Рефетека.ру / Экономика

Реферат: Модель ринкової рівноваги

1. Існування та стійкість рівноваги


Структура моделі рівноваги така: фірми й споживачі, діючи в егоїстичних інтересах, складають індивідуальні плани виробництва та споживання продукції. Даний процес описується моделями поведінки. Характер цих рішень залежить від технології виробництва, системи переваг і системи цін. Якщо технологія виробництва й система переваг фіксовані, то суттєвою є тільки система цін.

Припустимо відома система цін. Може виявитися, що при даній системі цін рішення споживачів і фірм несумісні: наприклад, споживачі вирішують спожити більше, ніж виробляють виробники при даній системі цін, або навпаки, споживачі вирішують спожити продукції менше, ніж можуть виробити виробники. Це означає, що попит (план споживачів) не відповідає пропозиції (плану фірми).

Перше запитання, на яке необхідно відповісти – питання існування рівноваги. Чи знайдеться взагалі для даної системи переваг і даної технології виробництва така система цін, при якій відповідні рішення споживачів і фірм будуть сумісними?

Розглянемо економіку, що складається з Модель ринкової рівноваги споживачів і Модель ринкової рівноваги фірм, які виготовляють Модель ринкової рівноваги товарів. Плани кожного з агентів економіки описуються Модель ринкової рівноваги-вимірними наборами чисел. Якщо Модель ринкової рівноваги, Модель ринкової рівноваги – план споживача Модель ринкової рівноваги, то Модель ринкової рівноваги – кількість Модель ринкової рівноваги-го продукту, який вирішив ужити споживач Модель ринкової рівноваги. Якщо Модель ринкової рівноваги, Модель ринкової рівноваги – план виробництва фірми Модель ринкової рівноваги, то Модель ринкової рівноваги – кількість Модель ринкової рівноваги-го продукту, який вирішила виробити фірма Модель ринкової рівноваги. Якщо фірма Модель ринкової рівноваги не виготовляє, а лише споживає продукт Модель ринкової рівноваги або виготовляє його в меншій кількості, ніж споживає, то компонента Модель ринкової рівноваги.

Нехай споживачі та фірми однозначно визначають свої плани за будь-якими цінами Модель ринкової рівноваги, при цьому існує функція попиту Модель ринкової рівноваги, Модель ринкової рівноваги і функція пропозиції


Модель ринкової рівноваги, Модель ринкової рівноваги.


Надлишковим попитом на товар Модель ринкової рівноваги-го виду називається різниця між попитом і пропозицією, тобто


Модель ринкової рівноваги. (1)


Надлишкові попити на всі Модель ринкової рівноваги продуктів утворює вектор-стовпець


Модель ринкової рівноваги


Функція Модель ринкової рівноваги характеризується такими властивостями:

1) Модель ринкової рівноваги для будь-якого Модель ринкової рівноваги, Модель ринкової рівноваги, тобто Модель ринкової рівноваги є однорідною функцією нульового ступеня; це можливо, якщо при пропорційній зміні всіх цін попит та пропозиція не змінюються;

2) функція Модель ринкової рівноваги задовольняє закону Вальраса Модель ринкової рівноваги для кожного


Модель ринкової рівноваги;


дана властивість випливає з умови, що весь доход витрачається на покупку, тобто сумарний доход дорівнює сумарній витраті;

3) функція Модель ринкової рівноваги безперервна при кожному Модель ринкової рівноваги.

