Рефетека.ру / Эк.-мат. моделирование

Курсовая работа: "Дискретні та неперервні динамічні системи в економіці" в MAPLE 7

Дискретні динамічні системи


Завдання №1

Динаміка національного доходу Yt визначається рівнянням


"Дискретні та неперервні динамічні системи в економіці" в MAPLE 7 (1.1.0)


де с=0,25; А =1; а=2. Знайти залежність Yt, якщо Y0=1


Рішення

1. Варіант початкових даних Y0=1.

Рішення рівняння (1.1.0) проводимо в пакеті MAPLE7:

> rsolve({y(n)=1/4*y (n 1)+1*(2^n), y(0)=1}, y(n));

>

"Дискретні та неперервні динамічні системи в економіці" в MAPLE 7

> R3:=simplify(%);

"Дискретні та неперервні динамічні системи в економіці" в MAPLE 7


Результат:

"Дискретні та неперервні динамічні системи в економіці" в MAPLE 7


n Y
0 1,00
1 2,25
2 4,56
3 9,14
4 18,29
5 36,57

Завдання №2

Динаміка національного доходу Yt визначається рівнянням Самуельсона-Хікса [6]

"Дискретні та неперервні динамічні системи в економіці" в MAPLE 7 (1.2.0)

де а=2; b =1,25; c=1. Знайти залежність Yt, якщо Y0=0, Y0=1

Рішення:

1. Динаміка об'єктів різної природи часто описується лінійними кінцево-різницевими рівняннями виду

xt = F (xt 1, xt-2,…, xt-n), (1.2.1)

Характеристичний стан об'єкта xt у будь-який момент часу t зі станами в попередні моменти часу. Рішення рівняння (1.2.1) n го порядку визначено однозначно, якщо задані n так званих початкових умов. Звичайно як початкові умови розглядаються значення xt при t = 0, 1,…, n – 1.

Підставляючи початкові значення xn 1,…, x1, x0 і t = n як аргументи функції в правій частині (1.2.1), знаходимо xn; використовуючи знайдене значення й підставляючи тепер xn, xn 1,…, x2 x1 і t = n + 1 як аргументи функції, знаходимо xn+1, і т. д. Процес може бути продовжений доти, поки не будуть вичерпані всі досліджуємі значення t.

У моделі економічних циклів Самуельсона-Хікса використовуються кінцево-різницеві рівняння виду xt = a1 xt-1 + a2 xt-2 + f(t) – лінійні кінцево-різницеві рівняння другого порядку, що є приватним видом рівняння (1.2.1).

2. Варіант початкових даних Y0=0.

Рішення рівняння (1.2.0) проводимо в пакеті MAPLE7 [4]:

> rsolve({f(n)=(2*f (n 1) – (1*1/4)*f (n 2)+2), f(0)=0}, f(n));


"Дискретні та неперервні динамічні системи в економіці" в MAPLE 7"Дискретні та неперервні динамічні системи в економіці" в MAPLE 7

Samuelson_Hiks3:=simplify(%);


"Дискретні та неперервні динамічні системи в економіці" в MAPLE 7"Дискретні та неперервні динамічні системи в економіці" в MAPLE 7


Як показує аналіз рішення для вирішення рівняння моделі Самуельсона-Хікса потрібно 2 послідовні точки початкових умов національного доходу (n 1, n), тобто 0 та 1 значення для кінечно-різницевої моделі. Тільки тоді з’являється можливість розрахування послідовних значень для точки (n+1). Якщо є тільки одна початкова точка (n 1), то отриманне рівняння моделі залежить не тільки від значення n, але і від значення Y(1).

3. Варіант початкових даних Y0=1.

