Рефетека.ру / Математика

Контрольная работа: Теория вероятности

Индивидуальные задания по математике


Задача 1


В урне 6 белых шаров, 11 – черных. Одновременно наугад вынимают два шара. Найти вероятность того, что оба шара будут:

1) белыми, 2) одного цвета, 3) разных цветов.

Решение

1) Вероятность того, что один из вытащенных шаров будет белым равна количеству шансов вытащить белый шар из всей суммы шаров, находящихся в урне. Этих шансов ровно столько сколько белых шаров в урне, а сумма всех шансов равна сумме белых и черных шаров.


Теория вероятности


Вероятность того, что второй из вытащенных шаров также будет белым равна


Теория вероятности


Так как один из белых шаров уже вытащен.

Таким образом, вероятность того, что оба вытащенных из урны шара будут белыми равна произведению этих вероятностей, так как эти возможности независимы:


Теория вероятности.


2) Вероятность того, что оба вытащенных шара будут одного цвета это – вероятность того, что оба шара будут либо белыми, либо черными. Она равна сумме вероятностей - вытащить два белых шара или два черных шара:


Теория вероятности.


3) Вероятность того, что оба вытащенных шара будут разных цветов это – вероятность того, что первый шар будет белым, а второй черными или того, что первый шар будет черным, а второй – белым. Она равна сумме соответствующих вероятностей.


Теория вероятности.


Ответ: 1) Теория вероятности 2) Теория вероятности 3) Теория вероятности.


Задача 2


В первой урне 6 белых шаров, 11 – черных, во второй – 5 белых и 2 – черных. Из каждой из урн наугад вынимают по шару. Найти вероятность того, что оба шара будут:

1) белыми, 2) одного цвета, 3) разных цветов.

Решение

1) Вероятность того, что оба шара будут белыми равна произведению вероятности того, что шар вытащенный из первой урны будет белым на вероятность того, что шар вытащенный из второй урны также окажется белым:


Теория вероятности


2) Вероятность того, что оба вытащенных шара будут одного цвета это – вероятность того, что оба шара будут либо белыми, либо черными. Она равна сумме вероятностей - вытащить два белых шара или два черных шара:


Теория вероятности.


3) Вероятность того, что шар, вытащенный из первой урны будет белым, а шар, вытащенный из второй урны – черным, или наоборот – первый шар будет черным, а второй – белым, равна сумме соответствующих вероятностей:


Теория вероятности


Ответ: 1) Теория вероятности 2) Теория вероятности 3) Теория вероятности.


Задача 3


Среди 24 лотерейных билетов – 11 выигрышных. Найти вероятность того, что по крайней мере один из 2-х купленных билетов будет выигрышным.

Решение

Вероятность того, что хотя бы один из 24-х купленных билетов окажется выигрышным, равна разности между единицей и вероятностью того, что ни один из купленных билетов не будет выигрышным. А вероятность того, что ни один из купленных билетов не будет выигрышным равна произведению вероятности того, что первый из билетов не будет выигрышным на вероятность того, что и второй билет не будет выигрышным:


Теория вероятности


Отсюда, вероятность того, что хотя бы один из 24-х купленных билетов окажется выигрышным:


Теория вероятности


Ответ: Теория вероятности


Задача 4


В ящике 6 деталей первого сорта, 5 – второго и 2 – третьего. Наугад берутся две детали. Какова вероятность того, что они обе будут одного сорта?

Решение

Искомая вероятность это – вероятность того, что обе детали будут или 1-го или 2-го или 3-го сорта и равна сумме соответствующих вероятностей:

Вероятность, что обе взятые детали окажутся первого сорта:


Теория вероятности


Вероятность, что обе взятые детали окажутся второго сорта:


Теория вероятности

Вероятность, что обе взятые детали окажутся третьего сорта:


Теория вероятности


Отсюда вероятность вытащить 2 детали одного сорта равна:


Теория вероятности


Ответ: Теория вероятности


Задача 5


В течение часа 0 ≤ t ≤ 1 (t – время в часах) на остановку прибывает один и только один автобус.

Решение

Автобус может прибыть в любой момент t, где 0 ≤ t ≤ 1 (где t – время в часах) или, что то же самое, 0 ≤ t ≤ 60 (где t – время в минутах).

Пассажир прибывает в момент t = 0 и ожидает не более 28 минут.