Система цін Модель ринкової рівноваги називається рівноважною, якщо Модель ринкової рівноваги, тобто


Модель ринкової рівноваги, Модель ринкової рівноваги


Таке визначення рівноваги допускає можливість від’ємного надлишкового попиту, тобто можливість надлишкової пропозиції. Якщо Модель ринкової рівноваги – система цін рівноваги, то надлишкова пропозиція можлива лише при нульовій ціні, тобто якщо для деякого Модель ринкової рівноваги функція Модель ринкової рівноваги, то Модель ринкової рівноваги. Дійсно, якщо Модель ринкової рівноваги і Модель ринкової рівноваги, тоді всі доданки суми Модель ринкової рівноваги недодатні. Якщо Модель ринкової рівноваги, то один доданок цієї суми, а саме Модель ринкової рівноваги, строго від’ємний. Виходить, від’ємна і вся сума, тобто Модель ринкової рівноваги, що суперечить закону Вальраса (властивість 2).

Сформулюємо теорему. Якщо функція Модель ринкової рівноваги задовольняє умовам 1–3, то система рівноважних цін Модель ринкової рівноваги існує.

Друга проблема полягає в досягненні стану рівноваги за умови, що він існує (стійкість рівноваги).

Класичним методом розв’язання проблеми стійкості є процес "намацування", що являє собою ітеративний розв’язок, отриманий в результаті використання закону попиту та пропозиції для певного ринку. Для кожного ринку пропонується аукціонер, який не є а ні продавцем, а ні покупцем. Аукціонер реагує на нерівновагу на ринку через упорядкування цін. Правила встановлення впорядкованих цін такі: ціни піднімаються, якщо загальний ринковий попит перевищує загальну ринкову пропозицію; ціни знижуються, якщо загального ринкового попиту не вистачає для покриття загальної ринкової пропозиції; ціни залишаються незмінними, якщо загальний ринковий попит дорівнює загальній ринковій пропозиції.

У термінах функцій надлишкового попиту процес "намацування" має підвищити (понизити, залишити незмінним) ціни, якщо надлишковий попит позитивний (негативний, дорівнює нулю), тобто


Модель ринкової рівноваги (2)


Даний метод не гарантує в широкому розумінні досягнення стійкої рівноваги, наприклад, під час процесу "намацування" система цін може нескінченно довго коливатися біля точки рівноваги. Більш досконалі методи розв’язання проблеми стійкості розглядають системи "намацування", в яких траєкторії цін задаються формулою


Модель ринкової рівноваги,


де Модель ринкової рівноваги, Модель ринкової рівноваги, Модель ринкової рівноваги, тобто швидкість зміни всіх цін у часі – зростаюча функція надлишкового попиту на ті товари, обсяг яких збігається до нуля, якщо дорівнює нулю надлишковий попит.

Рівновагу називають локально стійкою, якщо вона в остаточному підсумку досягається, починаючи з деякого набору цін, досить близького до точки рівноваги.

Нехай Модель ринкової рівноваги – вектор цін у момент часу Модель ринкової рівноваги, тоді рівновага в точці Модель ринкової рівноваги є локально стійкою, якщо Модель ринкової рівноваги при заданих Модель ринкової рівноваги, Модель ринкової рівноваги, де Модель ринкової рівноваги – початковий момент часу, а Модель ринкової рівноваги – евклідова норма в просторі цін Модель ринкової рівноваги.

Рівновага називається глобально стійкою, якщо вона в остаточному підсумку досягається незалежно від початкової точки, тобто Модель ринкової рівноваги для всіх Модель ринкової рівноваги.

Глобальна стійкість припускає локальну. Зворотне невірно.

Аналіз локальної стійкості рівноваги ґрунтується на апроксимації швидкості зміни цін


Модель ринкової рівноваги


біля рівноваги. Рівноважною точкою Модель ринкової рівноваги є набір цін, що не змінюється в часі


Модель ринкової рівноваги (3)


в точці Модель ринкової рівноваги, а для процесу "намацування" рівновага вимагає нульового надлишкового попиту для кожного товару


Модель ринкової рівноваги, Модель ринкової рівноваги. (4)


Нехай розглядається лінійний процес "намацування"


Модель ринкової рівноваги


із точкою рівноваги в Модель ринкової рівноваги. Розкладемо Модель ринкової рівноваги в ряд Тейлора в околі точки Модель ринкової рівноваги

