Рефетека.ру / Физика

Контрольная работа: Термодинамический анализ цикла газовой машины

Федеральное агентство по образованию

Архангельский государственный технический университет


Кафедра теплотехники


Специальность ОСП-ЭП Курс 1 Группа

Антошкин Евгений Валерьевич


КОНТРОЛЬНАЯ РАБОТА


по дисциплине: Теоретические основы теплотехники

(шифр – «наименование»)

на тему: Термодинамический анализ цикла газовой машины


Руководитель работы профессор С.В.Карпов


Оценка проекта (работы) ________________


Архангельск

2007

Федеральное агентство по образованию

Архангельский государственный технический университет

Кафедра теплотехники


ЗАДАНИЕ

КОНТРОЛЬНУЮ РАБОТУ

по дисциплине: Теоретические основы теплотехники


студенту ОСП-ЭП курса 1 группы Антошкину Евгению Валерьевичу


Тема: Термодинамический анализ цикла газовой машины


Исходные данные: Рабочее тело обладает свойствами воздуха, масса равна 1 кг

Газовый цикл состоит из четырех процессов, определяемые по показателю политропы. Известны начальные параметры в точке 1 (давление и температура), а также безразмерные отношение параметров в некоторых процессах

Дано:

n1-2 =1,35; n2-3 = ∞; n3-4 = К; n4-1 = ∞; p1 = 1∙105 Па; t1 = 90 єC;

v1/v2 = 10; р3/р2 = 1,5.

Найти: параметры для основных точек цикла:pi, vi, ti, ui, ii, si,

Определить для каждого процесса: ∆u, ∆i, ∆s, q, l, l*; φ = ∆u/q; ψ = l/q.

Определить работу газа за цикл lц, термическое к.п.д. и среднецикловое давление Pi.

Построить в масштабе цикл в координатах P,v; T,S.

Расчет производится при постоянной теплоемкости.

Срок выполнения работы с__________2007г. по ___________2007г.


Руководитель проекта Карпов С.В.«___»_____________2007г.

Исходные данные:


№ вар-та Показатель политропы PI, 10-5 Па t1 0C

Термодинамический анализ цикла газовой машины

Термодинамический анализ цикла газовой машины

Расчетный цикл

1-2 2-3 3-4 4-1




28


1,35


Ґ


К


Ґ


1,00


90


10


1,5


Термодинамический анализ цикла газовой машины

Определим характеристики:

1-2 – политропный процесс,

2-3 – изохорный процесс,

3-4 – адиабатный процесс,

4-1 – изохорный процесс.


Дополнительные данные:


R=ήв=287Дж/кгК – газовая постоянная воздуха,

μ=29кг/кмоль – молярная масса газа,

Ср=Ср· μ/ μ=7·4,187/29=1,01- теплоемкость газа,

Cv=Cv·µ/µ=5·4,187/29=0,722- теплоемкость газа,

k=Cp/Cv=7/5=1,4 - показатель Пуассона или показатель адиабаты.


Решение.


1 Определение параметров для основных точек цикла


Точка 1.

p1 v1=R T1,

T1=273+90=363 К.

v1=R T1/р1=287∙363/1∙105=1,042 м3/кг.

u1=cv T1=0,722∙363=262,09 кДж/кг

i1=cp T1=1,01∙363=366,63 кДж/кг

s1=cp ln(T1/273) R ln (p1/1,013)=1,01∙ln(363/273)–0,287∙ln (1/1,013)=0,291 кДж/(кг∙К)


Точка 2.

v2=v1/10= 0,104 м3/кг.

p2 = p1(v1/v2)n = 1∙105∙(10)1,35 = 22,387∙105 Па

Т2=р2v2/R = 22,387∙105∙0,104/287=811 K

t2 = 811 – 273 = 538єC

u2= cv T2 = 0,722∙811= 585,54 кДж/кг

i2= cp T2 = 1,01∙ 811= 819,11 кДж/кг

s2 = cp∙ln(T2/273) – R∙ln (p2/1,013) = 1,01 ∙ ln(811/273) – 0,287∙ln (22,387/1,013) = 0,211 кДж/(кг∙К)


Точка 3.