Возможности прибытия автобуса на станцию в течение этого времени или в течение остальных 32 минут равновероятны, поэтому вероятность того, что пассажиру, прибывшему на эту остановку в момент времени t = 0, придётся ожидать автобус не более 28 минут равна Теория вероятности.

Ответ: Теория вероятности


Задача 8


Вероятность попадания первым стрелком в мишень равна 0,2 , вторым – 0,2 и третьим – 0,2. Все три стрелка одновременно произвели выстрел. Найти вероятность того, что:

1) только один стрелок попадёт в мишень;

2) два стрелка попадут в мишень;

3) хотя бы один попадет в мишень.

Решение

1) Вероятность того, что только один стрелок попадёт в мишень равна вероятности попадания в мишень первым стрелком и промаха вторым и третьим или попадания в мишень вторым стрелком и промаха первым и третьим или попадания в мишень третьим стрелком и промаха первым и вторым, а значит равна сумме соответствующих вероятностей.

Вероятность того, что первый стрелок попадёт в мишень, а второй и третий – промахнутся равна произведению этих вероятностей:


Теория вероятности.


Аналогичные вероятности попадания вторым стрелком в мишень и промаха первым и третьим, а также попадания третьим и промаха первым и вторым:


Теория вероятности,

Теория вероятности.


Отсюда, искомая вероятность:


Теория вероятности.


2) Вероятность того, что два стрелка попадут в мишень равна вероятности попадания в мишень первым и вторым стрелком и промаха третьим или попадания в мишень первым и третьим стрелком и промаха вторым или попадания в мишень вторым и третьим стрелком и промаха первым, а значит равна сумме соответствующих вероятностей.

Вероятность того, что первый и второй стрелки попадут в мишень, а третий – промахнётся равна произведению этих вероятностей:


Теория вероятности.


Аналогичные вероятности попадания первым и третьим стрелком в мишень и промаха вторым, а также попадания вторым и третьим и промаха первым:


Теория вероятности,

Теория вероятности.


Отсюда, искомая вероятность:


Теория вероятности.


3) Вероятность того, что хотя бы один стрелок попадет в мишень равна разности между единицей и вероятностью того, что ни один стрелок не попадёт в мишень. Вероятность того, что ни один стрелок не попадёт в мишень равна произведению этих вероятностей:


Теория вероятности.


Отсюда,


Теория вероятности.


Ответ: 1) Теория вероятности, 2) Теория вероятности, 3) Теория вероятности.


Задача 9


Студент знает 11 вопросов из 24 вопросов программы. Каждый экзаменационный билет содержит три вопроса. Найти вероятность того, что: 1) студент знает все три вопроса; 2) только два вопроса; 3) только один вопрос экзаменационного билета.

Решение

1) Вероятность того, что студент знает все три вопроса билета равна произведению вероятностей знания каждого из них. Так как все три вопроса разные и не повторяются, то:


Теория вероятности.


2) Вероятность того, что студент знает только два вопроса билета равна вероятности того, что он знает первый и второй вопрос, а третий – не знает, или, что он знает первый и третий вопрос, а второй – не знает, или, что он знает второй и третий вопрос, а первый – не знает. То есть, эта вероятность равна сумме всех этих вероятностей.

Первое слагаемое этой суммы:

Теория вероятности.


Второе слагаемое этой суммы:


Теория вероятности.


И третье слагаемое этой суммы:


Теория вероятности.


Отсюда искомая вероятность:


Теория вероятности.


3) Вероятность того, что студент знает только один вопрос из трёх равна разности единицы и вероятности того что он не знает ни одного вопроса:


Теория вероятности.


Ответ: 1) Теория вероятности , 2) Теория вероятности, 3) Теория вероятности.


Задача 12


В первой урне 6 белых шаров и 11 – черных, во второй – 5 белых и 2 – черных. Из первой урны переложили во вторую один шар , затем из второй урны извлекли один шар. Найти вероятность того, что взятый из второй урны шар оказался: 1) белым, 2) чёрным.

Решение

1) Вероятность того, что наугад взятый из первой урны шар и переложенный во вторую окажется белым:


Теория вероятности.


Если шар, переложенный из первой урны во вторую, оказался белым, то белых шаров во второй урне станет шесть. Тогда, вероятность того, что взятый из второй урны шар окажется белым:


Теория вероятности


А вероятность обоих этих событий равна произведению этих вероятностей:


Теория вероятности.