Модель ринкової рівноваги, (5)


де Модель ринкової рівноваги – матриця Якобі


Модель ринкової рівноваги,


оцінена в точці рівноваги. Через те, що Модель ринкової рівноваги – точка рівноваги, Модель ринкової рівноваги й, визначивши вектор різниці між реальними та рівноважними цінами як Модель ринкової рівноваги, (2.41) матиме вигляд


Модель ринкової рівноваги (6)


Система диференціальних рівнянь (6) стійка, тобто Модель ринкової рівноваги, тоді й тільки тоді, коли всі характеристичні корені матриці Якобі мають невід’ємні дійсні числа. Дана умова виконується, якщо всі товари є замінними, тобто збільшення ціни на будь-який продукт при незмінних інших цінах приводить до збільшення надлишкового попиту на будь-який інший продукт Модель ринкової рівноваги для всіх Модель ринкової рівноваги, Модель ринкової рівноваги. Отже, точка рівноваги є локально стійкою, якщо всі продукти є замінними.


2 Ітеративний процес знаходження рівноважних цін


Розглянемо ітеративний процес по Вальрасу, що імітує дію ринкового механізму з встановлення рівноважних цін на ринку.

За господарські суб'єкти, що беруть участь у процесі функціонування ринку, виберемо дві фірми, кожна з яких, володіє єдиним доступним їм обом фактором, виробляє по одному виду продукції кінцевого попиту, і одного споживача, що пропонує цей попит. Умовимося, що обмін здійснюється через єдиного посередника – аукціонника. У цьому випадку економічний цикл виглядатиме так, як показано на рис. 1.


Модель ринкової рівноваги

Рисунок 1.


Проблема оптимального розподілу ресурсів для такої економіки формулюється таким чином.

Умови попиту (D-Demand) і пропозиції (S-Supply) продукції:


Модель ринкової рівноваги.


Умови попиту та пропозиції ресурсів: Модель ринкової рівноваги.

Функція корисності, що максимізується споживачем:


Модель ринкової рівноваги.

Тут

Модель ринкової рівноваги – обсяг пропозиції Модель ринкової рівноваги-го продукту Модель ринкової рівноваги-им підприємством;

Модель ринкової рівноваги – обсяг попиту з боку споживача на Модель ринкової рівноваги-й продукт;

Модель ринкової рівноваги – пропозиція ресурсу;

Модель ринкової рівноваги – обсяг попиту на ресурс з боку Модель ринкової рівноваги-го підприємства;

Модель ринкової рівноваги – виробнича функція Модель ринкової рівноваги-го підприємства;

Модель ринкової рівноваги – функція корисності споживача.

Ітеративний процес знаходження рівноважних цін складається з таких п’яти кроків на кожній ітерації.

1. Аукціонник указує Модель ринкової рівноваги-й фірмі ціну на її продукцію Модель ринкової рівноваги і ціну фактора Модель ринкової рівноваги, а також повідомляє споживачеві ціни Модель ринкової рівноваги й ціну попиту, що дорівнює граничній корисності Модель ринкової рівноваги, Модель ринкової рівноваги, де Модель ринкової рівноваги – функція корисності споживача, задана як Модель ринкової рівноваги, де Модель ринкової рівноваги, Модель ринкової рівноваги – коефіцієнти функції корисності споживача.

2. Фірма Модель ринкової рівноваги з виробничою функцією Модель ринкової рівноваги, виходячи з заданих їй цін, обирає таке сполучення витрат і результатів виробництва Модель ринкової рівноваги, Модель ринкової рівноваги, Модель ринкової рівноваги, що максимізує її прибуток


Модель ринкової рівноваги


і подає це сполучення на розгляд аукціонника.

Необхідною умовою максимізації прибутку підприємства є


Модель ринкової рівноваги при Модель ринкової рівноваги.