Рішення рівняння (1.2.0) проводимо в пакеті MAPLE7:


> rsolve({f(n)=(2*f (n 1) – (1*1/4)*f (n 2)+2), f(0)=1}, f(n));


"Дискретні та неперервні динамічні системи в економіці" в MAPLE 7"Дискретні та неперервні динамічні системи в економіці" в MAPLE 7"Дискретні та неперервні динамічні системи в економіці" в MAPLE 7

> Samuelson_Hiks3:=simplify(%);

"Дискретні та неперервні динамічні системи в економіці" в MAPLE 7


Як показує аналіз рішення для вирішення рівняння моделі Самуельсона-Хікса потрібно 2 послідовні точки початкових умов національного доходу (n 1, n), тобто 0 та 1 значення для кінечно-різницевої моделі. Тільки тоді з’являється можливість розрахування послідовних значень для точки (n+1). Якщо є тільки одна початкова точка (n 1), то отримане рівняння моделі залежить не тільки від значення n, але і від значення Y(1).

4. Варіант початкових даних Y0=0, Y1=1.

Рішення рівняння (1.2.0) проводимо в пакеті MAPLE7:

> rsolve({f(n)=(2*f (n 1) – (1*1/4)*f (n 2)+2), f(0)=0, f(1)=1}, f(n));


"Дискретні та неперервні динамічні системи в економіці" в MAPLE 7"Дискретні та неперервні динамічні системи в економіці" в MAPLE 7


Samuelson_Hiks3:=simplify(%);


"Дискретні та неперервні динамічні системи в економіці" в MAPLE 7


Завдання №3

Попит D та пропозиція S як функції ціни p задаються виразами

"Дискретні та неперервні динамічні системи в економіці" в MAPLE 7 (1.3.0)


Знайти стаціонарну ціну pD=S(при умові D=S – вирівнювання попиту та пропозиції) та з’ясувати чи вона є стійкою.


Рішення:

1. Аналіз стійкості рівноважної ціни pD=S, якщо попит D та пропозиція S завдані функціями:


"Дискретні та неперервні динамічні системи в економіці" в MAPLE 7 (1.3.1)


виконується для дискретного підходу за наступним алгоритмом [1].

Нехай ціна близька до рівноважної, при якій попит D дорівнює пропозиції S:


"Дискретні та неперервні динамічні системи в економіці" в MAPLE 7 (1.3.2)


Тоді рівняння (1.3.1) в кінцевих різницях можна представити як:


"Дискретні та неперервні динамічні системи в економіці" в MAPLE 7 (1.3.3)

З умови рівноваги попиту та пропозиції та умови (1.3.2), маємо наступне перетворення рівнянь (1.3.3):


"Дискретні та неперервні динамічні системи в економіці" в MAPLE 7 (1.3.4)


а оскільки


"Дискретні та неперервні динамічні системи в економіці" в MAPLE 7 (1.3.5)


то рівняння (1.3.4) трансформується до вигляду:

"Дискретні та неперервні динамічні системи в економіці" в MAPLE 7 (1.3.6)

Який перетворюється до наступної форми:


"Дискретні та неперервні динамічні системи в економіці" в MAPLE 7 (1.3.7)


Для приросту ціни ∆pi отримане рівняння (1.3.7) є характеристичним однорідним різницевим рівнянням з сталим коефіцієнтом. Умова стійкості його розв’язку має вигляд [1]:

"Дискретні та неперервні динамічні системи в економіці" в MAPLE 7 (1.3.8)


2. Для системи рівнянь (1.3.0) пошук рівноважної ціни PD=S виконується за схемою:


"Дискретні та неперервні динамічні системи в економіці" в MAPLE 7 (1.3.9)

Рішення рівняння (1.3.9) в пакеті MAPLE7 дає рішення:

> solve (– (sqrt(L)*sqrt(L))+sqrt(L)+2=0);

"Дискретні та неперервні динамічні системи в економіці" в MAPLE 7

тобто p=4.