Вероятность того, что наугад взятый из первой урны шар и переложенный во вторую окажется чёрным:


Теория вероятности.


Если шар, переложенный из первой урны во вторую, оказался чёрным, то чёрных шаров во второй урне станет три.

Тогда, вероятность того, что взятый из второй урны шар окажется чёрным:


Теория вероятности.


А вероятность обоих этих событий равна произведению этих вероятностей:


Теория вероятности.


Ответ: 1) Теория вероятности, 2) Теория вероятности .


Задача 13


В первой урне 6 белых и 11 – черных шаров, во второй – 5 белых и 2 – черных, в третьей 7 белых шаров. Произвольно выбирают урну и из неё наугад вынимают шар. Найти вероятность того, что вынутый шар оказался:

1) белым, 2) чёрным.

Решение

1) Вероятность выбора одной из трёх урн равна 1/3.

Вероятность вынуть белый шар из первой урны:


Теория вероятности


Значит, вероятность выбрать первую урну и вытащить из неё белый шар:

Теория вероятности.


Аналогично, вероятность выбрать вторую урну и вытащить из неё белый шар:


Теория вероятности.


Вероятность выбрать третью урну и вытащить из неё белый шар:


Теория вероятности,


так как в третьей урне все шары – белые.

Вероятность вытащить белый шар из наугад выбранной урны равна сумме этих вероятностей:


Теория вероятности.


Вероятность выбрать первую урну и вытащить из неё чёрный шар:


Теория вероятности.


Аналогично, вероятность выбрать вторую урну и вытащить из неё чёрный шар:


Теория вероятности.

Вероятность выбрать третью урну и вытащить из неё чёрный шар:


Теория вероятности,


так как в третьей урне все шары – белые.

Вероятность вытащить чёрный шар из наугад выбранной урны равна сумме этих вероятностей:


Теория вероятности


Ответ: 1) Теория вероятности, 2) Теория вероятности .


Задача 14


В одной из трёх урн 6 белых и 11 – черных шаров, во второй – 5 белых и 2 – черных, в третьей 7 белых шаров. Наугад выбирают из трёх урн и из неё снова наугад выбирают один шар. Он оказался белым. Какова вероятность того, что: 1) шар вынут из первой урны, 2) шар вынут из второй урны, 3) шар вынут из третьей урны ?

Решение

Для решения данной задачи применим формулу Бейеса, суть которой в следующем: если до опыта вероятности гипотез Н1, Н2, … Нn были равны Р(Н1), Р(Н2), …, Р(Нn), а в результате произошло событие А, то новые (условные) вероятности гипотез вычисляются по формуле:


Теория вероятности

Где Р(Нi) – вероятность гипотезы Нi, Р(А|Нi) – условная вероятность события А при этой гипотезе.

Обозначим гипотезы:

Н1 – выбор первой урны, Н2 – выбор второй урны, Н3 – выбор третьей урны.

До начала действий все эти гипотезы равновероятны:


Теория вероятности.


После выбора оказалось, что вытащен белый шар. Найдем условные вероятности:


Теория вероятности;

Теория вероятности;

Теория вероятности.


1) По формуле Бейеса апостериорная (после опыта) вероятность того, что шар был вынут из первой урны, равна:


Теория вероятности.


2) Аналогично, вероятность того, что шар был вынут из второй урны, равна:


Теория вероятности.


3) Аналогично, вероятность того, что шар был вынут из третьей урны, равна:


Теория вероятности.


Ответ:


1) Теория вероятности ,

2) Теория вероятности,

3) Теория вероятности .


Задача 15


Из 24 студентов, которые пришли на экзамен по математике, 6 подготовлены отлично, 11 – хорошо, 5 – посредственно, 2 – плохо. В экзаменационных билетах 20 вопросов. Отлично подготовленный студент может ответить на все 20 вопросов, хорошо подготовленный – на 16, посредственно – на 10, плохо – на 5 вопросов. Вызванный наугад студент ответил на все три произвольно заданных вопроса. Найти вероятность того, что этот студент подготовлен: 1) отлично, 2) плохо.

Решение

Для решения данной задачи применим формулу Бейеса:


Теория вероятности


Где Р(Нi) – вероятность гипотезы Нi,

Р(А|Нi) – условная вероятность события А при этой гипотезе.