р3=1,5∙р2=50,37∙105 Па

v2= v3=0,104 м3/кг

Т3=р3∙v3/R = 50,37∙105∙0,104/287=1825 K

t3 = 1825 – 273 = 1552єC

u3= cv T3 = 0,722∙1825= 1317,65 кДж/кг

i3= cp T3 = 1,01∙ 1825= 1843,25 кДж/кг

s3=cp∙ln(T3/273)–R∙ln(p3/1,013)=1,01∙ln(1825/273)–0,287∙ ln (50,37/1,013) = 0,798 кДж/(кг∙К)


Точка 4.

v4=v1=1,042 м3/кг

p4 = p3(v3/v4)k = 50,37∙105∙(0,104/1,042)1,4 = 2,00∙105 Па

Т4= р4v4/R = 2,00∙105∙1,042/287 = 726 К.

t4 =726 – 273 = 453єC

u4= cv T4 = 0,722∙726= 524,17 кДж/кг

i4= cp T4 = 1,01∙726 = 733,26 кДж/кг

s4=cp∙ln(T4/273)–R∙ln(p4/1,013)=1,01∙ln(726/273,15)– 0,287∙ln (2,00/1,013) = 0,793 кДж/(кг∙К)


Таблица №1

№ точки р, Па v, м3/кг t, єС T, К u, кДж/кг i, кДж/кг

s,

кДж/(кг∙К)

1 1,00∙105 1,042 90 363 262,09 366,63 0,291
2 22,387∙105 0,104 538 811 585,54 819,11 0,211
3 50,37∙105 0,104 1552 1825 1317,65 1843,25 0,798
4 2,00∙105 1,042 453 726 524,17 733,26 0,793

2 Определение ∆u, ∆i, ∆s


1. Процесс 1 – 2.

∆u = u2 – u1 = 585,54 – 262,09 = 323,45 кДж/кг

∆i = i2 – i1 = 819,11 – 366,63 = 452,48 кДж/кг

∆s =s2 – s1 = 0,211 – 0,291 = -0,080 кДж/кг

2. Процесс 2 – 3.

∆u = u3 – u2 = 1317,65 – 585,54 = 732,11 кДж/кг

∆i = i3 – i2 = 1843,25 – 819,11 = 1024,14 кДж/кг

∆s =s3 – s2 = 0,798 –0,211 = 0,587 кДж/кг

3. Процесс 3 – 4.

∆u = u4 – u3 = 524,17 – 1317,65 = - 793,48 кДж/кг

∆i = i4 – i3 = 733,26 – 1843,25 = - 1109,99 кДж/кг

∆s =s4 – s3 = 0,793 – 0,798 = - 0,005 кДж/кг

4. Процесс 4 – 1.

∆u = u1 – u4 = 262,09 – 524,17 = - 262,08 кДж/кг

∆i = i1 – i4 = 366,63 – 733,26 = -366,63 кДж/кг

∆s = s1 – s4 = 0,291 – 0,793 = -0,502 кДж/кг


Таблица №2

№ процессов ∆u, кДж/кг ∆i, кДж/кг ∆s, кДж/(кг∙єС)
1-2 323,45 452,48 -0,080
2-3 732,11 1024,14 0,587
3-4 - 793,48 - 1109,99 -0,005
4-1 - 262,08 -366,63 -0,502
Всего 0 0 0

3 Определение q, l, l*,φ, ψ


1)Процесс 1 – 2 (политропный).

q = 0,722∙(1,35-1,4)/(1,35-1)∙(811-363)=-47,21 кДж/кг.

l = 0,287/(1,35 – 1) ∙ (363 –811) = -366,26 кДж/кг.

l* = 1,35 ∙ 0,287/(1,35 – 1)∙(363 – 811) = -495,94 кДж/кг.

φ = - 7

ψ = 8

2)Процесс 2 – 3 (изохорный).

q = ∆u =732,11 кДж/кг

l = 0

l*= - 0,104∙(50,37- 22,387)∙ 102= - 291,02 кДж/кг

φ = 1

ψ = 0

3) Процесс 3 – 4 (адиабатный).

q = 0

l = 0,287/(1,4-1)∙(1825-726) = 788,53 кДж/кг.

l* = - ∆i = 1109,99 кДж/кг.