3. Знаходимо похідні "Дискретні та неперервні динамічні системи в економіці" в MAPLE 7 в точці рівноваги р=4:


"Дискретні та неперервні динамічні системи в економіці" в MAPLE 7 (1.3.10)


Оскільки умови стійкості для отриманих значень похідних в точці рівноваги не виконуються (1.3.11), то рівноважне рішення р=4 є нестійким

"Дискретні та неперервні динамічні системи в економіці" в MAPLE 7 (1.3.11)


Неперервні динамічні системи


Завдання №1

Найти розв’язок рівняння Харода-Домара


"Дискретні та неперервні динамічні системи в економіці" в MAPLE 7


з початковою умовою Y (t=0) =Y0; s, A, і – const;

Позначення (згідно з моделлю Харода – Домара роста національного доходу держави у часі) [6]:

Y(t) – рівень національного доходу держави у часі;

&amp;quot;Дискретні та неперервні динамічні системи в економіці&amp;quot; в MAPLE 7 – схильність населення до заощаджень (0< s < 1,0), тобто частка національного доходу, яка відкладується в заощадження;

t – час;

i – коефіцієнт індукованих інвестицій при зміні національного доходу ∆Y(t), тобто частка приросту національного доходу, яка йде на інвестування економіки;

А – рівень незалежних сталих інвестицій


Рішення:

1. У загальному вигляді модель економічного зростання складається із системи п’яти рівнянь [6]:

1) формула виробничої функції, якою передається обсяг потенційного випуску, тобто випуску продукції за умов повної зайнятості;

2) основна макроекономічна тотожність Yt=Ct+It показує, що вимірник випуску (доходу) Y поділяється в теорії зростання на споживання С та інвестиції І; вимірники державних витрат G і чистого експорту NX окремо в таких моделях не вирізняються, а розподіляються на споживання та інвестиції держави й інших країн світу (тобто вводяться в компоненти С та І);

3) формула розрахунку динаміки обсягу капіталу з урахуванням інвестицій та амортизації основного капіталу (за умови нульового інвестиційного лагу) має вигляд:


Kt=Kt-1+It–Wt,


де Kt – запас капіталу наприкінці періоду t;

Іt – інвестиції за весь період t;

Wt, – амортизація капіталу за період t.

Наведена формула вказує на те, що кількість капіталу зростає на величину інвестицій та зменшується на величину амортизаційних відрахувань;

4) формула для розрахунку вибуття капіталу (амортизації) має вигляд:


&amp;quot;Дискретні та неперервні динамічні системи в економіці&amp;quot; в MAPLE 7


де &amp;quot;Дискретні та неперервні динамічні системи в економіці&amp;quot; в MAPLE 7 – постійна (незмінна) норма амортизації, яка задається екзогенно отже, вважається, що вибуття капіталу є пропорційним до величини його запасу;

5) щодо інвестицій, то передбачається, що вони складають постійний процент від випуску It= s* Yt, де s – норма інвестицій (частка інвестицій у сукупному продукті (доході). Норма інвестицій s збігається з нормою заощадження, оскільки сукупні заощадження St дорівнюють сукупним інвестиціям Іt. Відповідно, Yt=Ct+St=Ct+It.

Таким чином, модель економічного зростання у загальному вигляді складається із системи п’яти наведених рівнянь, які містять сім змінних (Y, K, L, C, I, &amp;quot;Дискретні та неперервні динамічні системи в економіці&amp;quot; в MAPLE 7, s), три із яких задаються екзогенно:

затрати праці L (зростають із постійним темпом n);

норма амортизації основного капіталу &amp;quot;Дискретні та неперервні динамічні системи в економіці&amp;quot; в MAPLE 7;

норма заощадження s (задається безпосередньо або ж у вигляді певних умов, наприклад, максимізація споживання).

Мета дослідників – з’ясувати питання про те, як змінюються ендогенні змінні в моделі економічного зростання (Y, C та І) і який із чинників є визначальним фактором довгострокового економічного зростання.

