Рефетека.ру / Физика

Курсовая работа: Расчет и проектирование воздушных линий электропередач

Содержание


Введение

1 Исходные данные

2 Определение физико-механических характеристик провода и троса

3 Выбор унифицированной опоры

4 Расчет проводов и троса на механическую прочность

4.1 Определение толщина стенки гололеда и величины скоростного напора ветра

4.2 Определение удельных нагрузок на провод и трос

4.3 Расчет критических пролетов

4.4 Расчет напряжений в проводе

4.5 Определение стрелы провеса проводов и троса

4.6 Определение напряжений в тросе

5 Выбор изоляторов и линейной арматуры

6 Расстановка опор по профилю трассы

6.1 Построение шаблона

6.2 Проверка опор на прочность

7 Расчет монтажных стрел провеса провода и троса

Заключение

Список литературы


Введение


Проектирование механической части воздушных линий электропередачи является важной частью проектирования электроснабжения. От правильного выбора элементов ЛЭП зависит долговременная и безопасная эксплуатация линий, и, соответственно, надежное и качественное электроснабжение потребителей.

В данном курсовом проекте рассмотрены основные этапы проектирования механической части воздушных ЛЭП: выбор промежуточных опор, механический расчет проводов и грозозащитного троса, выбор линейной арматуры, произведены расстановка опор по профилю трассы и расчет монтажных стрел провеса.


1 Исходные данные


Тип ЛЭП: двухцепная воздушная линия напряжением 110 кВ, проходящая в ненаселенной местности.

Климатические условия:

район по ветру – II;

район по гололеду – IV;

температура:

высшая tmax=40°С;

низшая tmin= -10°С;

среднегодовая tср=5°С.

Тип опор: унифицированные железобетонные.

Марки провода: АС-150.

Марка грозозащитного троса: ТК-50.

Материал изоляторов: фарфор

Степень загрязненности атмосферы I.


2 Определение физико-механических характеристик провода и троса


Физико-механические характеристики провода и троса приведены в таблицах 2.1 и 2.2.


Таблица 2.1 - Физико-механических характеристики провода АС-150/24

Сечение, мм2:

алюминиевой части

стальной части

суммарное F


149

24,2

173,2

Диаметр провода d, мм 17,1

Количество и диаметр проволок, штЧмм:

алюминиевых

стальных


26Ч2,7

7Ч2,1

Количество повивов, шт.

алюминиевой части

стальной части


2

1

Вес провода Gп, даН/км 600
Модуль упругости Е, даН/мм2 8,25·103
Температурный коэффициент линейного удлинения α, град-1 19,2·10-6
Предел прочности, даН/мм2 29
Удельная нагрузка от собственного веса γ1, даН/(мЧмм2) 3,46·10-3

Допустимое напряжение, даН/мм2

при среднегодовой температуре σt.ср

при низшей температуре σt min

при наибольшей нагрузке σγ max


8,7

13,0

13,0


Таблица 2.2 - Физико-механических характеристики троса ТК-50

Сечение, мм2:

номинальное

фактическое Fт


50

48,6

Диаметр троса dт, мм 9,1
Количество и диаметр проволок, штЧмм 19Ч1,8
Количество повивов, шт. 2
Вес троса Gт, даН/км 417
Модуль упругости Ет, даН/мм2 20·103
Температурный коэффициент линейного удлинения αт, град-1 12·10-6
Предел прочности, даН/мм2 120
Удельная нагрузка от собственного веса γт1, даН/(мЧмм2) 8·10-3

Допустимое напряжение, даН/мм2

при среднегодовой температуре σтt.ср

при низшей температуре σтt.min

при наибольшей нагрузке σтγ.max


42

60

60


3 Выбор унифицированной опоры


По исходным данным выбирается тип унифицированной промежуточной опоры ПБ110-8. Основные размеры опоры показаны на рисунке 3.1, технические характеристики опоры приведены в таблице 3.1.

H=26,0м; h1=3,0м; h2=13,5м; h3=4,0м; a1=2,0м; a2=3,5м; a3=2,0м; b=3,3м


Расчет и проектирование воздушных линий электропередач

Рисунок 3.1 – Унифицированная железобетонная опора ПБ110-8


Таблица 3.1 – Технические характеристики опоры ПБ110-8

Марка провода Район по гололеду Пролет, м Масса, т


габаритный ветровой весовой
АС-150 III,IV 225 250 280 7,5

Расчетный пролет, м,


lр=α·lгаб,


где α=0,9 для ненаселенной местности;

lр=0,9·225=202,5.


4 Расчет проводов и троса на механическую прочность


4.1 Определение толщина стенки гололеда и величины скоростного напора ветра


Средняя высота подвеса проводов на опоре, м,


Расчет и проектирование воздушных линий электропередач, (4.1)


где hi – расстояние от земли до j-ой траверсы опоры, м;

m – количество проводов на опоре;

λ – длина гирлянды изоляторов, м.

Для предварительных расчетов длина гирлянды изоляторов принимается для ВЛ 110 кВ 1,3 м.

Расчет и проектирование воздушных линий электропередач=16,2.

Средняя высота подвеса троса на опоре, м,


Расчет и проектирование воздушных линий электропередач=h2+2·h3+h1, (4.2)


Расчет и проектирование воздушных линий электропередач=13,5+2·4+3=24,5.

Допустимая стрела провеса провода, м,


Расчет и проектирование воздушных линий электропередач, (4.3)


где h2 – расстояние от земли до нижней траверсы, м;

Г – габаритный размер, м;

Расчет и проектирование воздушных линий электропередач=6,2.