Обозначим гипотезы:

Н1 – студент подготовлен отлично, Н2 – студент подготовлен хорошо,

Н3 – студент подготовлен посредственно, Н4 – студент подготовлен плохо.

До начала экзамена априорные вероятности этих гипотез:


Теория вероятности, Теория вероятности, Теория вероятности,

Теория вероятности.


После экзаменационной проверки одного из студентов оказалось, что он ответил на все три вопроса. Найдем условные вероятности, то есть вероятности ответить на все три вопроса студентом из каждой группы успеваемости:


Теория вероятности, Теория вероятности,

Теория вероятности, Теория вероятности.


1) По формуле Бейеса апостериорная (после экзамена) вероятность того, что вызванный студент был подготовлен отлично, равна:

Теория вероятности.


2) Аналогично, вероятность того, что вызванный студент был подготовлен плохо, равна:


Теория вероятности.


Ответ:

1) Вероятность того, что вызванный студент был подготовлен отлично:


Теория вероятности ,


2) Вероятность того, что вызванный студент был подготовлен плохо:


Теория вероятности,


Задача 16


Монета подбрасывается 11 раз. Найти вероятность того, что герб выпадет: 1) 2 раза, 2) не более 2-х раз, 3) не менее одного и не более 2-х раз.

Решение

Если опыт проводится n раз, а событие при этом каждый раз появляется с вероятностью р (и, соответственно, не появляется с вероятностью 1– р = q ), то вероятность появления этого события m раз оценивается с помощью формулы биномиального распределения:


Теория вероятности,


Где


Теория вероятности


- число сочетаний из n элементов по m.

1) В данном случае р = 0,5 (вероятность выпадения герба),

q = 1 – р =0,5 (вероятность выпадения решки),

n = 11, m = 2.

Отсюда, вероятность выпадения герба 2 раза:


Теория вероятности


2) в данном случае событие (герб) может появится 0 раз, 1 раз или 2 раза, значит искомая вероятность:


Теория вероятности

3) в этом случае событие (герб) может появится 1 раз или 2 раза, значит искомая вероятность:


Теория вероятности


Ответ:

Вероятность того, что герб выпадет:

1) ровно 2 раза равна


Теория вероятности,


2) не более 2-х раз:


Теория вероятности,


3) не менее одного и не более 2-х раз:


Теория вероятности.


Задача 17


По каналу связи передаётся 11 сообщений, каждое из которых независимо от других с вероятностью р = 0,2 искажается помехами. Найти вероятность того, что: 1) из 11 сообщений ровно 2 будет искажено помехами,

2) все сообщения будут приняты без искажений, 3) не менее двух сообщений будет искажено.

Решение

1) здесь р = 0,2 (вероятность искажения),

q = 1 – р =0,8 (вероятность неискажения),

n = 11, m = 2.

Отсюда,


Теория вероятности.


2) Вероятность принятия всех 11 сообщений без искажения равна произведению всех вероятностей принятия каждого из них без искажения:


Теория вероятности.


3) Искажение не менее двух сообщений означает, что искажены могут быть два или одно или ни одного сообщения:


Теория вероятности


Ответ:

Вероятность того, что:

1) из 11 сообщений будет искажено ровно 2 равна Теория вероятности,

2) не будет искажено ни одного сообщения: Теория вероятности,

3) не менее 2-х: Теория вероятности .

Похожие работы:

  1. • Теория вероятностей
  2. • Теория вероятностей. От Паскаля до Колмогорова
  3. • Динамика развития некоторых понятий и теорем теории ...
  4. • Разработка программы факультативного курса по теории ...
  5. • Возможности использования элементов теории вероятностей и ...
  6. • Теория вероятностей и математическая статистика
  7. • Теория вероятностей
  8. • Теория вероятности и математическая статистика
  9. • Теория вероятности и мат статистика
  10. • Вклад А.Н. Колмогорова в развитие теории вероятностей
  11. • Теория вероятности и математическая статистика
  12. • Аксиоматика теории вероятностей
  13. • Теория вероятности и математическая статистика
  14. • Теория вероятностей
  15. •  ... курса "Основы теории вероятностей и математической ...
  16. • Теория вероятностей
  17. • Теория вероятностей
  18. • Теория вероятности
  19. • Теория Вероятностей
  20. •  ... комбинаторики, теории вероятностей и математической ...
Рефетека ру refoteka@gmail.com