Модель економічного зростання Харода–Домара

Це найпростіша модель економічного зростання, і була вона розроблена наприкінці 40 х рр. Модель описує динаміку доходу (Y), який є сумою споживчих (С) та інвестиційних (І) витрат. Економіка вважається закритою, тому чистий експорт (NX) дорівнює нулю, а державні витрати (G) в моделі не вирізняються. Основним фактором зростання є нагромадження капіталу.

Основні передумови моделі:

– постійна продуктивність капіталу MPK = dY/dK;

– постійна норма заощадження s = I/Y;

– відсутній процес вибуття капіталу W = 0;

– інвестиційний лаг дорівнює нулеві, тобто інвестиції миттєво переходять у приріст капіталу. Формально це означає, що dK(t) = I(t);

– модель не враховує технічного прогресу;

випуск не залежить від затрат праці, оскільки праця не є дефіцитним ресурсом;

використовується виробнича функція Леонтьєва, яка передбачає неможливість взаємозаміни акторів виробництва – праці і капіталу.

Припускається, що швидкість доходу пропорційна інвестиціям: dY = MPK * I(t) = MPK * s * Y, а темп приросту доходу dY/Y * dt є постійним і дорівнює s * MPK. Він прямо пропорційний нормі заощаджень та граничній продуктивності капіталу. Інвестиції (І) та споживання (С) в моделі Харода-Домара зростають з таким же постійним темпом (s * MPK).

2. Рішення проводимо в пакеті MAPLE7, використовуючи функцію вирішення диференційного рівняння з початковими умовами Y (t=0)=Y0:

> L6:=diff (y(t), t)=(s/i*y(t) – A/i*t);


&amp;quot;Дискретні та неперервні динамічні системи в економіці&amp;quot; в MAPLE 7


ans1:= dsolve({L6, y(0)=Y0}, y(t));


&amp;quot;Дискретні та неперервні динамічні системи в економіці&amp;quot; в MAPLE 7


Таким чином, розв’язком рівняння Харода-Домара у вигляді


&amp;quot;Дискретні та неперервні динамічні системи в економіці&amp;quot; в MAPLE 7


з початковою умовою Y (t=0) =Y0; s, A, і – const;

є функція:

&amp;quot;Дискретні та неперервні динамічні системи в економіці&amp;quot; в MAPLE 7


Завдання №2

Попит D та пропозиція S як функції змінної в часі ціни p=F(t) та її похідних задаються виразами


&amp;quot;Дискретні та неперервні динамічні системи в економіці&amp;quot; в MAPLE 7 (2.2.0)

Знайти стаціонарну ціну рівноваги попиту та пропозиції pD=S(t) – при умові D=S – вирівнювання попиту та пропозиції, як функцію часу, та з’ясувати чи вона є стійкою (оцінити рівень динаміки похідної &amp;quot;Дискретні та неперервні динамічні системи в економіці&amp;quot; в MAPLE 7).

Рішення:

1. Якщо попит D та пропозиція S є функціями ціни p(t) та її першої та другої похідних &amp;quot;Дискретні та неперервні динамічні системи в економіці&amp;quot; в MAPLE 7&amp;quot;Дискретні та неперервні динамічні системи в економіці&amp;quot; в MAPLE 7, то їх рівняння в загальному вигляді можна представити наступним чином [1]:


&amp;quot;Дискретні та неперервні динамічні системи в економіці&amp;quot; в MAPLE 7 (2.2.1)


2. В умовах пошуку точок рівноваги попиту та пропозиції:


&amp;quot;Дискретні та неперервні динамічні системи в економіці&amp;quot; в MAPLE 7 (2.2.2)


рівняння (2.2.1), віднімаючи перше від другого, перетворюємо у наступне рівняння


&amp;quot;Дискретні та неперервні динамічні системи в економіці&amp;quot; в MAPLE 7 (2.2.3)


яке має наступні початкові умови:


