Рефетека.ру / Математика

Учебное пособие: Приложения определенного интеграла к решению некоторых задач механики и физики

1. Моменты и центры масс плоских кривых. Если дуга кривой задана уравнением y=f(x), a≤x≤b, и имеет плотность 1) Приложения определенного интеграла к решению некоторых задач механики и физики=Приложения определенного интеграла к решению некоторых задач механики и физики(x), то статические моменты этой дуги Mx и My относительно коорди­натных осей Ox и Oy равны

Приложения определенного интеграла к решению некоторых задач механики и физики

моменты инерции IХ и Iу относительно тех же осей Ох и Оу вычис­ляются по формулам

Приложения определенного интеграла к решению некоторых задач механики и физики

а координаты центра масс Приложения определенного интеграла к решению некоторых задач механики и физики и Приложения определенного интеграла к решению некоторых задач механики и физики — по формулам

Приложения определенного интеграла к решению некоторых задач механики и физики

где l— масса дуги, т. е.

Приложения определенного интеграла к решению некоторых задач механики и физики

Пример 1. Найти статические моменты и моменты инерции относительно осей Ох

и Оу дуги цепной линии y=chx при 0≤x≤1.

1) Всюду в задачах, где плотность не указана, предполагается, что кривая однородна и Приложения определенного интеграла к решению некоторых задач механики и физики=1.

◄ Имеем: Приложения определенного интеграла к решению некоторых задач механики и физикиСледовательно,

Приложения определенного интеграла к решению некоторых задач механики и физики

Пример 2. Найти координаты центра масс дуги окружности x=acost, y=asint, расположенной в первой четверти.

◄ Имеем: Приложения определенного интеграла к решению некоторых задач механики и физики

Отсюда получаем:

В приложениях часто оказывается полезной следующая

Теорема Гульдена. Площадь поверхности, образованной вращением дуги плоской кривой вокруг оси, лежащей в плоскости ду­ги и ее не пересекающей, равна произведению длины дуги на длину окружности, описываемой ее центром масс.

Пример 3. Найти координаты центра масс полуокружности Приложения определенного интеграла к решению некоторых задач механики и физики

◄Вследствие симметрии Приложения определенного интеграла к решению некоторых задач механики и физики. При вращении полуокружности вок­руг оси Ох получается сфера, площадь поверхности которой равна Приложения определенного интеграла к решению некоторых задач механики и физики, а длина полуокружности равна па. По теореме Гульдена имеем Приложения определенного интеграла к решению некоторых задач механики и физики

Отсюда Приложения определенного интеграла к решению некоторых задач механики и физики, т.е. центр масс C имеет координаты CПриложения определенного интеграла к решению некоторых задач механики и физики.

2. Физические задачи. Некоторые применения определенного интеграла при решении физических задач иллюстрируются ниже в примерах 4—7.

Пример 4. Скорость прямолинейного движения тела выражает­ся формулой Приложения определенного интеграла к решению некоторых задач механики и физики (м/с). Найти путь, пройденный телом за 5 секунд от начала движения.


◄ Так как путь, пройденный телом со скоростью Приложения определенного интеграла к решению некоторых задач механики и физики(t) за отрезок времени [t1,t2], выражается интегралом

Приложения определенного интеграла к решению некоторых задач механики и физики

то имеем:

Приложения определенного интеграла к решению некоторых задач механики и физики


Пример 5. Какую работу необходимо затратить для того, чтобы тело массы m поднять с поверхности Земли, радиус которой R, на высоту /i? Чему равна работа, если тело удаляется в беско­нечность?

<4| Работа переменной силы / (#), действующей вдоль оси Ох на от­резке [а, Ь], выражается интегралом


5


Похожие работы:

  1. • Применение дифференциального и интегрального исчисления к ...
  2. • Приложения определенного интеграла к решению некоторых ...
  3. • Приложения определенного интеграла к решению некоторых ...
  4. • Применение двойных интегралов к задачам механики и геометрии
  5. • Некоторые приложения определенного интеграла в ...
  6. • Общее понятие определённого интеграла, его геометрический и ...
  7. • Двойной интеграл в механике и геометрии
  8. • Физические модели при изучении интеграла в курсе ...
  9. • Техника интегрирования и приложения определенного ...
  10. • Векторные многоугольники в физических задачах
  11. • Вычисление интегралов
  12. • Интегральное исчисление. Исторический очерк
  13. • Интеграл и его свойства
  14. • Численное интегрирование определённых интегралов
  15. • Приближенный метод решения интегралов. Метод прямоугольников ...
  16. • Формирование познавательной потребности у учащихся ...
  17. • Формы и методы предъявления задач на уроках физике на ...
  18. • Интегралы. Дифференциальные уравнения
  19. • Определенный интеграл
Рефетека ру refoteka@gmail.com