Отже, з огляду на те, що


Модель ринкової рівноваги


при Модель ринкової рівноваги одержуємо


Модель ринкової рівноваги,


де Модель ринкової рівноваги, Модель ринкової рівноваги – коефіцієнти виробничої функції Модель ринкової рівноваги-ї фірми.

3. Споживач визначає попит на Модель ринкової рівноваги-й продукт у такий спосіб. Якщо на Модель ринкової рівноваги-й продукт попиту немає або гранична корисність споживача менша за граничні витрати, то споживач залишає величину попиту без змін. У протилежному випадку він коректує обсяг попиту на Модель ринкової рівноваги-й продукт за формулою


Модель ринкової рівноваги, Модель ринкової рівноваги,


де Модель ринкової рівноваги, Модель ринкової рівноваги, – додатні коефіцієнти.

4. Обчислюється надлишковий попит, який дорівнює


Модель ринкової рівноваги


Якщо Модель ринкової рівноваги з точністю до Модель ринкової рівноваги дорівнює 0, тоді процес обчислення цін припиняється та вважається, що сформовано рівноважну систему цін, яка задовольняє і фірму й споживача.

5. Якщо Модель ринкової рівноваги з точністю до Модель ринкової рівноваги не дорівнює 0, то аукціонником за наступними формулами здійснюється регуляція цін


Модель ринкової рівноваги, Модель ринкової рівноваги,

Модель ринкової рівноваги,


де Модель ринкової рівноваги й Модель ринкової рівноваги – додатні коефіцієнти корекції.


3. Задача визначення рівноважного випуску продукції


Складемо алгоритм, який визначає на основі міжгалузевого аналізу величину випуску за допомогою моделі Леонтьєва при відомій матриці коефіцієнтів прямих витрат Модель ринкової рівноваги і векторів кінцевого попиту Модель ринкової рівноваги.

Для розв’язання даної задачі використовуємо обчислювальну схему Гаусса-Зейделя.

Визначимо перелік змінних: Модель ринкової рівноваги– кількість секторів економіки; Модель ринкової рівноваги – матриця коефіцієнтів прямих витрат; Модель ринкової рівноваги – кінцевий попит на Модель ринкової рівноваги-й продукт; Модель ринкової рівноваги– ітераційний розв’язок Модель ринкової рівноваги-го порядку; Модель ринкової рівноваги– значення критерію збіжності; Модель ринкової рівноваги – загальна сума абсолютних відхилень; Модель ринкової рівноваги – лічильник ітерацій; Модель ринкової рівноваги– загальний кінцевий попит; Модель ринкової рівноваги – загальний випуск.

Під час використання методу Гаусса-Зейделя як основні рівняння виступають такі:


Модель ринкової рівноваги,

Модель ринкової рівноваги,

………………………………………

Модель ринкової рівноваги, (7)

………………………………………

Модель ринкової рівноваги,


Де Модель ринкової рівноваги, Модель ринкової рівноваги

Якщо розбити матрицю коефіцієнтів прямих витрат по діагоналях на дві частини: Модель ринкової рівноваги,

Де


Модель ринкової рівноваги,

Модель ринкової рівноваги,


то систему (7) можна записати у вигляді


Модель ринкової рівноваги.


Зауважимо, що Модель ринкової рівноваги– кількість секторів економіки, Модель ринкової рівноваги – коефіцієнти матриці коефіцієнтів прямих витрат, Модель ринкової рівноваги – коефіцієнти вектора кінцевого попиту. Вважається, що


Модель ринкової рівноваги.


Ітераційний процес триває доти, доки


Модель ринкової рівноваги.