&amp;quot;Дискретні та неперервні динамічні системи в економіці&amp;quot; в MAPLE 7&amp;quot;Дискретні та неперервні динамічні системи в економіці&amp;quot; в MAPLE 7 (2.2.4)

Загальний розв’язок рівнянь (2.2.1) – (2.2.4) має вигляд [1]:


&amp;quot;Дискретні та неперервні динамічні системи в економіці&amp;quot; в MAPLE 7 (2.2.5)


де С1 та С2 – довільні сталі;

&amp;quot;Дискретні та неперервні динамічні системи в економіці&amp;quot; в MAPLE 7 – корені характеристичного рівняння:


&amp;quot;Дискретні та неперервні динамічні системи в економіці&amp;quot; в MAPLE 7 (2.2.6)


Після вирішення рівняння (2.2.6), отримані &amp;quot;Дискретні та неперервні динамічні системи в економіці&amp;quot; в MAPLE 7 – корені характеристичного рівняння в рівнянні (2.2.5) характеризують стаціонарність рівноважної ціни p(t) наступним чином:

1) Якщо обидва корені &amp;quot;Дискретні та неперервні динамічні системи в економіці&amp;quot; в MAPLE 7 – є дійсними від’ємними або комплексними з від’ємною дійсною частиною, то рівняння (2.2.5) перетворюється до вигляду:


&amp;quot;Дискретні та неперервні динамічні системи в економіці&amp;quot; в MAPLE 7 (2.2.7)


та з наростанням t рівноважна ціна p(t) буде прямувати до ціни рівноваги попиту D та S – PD=S, оскільки 1 та другий член рівняння (2.2.7) будуть наближатися до нуля.

2) Якщо обидва корені &amp;quot;Дискретні та неперервні динамічні системи в економіці&amp;quot; в MAPLE 7 – є дійсними позитивними, або один з них має позитивний знак, або комплексними з позитивною дійсною частиною, то згідно рівнянь (2.2.5), (2.2.7) з наростанням t рівноважна ціна p(t) буде віддалятися від до ціни рівноваги попиту D та S – PD=S, оскільки або перший, або другий член рівняння (2.2.5) будуть наближатися до &amp;quot;Дискретні та неперервні динамічні системи в економіці&amp;quot; в MAPLE 7.

3. В точці рівноваги попиту та пропозиції D=S, рівняння (2.2.0) перетворюються в наступне диференційне рівняння другого порядку похідних:


&amp;quot;Дискретні та неперервні динамічні системи в економіці&amp;quot; в MAPLE 7 (2.2.8)


Для пошуку точок стаціонарної ціни рівноваги pD=S враховуємо умови дорівнювання нулю першої та другої похідної в цих точках:


&amp;quot;Дискретні та неперервні динамічні системи в економіці&amp;quot; в MAPLE 7 (2.2.9)


тоді рівняння (2.2.8) перетворюється до вигляду, який дозволяє розрахувати значення стаціонарної ціни рівноваги попиту та прозиції:


&amp;quot;Дискретні та неперервні динамічні системи в економіці&amp;quot; в MAPLE 7 (2.2.10)


Для рівняння (2.2.8) характеристичне рівняння має наступний вигляд:


&amp;quot;Дискретні та неперервні динамічні системи в економіці&amp;quot; в MAPLE 7 (2.2.11)


а корені його рішення, розраховані в пакеті MAPLE7, дорівнюють


> solve (L*L 7*L 30);

&amp;quot;Дискретні та неперервні динамічні системи в економіці&amp;quot; в MAPLE 7

Оскільки корені характеристичного рівняння (2.2.11) &amp;quot;Дискретні та неперервні динамічні системи в економіці&amp;quot; в MAPLE 7 дійсні та мають різні знаки – рішення рівняння (2.2.10) є нестійким.


Завдання №3

Знайти стаціонарні точки динамічної системи


&amp;quot;Дискретні та неперервні динамічні системи в економіці&amp;quot; в MAPLE 7 (2.3.0)


та дослідити їх стійкість в лінійному наближенні.


