примесей удается точно выдержать размеры и глубины залегания рабочих областей транзистора. При этом получают БТ с толщиной базы в десятые доли микрометра и имеющие рабочие частоты (РЧ) порядка 10...20 ГГц.

Мезапланарный транзистор (рис.3,а) изготовляют по планарной технологии. Для уменьшения площади КП с целью снижения его емкости вытравливают определенные участки кристалла, так что активная часть транзистора имеет вид столообразной мезаструктуры, в которую удаётся уменьшить емкость коллектора до долей пикофарады, что также способствует существенному повышению РЧ транзистора.


Разновидности биполярных транзисторов (БТ)Разновидности биполярных транзисторов (БТ)


Планарно-эпитаксиальные БТ имеют структуру, схема которой показана на рис.3,б. Их основу образует коллектор, состоящий из двух слоев - низкоомного п- и высокоомного п - типа. Высокоомный слой необходим для получения широкого КП с малой емкостью и достаточно большим допустимым коллекторным напряжением. Низкоомный п. -слой позволяет снизить сопротивление области коллектора с целью уменьшения потерь мощности на нем.

В процессе изготовления БТ высокоомный п. -слой коллектора создают методом эпитаксиального наращивания исходного п. -слоя. Поскольку эпитаксиальная технология допускает возможность высокоточного контроля толщины и сопротивления-пленки, этим обеспечивается существенное улучшение параметров транзистора. Эпитаксиально-планарные транзисторы имеют малый разброс параметров от одного прибора к другому и хорошую их стабильность во времени.

Мощные БТ. В зависимости от допустимой рассеиваемой мощности Рдоп все БТ разделяют на три группы: малой (Рдоп <0,3 Вт), средней (Рдоп»1.5…3.0 Вт) и большой (Рдоп>1.5...3.0 Вт) мощности. Особенностью мощных БТ является то, что их конструкция должна допускать возможность работы при больших уровнях рабочих токов и напряжений, а также обеспечивать эффективный отвод теплоты в окружающую среду. Последнее возможно лишь при небольшом значении теплового сопротивления БТ.

Для уменьшения теплового сопротивления подложки мощные БТ монтируют на кристаллодержателях из материалов о хорошей теплопроводностью. В большинстве случаев для этой цели используют проводящие материалы, поэтому коллектор мощного БТ, обычно имеет гальваническое соединение с корпусом. При необходимости мощные БТ должны снабжаться дополнительными радиаторами. Поэтому конструкция их корпусов должна предусматривать возможность такого варианта эксплуатации.

В диапазоне НЧ в качестве мощных частот применяют германиевые сплавные транзисторы. Они имеют значительные площади ЭП и КП, что необходимо для получения больших токов. При производстве таких транзисторов необходимо предусмотреть меры, предупреждающие нежелательные последствия эффекта вытеснения тока эмиттера. С этой целью эмиттеру придают форму узких полосок или колец (рис,4).


Разновидности биполярных транзисторов (БТ)Разновидности биполярных транзисторов (БТ)


Если при производстве мощных БТ используют приемы планарно-диффузионной технологии, эмиттерной области можно придать более сложную .конфигурацию, например в виде гребенки (рис. 5). Возможно также использование многоэмиттерных структур, когда в единой базовой области имеется до нескольких десятков или сотен эмиттерннх областей, объединяемых в единое целое системой пленочной разводки (рис.6).


Разновидности биполярных транзисторов (БТ)


Высоковольтные транзисторы. Для получения больших мощностей нужно также повышать рабочие напряжения на переходах транзисторов. Эти напряжения, как известно, ограничиваются явлением пробоя переходов. В реальных структурах пленарных транзисторов пробой коллекторного р - п перехода имеет обычно лавинный характер и значение пробойного напряжения находится в пределах нескольких десятков вольт. Пробой ЭП соответствует туннельному механизму и происходит при напряжениях порядка единиц вольт.

В БТ с идеально плоскими переходами напряжение пробоя должно зависеть только от концентрации и характера распределения примесей в р-п переходе. 3 реальных ПТ пробою способствует ряд дополнительных факторов, главными из которых являются:

а) изгибы фронта р - п перехода, в которых резко возрастает напряженность электрического поля;

б) рост концентрации примесей с приближением к поверхности, что приводит к уменьшению ширины и соответственно наппяжения пробоя р - п переходов;

в) образование паразитных проводящих каналов в местах выхода переходов на поверхность, которые снижают их электрическую прочность.

Устранение нежелательного действия этих факторов позволяет повысить напряжение пробоя до нескольких сотен или даже тысяч вольт. Это достигается в структурах высоковольтных транзисторов о охранным кольцом и расширенным контактом базы (рис.7,а). При ее создании базовую область создают в два приема. Сначала по контуру будущего КП проводят глубокую диффузию охранного кольца и затем проводят диффузию в центральной области базы. Использование такой двухступенчатой технологии позволяет уменьшить крутизну КП в местах изгиба и уменьшить опасность возникновения в них лавинного пробоя.