4. Оптимізаційні задачі в моделі Леонтьєва


Сформулюємо наступну екстремальну задачу. Нехай вектор трудових ресурсів дорівнює Модель ринкової рівноваги, де Модель ринкової рівноваги – витрати трудових ресурсів Модель ринкової рівноваги-ї галузі. Суму Модель ринкової рівноваги назвемо обсягом витрат ресурсів, необхідних для виробництва валового продукту Модель ринкової рівноваги. Позначимо через Модель ринкової рівноваги загальний об’єм трудових ресурсів, Модель ринкової рівноваги. Тоді має місце нерівність Модель ринкової рівноваги. Розв’язок системи рівнянь Модель ринкової рівноваги при Модель ринкової рівноваги існує, але не при будь-якому невід’ємному векторі Модель ринкової рівноваги. Нехай вектор Модель ринкової рівноваги задає не кінцевий попит, а лише структуру кінцевого попиту, тобто можна вважати, що Модель ринкової рівноваги. Необхідно максимізувати Модель ринкової рівноваги – кіль-кість комплектів товарів, що випускають, тобто


Модель ринкової рівноваги. (8)

Суть задачі (3.13) полягає в раціональному розподілі трудових ресурсів під час виробництва номенклатури товарів.

Якщо матриця Модель ринкової рівноваги продуктивна, то задача (8) припустима й має розв’язок. Справді, якщо Модель ринкової рівноваги, то існує додатне Модель ринкової рівноваги таке, що


Модель ринкової рівноваги


Значення Модель ринкової рівноваги є припустимим для задачі (8). Очевидно, що множина всіх припустимих значень є обмеженою, отже, задача (8) має розв’язок.

Розглянемо узагальнену модель Леонтьева (УМЛ), в якій передбачається, що кожна галузь має не один технологічний спосіб для виробництва свого продукту. Нехай у виробничій системі є Модель ринкової рівноваги типів товарів і Модель ринкової рівноваги технологічних процесів Модель ринкової рівноваги, кожен з яких випускає один товар.

Позначимо кількість ресурсу Модель ринкової рівноваги-го типу й об'єму роботи, необхідних для виробництва одиниці продукції виду Модель ринкової рівноваги в галузі Модель ринкової рівноваги за допомогою технології Модель ринкової рівноваги, відповідно як


Модель ринкової рівноваги

Модель ринкової рівноваги


тоді узагальнену матрицю коефіцієнтів прямих витрат (узагальнену матрицю Леонтьєва) і вектор коефіцієнтів трудових витрат можна визначити як


Модель ринкової рівноваги

Модель ринкової рівноваги.


Матриця коефіцієнтів випуску виходить із одиничної матриці шляхом такого розширення:


Модель ринкової рівноваги.


Виразимо вектор обсягу випуску, що описує режим роботи всіх технологічних способів узагальненої моделі Леонтьєва, як


Модель ринкової рівноваги.


Вектор кінцевого попиту


Модель ринкової рівноваги.


Кожна галузь вибирає з кількості доступних їй технологій одну певну технологію. Якщо припустити, що вибір технологій здійснюється з урахуванням задоволення кінцевого попиту Модель ринкової рівноваги, який пропонують кожній з галузей, так, щоб мінімізувати об'єм витрат „живої" роботи в суспільстві в цілому, то задача технологічного вибору може бути наведена у вигляді задачі лінійного програмування


Модель ринкової рівноваги. (9)


Для сформульованої узагальненої моделі Леонтьєва існує так називана теорія заміщення: якщо в УМЛ припустити можливість виробництва додатного вектора попиту Модель ринкової рівноваги, то, як би не змінювався кінцевий попит, оптимальний базис Модель ринкової рівноваги залишатиметься незмінним. Цей базис є матрицею розміру Модель ринкової рівноваги. Оскільки будь-яка галузь має виробляти певну кількість продукції, причому це можливо за допомогою різних виробничих технологій, кожною галуззю буде обраний один технологічний процес.