Рішення:

1. Положення рівноваги вихідної динамічної системи (стаціонарні точки динамічної системи) визначається наступними умовами:


&amp;quot;Дискретні та неперервні динамічні системи в економіці&amp;quot; в MAPLE 7 (2.3.1)


звідкіля маємо систему рівнянь рівноваги


&amp;quot;Дискретні та неперервні динамічні системи в економіці&amp;quot; в MAPLE 7 (2.3.2)


Рішення системи рівнянь рівноваги (2.3.2) в пакеті MAPLE7 дає наступні 4 пари коренів – стаціонарних точок рівноваги динамічної системи (2.3.0):

> eqp1:=-x*x+2*x-x*y=0;

> eqp2:=-y*y+6*y 2*x*y=0;

>

> solve({eqp1, eqp2}, {x, y});

&amp;quot;Дискретні та неперервні динамічні системи в економіці&amp;quot; в MAPLE 7

&amp;quot;Дискретні та неперервні динамічні системи в економіці&amp;quot; в MAPLE 7

&amp;quot;Дискретні та неперервні динамічні системи в економіці&amp;quot; в MAPLE 7 (2.3.3)


2. Для дослідження стійкості кожного з отриманих рішень, складаємо системи першого наближення в околицях точок рівноваги за допомогою розкладення в ряд Тейлора. Формула Тейлора для функції двох змінних x, y у першому наближенні (тільки рівень 1 похідних) для функції &amp;quot;Дискретні та неперервні динамічні системи в економіці&amp;quot; в MAPLE 7 в околицях точки x0, y0 має наступний вигляд [7]:

&amp;quot;Дискретні та неперервні динамічні системи в економіці&amp;quot; в MAPLE 7 (2.3.4)

Побудову систем рівнянь першого наближення системи (2.3.2) виконуємо за допомогою пакета MAPLE7 [4]:


> DxDt:=-x*x+2*x-x*y;

&amp;quot;Дискретні та неперервні динамічні системи в економіці&amp;quot; в MAPLE 7

> mtaylor (DxDt, [x=0, y=0], 2);

> mtaylor (DxDt, [x=2, y=0], 2);

> mtaylor (DxDt, [x=4, y=-2], 2);

> mtaylor (DxDt, [x=0, y=6], 2);

&amp;quot;Дискретні та неперервні динамічні системи в економіці&amp;quot; в MAPLE 7

&amp;quot;Дискретні та неперервні динамічні системи в економіці&amp;quot; в MAPLE 7

&amp;quot;Дискретні та неперервні динамічні системи в економіці&amp;quot; в MAPLE 7

&amp;quot;Дискретні та неперервні динамічні системи в економіці&amp;quot; в MAPLE 7 (2.3.5)

> DyDt:=-y*y+6*y 2*x*y;

> mtaylor (DyDt, [x=0, y=0], 2);

> mtaylor (DyDt, [x=2, y=0], 2);

> mtaylor (DyDt, [x=4, y=-2], 2);

> mtaylor (DyDt, [x=0, y=6], 2);

>

&amp;quot;Дискретні та неперервні динамічні системи в економіці&amp;quot; в MAPLE 7

&amp;quot;Дискретні та неперервні динамічні системи в економіці&amp;quot; в MAPLE 7

&amp;quot;Дискретні та неперервні динамічні системи в економіці&amp;quot; в MAPLE 7

&amp;quot;Дискретні та неперервні динамічні системи в економіці&amp;quot; в MAPLE 7

&amp;quot;Дискретні та неперервні динамічні системи в економіці&amp;quot; в MAPLE 7 (2.3.6)


6. Використовуючи отримані результати (2.3.5), (2.3.6), дослідження стійкості рішення для 4 х пар коренів проводимо в наступній послідовності [5]:

6.1. 1 пара коренів – x=0, y=0

Cистема характеристичних рівнянь 1 го наближення ряду Тейлора відносно точки (x=0, y=0) має вигляд:


&amp;quot;Дискретні та неперервні динамічні системи в економіці&amp;quot; в MAPLE 7


Для знаходження умов стійкості будуємо характеристичну матрицю:

&amp;quot;Дискретні та неперервні динамічні системи в економіці&amp;quot; в MAPLE 7 &amp;quot;Дискретні та неперервні динамічні системи в економіці&amp;quot; в MAPLE 7

&amp;quot;Дискретні та неперервні динамічні системи в економіці&amp;quot; в MAPLE 7 &amp;quot;Дискретні та неперервні динамічні системи в економіці&amp;quot; в MAPLE 7

Звідки характеристичне рівняння &amp;quot;Дискретні та неперервні динамічні системи в економіці&amp;quot; в MAPLE 7

Корені рішення цього рівняння &amp;quot;Дискретні та неперервні динамічні системи в економіці&amp;quot; в MAPLE 7 та &amp;quot;Дискретні та неперервні динамічні системи в економіці&amp;quot; в MAPLE 7 є дійсні та мають однакові знаки, що відповідає стійкості рішення рівноваги [5] в точці (x=0, y=0).

Пара коренів – x=2, y=0

Cистема характеристичних рівнянь 1 го наближення ряду Тейлора відносно точки (x=2, y=0) має вигляд:

&amp;quot;Дискретні та неперервні динамічні системи в економіці&amp;quot; в MAPLE 7


Виконуючи заміну змінних в системі () на


&amp;quot;Дискретні та неперервні динамічні системи в економіці&amp;quot; в MAPLE 7


отримуємо модифіковану систему рівнянь:


&amp;quot;Дискретні та неперервні динамічні системи в економіці&amp;quot; в MAPLE 7


Для знаходження умов стійкості будуємо характеристичну матрицю:

&amp;quot;Дискретні та неперервні динамічні системи в економіці&amp;quot; в MAPLE 7 &amp;quot;Дискретні та неперервні динамічні системи в економіці&amp;quot; в MAPLE 7


&amp;quot;Дискретні та неперервні динамічні системи в економіці&amp;quot; в MAPLE 7 &amp;quot;Дискретні та неперервні динамічні системи в економіці&amp;quot; в MAPLE 7


Звідки характеристичне рівняння


&amp;quot;Дискретні та неперервні динамічні системи в економіці&amp;quot; в MAPLE 7


Вирішуємо рівняння () в пакеті MAPLE7


> L2:=a*a+0*a 2=0;

>

&amp;quot;Дискретні та неперервні динамічні системи в економіці&amp;quot; в MAPLE 7

> solve(L2);

&amp;quot;Дискретні та неперервні динамічні системи в економіці&amp;quot; в MAPLE 7


Корені рішення цього рівняння &amp;quot;Дискретні та неперервні динамічні системи в економіці&amp;quot; в MAPLE 7 та &amp;quot;Дискретні та неперервні динамічні системи в економіці&amp;quot; в MAPLE 7 є дійсні та мають різні знаки, що відповідає нестійкості рішення рівноваги [5] в точці (x=2, y=0).

3 пара коренів – x=4, y=-2

Cистема характеристичних рівнянь 1 го наближення ряду Тейлора відносно точки (x=0, y=6) має вигляд:


&amp;quot;Дискретні та неперервні динамічні системи в економіці&amp;quot; в MAPLE 7


Виконуючи заміну змінних в системі () на


&amp;quot;Дискретні та неперервні динамічні системи в економіці&amp;quot; в MAPLE 7


отримуємо модифіковану систему рівнянь:


&amp;quot;Дискретні та неперервні динамічні системи в економіці&amp;quot; в MAPLE 7


Для знаходження умов стійкості будуємо характеристичну матрицю:


&amp;quot;Дискретні та неперервні динамічні системи в економіці&amp;quot; в MAPLE 7 &amp;quot;Дискретні та неперервні динамічні системи в економіці&amp;quot; в MAPLE 7

&amp;quot;Дискретні та неперервні динамічні системи в економіці&amp;quot; в MAPLE 7 &amp;quot;Дискретні та неперервні динамічні системи в економіці&amp;quot; в MAPLE 7


Звідки характеристичне рівняння


&amp;quot;Дискретні та неперервні динамічні системи в економіці&amp;quot; в MAPLE 7


Вирішуємо рівняння () в пакеті MAPLE7


> solve (L*L+2*L+8);

&amp;quot;Дискретні та неперервні динамічні системи в економіці&amp;quot; в MAPLE 7


Корені рішення цього рівняння &amp;quot;Дискретні та неперервні динамічні системи в економіці&amp;quot; в MAPLE 7 та &amp;quot;Дискретні та неперервні динамічні системи в економіці&amp;quot; в MAPLE 7 є комплексні та мають однакові негативні знаки при дійсній частині, що відповідає стійкості рішення рівноваги [5] в точці (x=4, y=-2).

Пара коренів – x=0, y=6

Cистема характеристичних рівнянь 1 го наближення ряду Тейлора відносно точки (x=4, y=-2) має вигляд:


&amp;quot;Дискретні та неперервні динамічні системи в економіці&amp;quot; в MAPLE 7


Виконуючи заміну змінних в системі () на


&amp;quot;Дискретні та неперервні динамічні системи в економіці&amp;quot; в MAPLE 7


отримуємо модифіковану систему рівнянь:


&amp;quot;Дискретні та неперервні динамічні системи в економіці&amp;quot; в MAPLE 7

Для знаходження умов стійкості будуємо характеристичну матрицю:


&amp;quot;Дискретні та неперервні динамічні системи в економіці&amp;quot; в MAPLE 7 &amp;quot;Дискретні та неперервні динамічні системи в економіці&amp;quot; в MAPLE 7

&amp;quot;Дискретні та неперервні динамічні системи в економіці&amp;quot; в MAPLE 7 &amp;quot;Дискретні та неперервні динамічні системи в економіці&amp;quot; в MAPLE 7


Звідки характеристичне рівняння


&amp;quot;Дискретні та неперервні динамічні системи в економіці&amp;quot; в MAPLE 7


Корені рішення цього рівняння &amp;quot;Дискретні та неперервні динамічні системи в економіці&amp;quot; в MAPLE 7 та &amp;quot;Дискретні та неперервні динамічні системи в економіці&amp;quot; в MAPLE 7 є дійсними та мають знак (–) при дійсній частині, що відповідає асимптотичній стійкості рішення рівноваги [5] в точці (x=4, y=-2).

Похожие работы:

  1. • "Звезды прелестные" в поэзии Пушкина и его современников
  2. • Исследование уровня безопасности операционной системы Linux
  3. • Меркантилизм и доктрина А. Смита
  4. • Словник слів іншомовного пожодження економічного ...
  5. • Позиционные системы счисления
  6. • "Звезды прелестные" в поэзии Пушкина и его современников
  7. • "Звезды прелестные" в поэзии Пушкина и его современников
  8. • Краткий курс истории Московского троллейбуса
  9. • Восточные славяне в древности
  10. • Формування маркетингової стратегії ЗАТ "Оболонь"
  11. • Охрана труда при работе на компьютере
  12. • Технология HTML
  13. • Публий Теренций Афр
  14. • Решения задачи планирования производства симплекс ...
  15. • Латинский язык: Практические задания для студентов заочного ...
  16. • Основы латинского языка
  17. • Основы здорового образа жизни студента. Физическая культура в ...
  18. • Способы отрицания в современном немецком языке
  19. • Проект концептуального анализа развития туризма в ...
Рефетека ру refoteka@gmail.com