φ = ∞

ψ = ∞

4)Процесс 4 – 1 (изохорный).

q = ∆u = -262,08 кДж/кг

l = 0

l*= - 1,042∙(1- 2)∙ 102= 104,2 кДж/кг

φ = 1

ψ = 0


Таблица №3

№ процессов q, кДж/кг l, кДж/кг l*, кДж/кг φ, ψ,
1 – 2 -47,21 -366,26 -495,94 -7 8
2 – 3 732,11 0 -291,02 1 0
3 – 4 0 788,53 1109,99
4 - 1 -262,08 0 104,2 1 0
Всего 422,82 422,27 427,23 - -

4 Определение lц, η, P

lц = 422,8 кДж/кг

qподв =732,11 кДж/кг

η =lц / qподв= 422,8/732,11 = 0,578 = 57,8 %

Pi=lц / Vmax - Vmin= 422,8∙103/(1,042- 0,104) = 0,451 МПа


5 Расчет промежуточных точек


1.Для графика в P-V координатах:

а) по оси V

1.Vχ1=(V1 + V2)/2=(1,042+0,104)/2=0,572

2.Vχ2=(V3 + V4)/2=(1,042+0,104)/2=0,572

б) по оси Р

1.Рχ1=Р1*(V1/Vχ1)n=1*105*(1,042/0,572)1,35=2,247*105

2.Рχ2=Р3*(V3/Vχ2)к=50,37*105*(0,104/0,572)1,4=4,63*105


2.Для графика в T-S координатах:

а) по оси Т

1.Тχ1=(Т2+Т3)/2=(811+1825)/2=1318

2.Тχ2=(Т3+Т4)/2=(1825+726)/2=1275,5

3.Тχ3=(Т4+Т1)/2=(726+363)/2=544,5

б) по оси S:

а)2-3Pχ1=P2*(Tχ1/T2)=22,387*105*(1318/811)=36,38*105

б)3-4Pχ2=P3*(Tχ2/T3)= 50,37*105*(1275,5/1825)=35,20*105

в)4-1Pχ3=P1*(Tχ3/T1)= 1*105*(544,5/363)=1,5*105


1.Sχ1=Cp*ln(Tχ1/273)-R(Pχ1/1,013)=1,01*ln(1318/273)-0,287* *ln(36,38/1,013)= 0,562

2.Sχ2=Cp*ln(Tχ2/273)-R(Pχ2/1,013)=1,01*ln(1275,5/273)-0,287* *ln(35,20/1,013)= 0,659

3.Sχ3=Cp*ln(Tχ3/273)-R(Pχ3/1,013)=1,01*ln(544,5/273)-0,287* *ln(1,5/1,013)= 0,585

Термодинамический анализ цикла газовой машины

Термодинамический анализ цикла газовой машины


Литература


1. Сборник задач по технической термодинамике /Т. И. Андрианова, Б. В. Дзампов, В. Н. Зубарев, С. А. Ремизов – М.: Энергия, 1971.

2. Ривкин С. Л. Термодинамические свойства газов. – М.: Энергия, 1973.

3. Кириллин В. А., Сычев В. В., Шейндлин А. Е. Техническая термодинамика. – М.: Энергия, 1976.

4. Ривкин С. Л., Александров А. А. Термодинамические свойства воды и водяного пара. – М.: Энергия, 1975.

Похожие работы:

  1. • Термодинамический расчет газового цикла
  2. • Газовый цикл тепловых двигателей и установок
  3. • Термодинамический анализ эффективности агрегатов ...
  4. • Прямой цикл Карно и тепловая изоляция
  5. • Прямой цикл Карно и тепловая изоляция
  6. • Термодинамические потенциалы
  7. • Общие сведения о термодинамических системах
  8. • Прямой цикл Карно. Тепловая изоляция
  9. • Основные операции паросилового цикла Ренкина
  10. • Термодинамический расчет цикла ДВС
  11. • ТЕРМОДИНАМИЧЕСКИЕ ФУНКЦИИ
  12. •  ... пара. Прямые термодинамические циклы - циклы паротурбинных ...
  13. • Термодинамические функции
  14. • Анатомия термодинамики
  15. • Струйные энергетические технологии
  16. • Тепловой двигатель с внешним подводом теплоты
  17. • Биологические ритмы как способ существования живой ...
  18. • Термодинамическая диссоциация оксидов железа
  19. • Второе начало термодинамики
Рефетека ру refoteka@gmail.com