В моделі (9) в явному вигляді присутній лише один з обмежених ресурсів – робота. Однак більш реалістично вважати, що рівень діяльності обмежений не тільки роботою, але в залежності від вибору тривалості періоду виробництва також й основними фондами, головними складеними елементами яких є виробничі будинки й верстати, а також землею й багатьма іншими ресурсами. Обмеження ресурсів можна виразити у вигляді системи нерівностей. Якщо позначити обсяг ресурсу Модель ринкової рівноваги, необхідний для випуску в галузі Модель ринкової рівноваги, як Модель ринкової рівноваги де Модель ринкової рівноваги а обсяг ресурсу Модель ринкової рівноваги, що насправді є в наявності, як Модель ринкової рівноваги деМодель ринкової рівноваги тоді реально досяжний обсяг випуску має відповідати такій умові:


Модель ринкової рівноваги,

де Модель ринкової рівноваги,

Модель ринкової рівноваги.


Якщо ввести умови обмеженості ресурсів в задачу (9), то можна записати її в більш загальному вигляді:


Модель ринкової рівноваги (10)


Вектор обмежень ресурсів можна вважати невід’ємним, тому очевидно, що задача (10) аналогічна задачі лінійного програмування. Якщо вважати задачу (10) вихідною й навести її у вигляді


Модель ринкової рівноваги (11)


то двоїста їй задача записується так:


Модель ринкової рівноваги (12)


де Модель ринкової рівноваги – вектор цін на продукцію, Модель ринкової рівноваги – вектор цін на ресурси.

Розв’язок задачі (12), тобто оптимальна система цін Модель ринкової рівноваги, збігається з симплексним мультиплікатором, який відповідає оптимальному базису задачі (11). Через те, що константи системи обмежень ресурсів не додатні, елементи симплексного мультиплікатора для ресурсів є невід’ємними. Якщо матрицю діяльності, що утворює оптимальний базис, і відповідний їй вектор коефіцієнтів трудових витрат навести як


Модель ринкової рівноваги

то синтез оптимальних цін можна записати так:


Модель ринкової рівноваги


або інакше


Модель ринкової рівноваги. (13)


Формула (3.18) означає, що ціна продукції дорівнює сумі витрат продуктів виробництва, обмежених ресурсів і роботи. Всі витрати виражаються у вартісному вигляді. Якщо як обмежений ресурс розглядати тільки роботу, то (13) прийме такий вигляд:


Модель ринкової рівноваги. (14)


Симплексний критерій


Модель ринкової рівноваги (15)


інтерпретують як критерій прибутковості технологічного процесу Модель ринкової рівноваги. Співвідношення (15) означає, що технологія, яка не відповідає критерію прибутковості, – це застаріла технологія й її вибрано не буде. Крім того, симплексний критерій для задачі (13) означає, що ресурс Модель ринкової рівноваги, який існує в кількості, що перевищує оптимально використовуваний об’єм, став ресурсом свободним, а його ціна перетворюється на нуль.

Похожие работы:

  1. • Мікроекономіка
  2. • Класична модель макрорівноваги
  3. • Теорія неокласичного синтезу. Теорія економіки ринків
  4. • Макроэкономические модели в системе макроэкономического ...
  5. • Маржинальна революція та її особливості
  6. • Споживчій попит
  7. • Моделі рівноваги товарного і грошового ринків -IS ...
  8. • Криві та закони Енгеля
  9. • Монетаризм та його сучасне застосування
  10. • Аналіз стану ринку й визначення ринкових перспектив ...
  11. • Макроэкономика
  12. • Інфраструктура ринкової системи господарства
  13. • Загальна рівновага конкурентних ринків
  14. • Формування української ринкової системи
  15. • Модель Хікса-Хансена та її роль в макроекономіці
  16. • Монопольна та конкурентна рівновага, цінова еластичність ...
  17. • Контроль НБУ у механізмі формування рівноваги на грошовому ...
  18. • Основи мікроекономіки
  19. • Моделі дуополії та теорія ігор
  20. • Циклічні коливання економічного розвитку
Рефетека ру refoteka@gmail.com