Разновидности биполярных транзисторов (БТ)Разновидности биполярных транзисторов (БТ)


Структура транзистора о расширенным базовым контактом показана на рис.7,б. Введение расширенного базового контакта позволяет понизить опасность пробоя коллектора в приповерхноотной области. Базовый контакт в предпробойном режиме находится под большим отрицательным потенциалом по отношению к коллекторной области (р - П -структура). В связи о этим под базовым контактом создаетоя электрическое поле, которое "оттесняет" электроны в глубь кристалла. В результате увеличивается ширина КП и устраняется причина преждевременного пробоя в области выхода его на поверхность кристалла.


Разновидности биполярных транзисторов (БТ)Разновидности биполярных транзисторов (БТ)


ВЧ- и СВЧ-транзисторы. По ширине диапазона рабочих частот БТ подразделяются на следующие группы: низкочастотные - НЧ ( f<3 МГц), среднечастотные СЧ ( f< 30 МГц), высокочастотные ВЧ (f< 300 МГц) и сверхнизкочастотные СЗЧ ( у > 300 МГц) .

ВЧ- и СВЧ-транзиоторы - это транзисторы с дрейфовым механизмом передачи тока и имеющие обычно структуру п - р- п -типа. Особо перспективным материалом для этих групп БТ является GаАs, который отличается особо высокой подвижностью электронов. Поскольку ВЧ- и СВЧ 1-транзисторы должны иметь предельно тонкую базу, пои их эксплуатации нередко возникает явление прокола базы.

Особую сложность представляет производство мощных ВЧ- и СВЧ-транзисторов с большой допустимой мощностью рассеяния, высокой граничной частотой fa малыми емкостями ЭП и КП, малыми постоянными времени цепи CK и rБ. Мощные ВЧ- и СВЧ-транзисторы зачастую изготовляют методами планажно-эпитаксиальной технологии, позволяющей формировать области транзистора сложной формы с высокой точностью. При этом широко используются структуры с гребенчатыми эмиттерами (см.рис.5) и многоэмиттерные БТ (см.рис.6) .

3 СЗЧ диапазоне используются также многоструктурные транзисторы, которые состоят из нескольких многоэмиттерных транзисторов, размещенных на одной полупроводниковой пластине и объединены в единую систему. Отдельные элементы такой структуры размещены достаточно далеко один от другого, так что их тепловые потоки не перекрываются и рассеиваемая мощность возрастает.

В конструкциях корпусов мощных СВЧ-транзисторов предусматривают не только малое тепловое сопротивление, эффективный теплоотвод, но и малые индуктивности выводов, а также малые емкости между выводами и корпусом. 13 случае необходимости корпусу СВЧ-транзистора придают форму, удобную для установки в волноводные тракты.

Мощности СВЧ-транзисторов достигают единиц ватт на частотах в единицы гигагерц.

Транзисторы с повышенным усилением. В простершем варианте усилительный элемент с повышенным усилением может быть получен благодаря использованию составных транзисторов (рис.8). Они могут собираться из элементов с однотипной (рис.8,а) либо взаимодополняющей (комплементарной) структурой. Если b1 и b2, - усиление тока в "одинарных" транзисторах, усиление составной пари bЕ » b1b2 и может достигать величин, превышающих 103...104 . Составные транзисторы могут иметь единое конструктивное оформление.


Разновидности биполярных транзисторов (БТ)Разновидности биполярных транзисторов (БТ)

Очень высокое усиление (b ~ 104 ...105) получают с помощью так называемых бета-транзисторов. Эти транзисторы имеют очень тонкую базу и эмиттерную область, созданную методом ионной имплантации. Последнее обеспечивает повышение эффективности ЭП к уровню g~1

Малошумящие БТ предназначены для построения первых каскадов высокочувствительных усилительных схем. Обычно это маломощные БТ, в паспорте которых нормируется коэффициент шума. В лучших образцах малошумящих БТ коэффициент шума не превышает 3...6 дБ. 3.7.

Похожие работы:

  1. •  ... моделей биполярных транзисторов КТ209Л, КТ342Б и ...
  2. • Одиночные усилительные каскады на биполярных ...
  3. • Конструктивно-технологические варианты исполнения биполярного ...
  4. • Определение параметров модели биполярного транзистора ...
  5. • Модель биполярного транзистора
  6. • Биполярные транзисторы
  7. • Биполярные транзисторы
  8. • Расчет усилителей на биполярных транзисторах
  9. • Исследование биполярного транзистора
  10. • Усилительный каскад на биполярном транзисторе
  11. • Исследование биполярного транзистора
  12. • Физические основы электроники
  13. • Усилительные каскады переменного тока на биполярных ...
  14. • Математическое моделирование биполярных транзисторов типа p-n ...
  15. • Самостоятельная нагрузка
  16. • Исследование биполярного транзистора
  17. • Новое поколение транзисторов
  18. • Биполярные транзисторы
  19. • Видеоусилитель
Рефетека ру refoteka@gmail.com