Допустимая стрела провеса троса, м,


[fт]= Расчет и проектирование воздушных линий электропередач-(Г+2·h3+z), (4.4)


где z – наименьшее допустимое расстояние по вертикали между проводом и тросом в середине пролета, м, для lр=202,5 м z=4;

[fт]=24,5-(6+2·4+4)=6,5.

Высота приведенного центра тяжести провода и троса, м,


Расчет и проектирование воздушных линий электропередач, (4.5)


Расчет и проектирование воздушных линий электропередач=12;

Расчет и проектирование воздушных линий электропередач=20,2

Толщина стенки гололеда для провода и троса, мм,


Расчет и проектирование воздушных линий электропередач, (4.6)


где С – нормативное значение стенки гололеда, мм, (для 2-го района по гололеду С=10 мм);

Расчет и проектирование воздушных линий электропередач - поправочные коэффициенты на высоту и диаметр провода или троса

Расчет и проектирование воздушных линий электропередач=9,3;

Расчет и проектирование воздушных линий электропередач=10,2.

Скоростной напор ветра на провод и трос, даН/м2,


Расчет и проектирование воздушных линий электропередач, (4.7)


где q – нормативный скоростной напор ветра, даН/м2;

kВ – поправочный коэффициент;

Расчет и проектирование воздушных линий электропередач=65;

Расчет и проектирование воздушных линий электропередач=81,25.


4.2 Определение удельных нагрузок на провод и трос


Удельная нагрузка от собственного веса, даН/(м∙мм2), берется из таблиц 2.1 и 2.2:

Расчет и проектирование воздушных линий электропередач3,46·10-3;

Расчет и проектирование воздушных линий электропередач8·10-3.

Удельная нагрузка от веса гололеда, даН/(м∙мм2),


Расчет и проектирование воздушных линий электропередач, (4.8)


где d – диаметр провода или троса, мм;

F – фактическое сечение провода или троса, мм2;

g0=0,9·10-3 даН/(м∙мм2) – плотность гололедных отложений;

Расчет и проектирование воздушных линий электропередач=4·10-3;

Расчет и проектирование воздушных линий электропередач=11,4·10-3.

Удельная нагрузка от веса гололеда и собственного веса провода (троса), даН/(м∙мм2),


Расчет и проектирование воздушных линий электропередач, (4.9)


Расчет и проектирование воздушных линий электропередач·10-3=7,46·10-3;

Расчет и проектирование воздушных линий электропередач·10-3=19,4·10-3.

Удельная нагрузка от давления ветра при отсутствии гололеда, даН/(м∙мм2),


Расчет и проектирование воздушных линий электропередач, (4.10)


где kl – коэффициент, учитывающий влияние длины пролета на ветровую нагрузку;

kH – коэффициент, учитывающий неравномерность скоростного напора ветра по пролету;

СХ – коэффициент лобового сопротивления, равный 1,1 – для проводов диаметром 20 мм и более, свободных от гололеда; 1,2 – для всех проводов, покрытых гололедом, и для проводов диаметром меньше 20 мм, свободных от гололеда;

Расчет и проектирование воздушных линий электропередач=5,7·10-3;

Расчет и проектирование воздушных линий электропередач=13,1·10-3.

Удельная нагрузка от давления ветра на провод и трос при наличии гололеда, даН/(м∙мм2),


Расчет и проектирование воздушных линий электропередач, (4.11)


где q′=0,25∙qmax для районов с толщиной стенки гололеда до 15 мм;

Расчет и проектирование воздушных линий электропередач=4,1·10-3;

Расчет и проектирование воздушных линий электропередач=15,1·10-3.

Удельная нагрузка от давления ветра и веса провода (троса) без гололеда, даН/(м∙мм2),


Расчет и проектирование воздушных линий электропередач, (4.12)


Расчет и проектирование воздушных линий электропередач·10-3=6,7·10-3;

Расчет и проектирование воздушных линий электропередач·10-3=15,3·10-3.

Удельная нагрузка на провод от давления ветра и веса провода, покрытого гололедом, даН/(м∙мм2),


Расчет и проектирование воздушных линий электропередач (4.13)


Расчет и проектирование воздушных линий электропередач=8,5·10-3;

Расчет и проектирование воздушных линий электропередач=24,6·10-3.


4.3 Расчет критических пролетов


Первый критический пролет, м,


Расчет и проектирование воздушных линий электропередач, (4.14)

где Е – модуль упругости, даН/мм2;

α – температурный коэффициент линейного удлинения материала провода, град-1;

lk1=Расчет и проектирование воздушных линий электропередач.

Выражение под корнем меньше нуля. Первый критический пролет – мнимый.

Второй критический пролет, м,


Расчет и проектирование воздушных линий электропередач, (4.15)


где tгол – температура гололеда, равная -5єС;

γmax=γ7;

Расчет и проектирование воздушных линий электропередач=80,4.

Третий критический пролет, м,


Расчет и проектирование воздушных линий электропередач, (4.16)


Расчет и проектирование воздушных линий электропередач=144,2.

В результате получается следующее соотношение критических пролетов и расчетного пролета: lк1 – мнимый, lр=202,5 м>lк3=144,2 м.

На основании полученных соотношений определяется исходный режим. Это режим максимальной нагрузки с параметрами: σ=[σγ.max]=13,0 даН/мм2, γ=γmax=8,5·10-3 даН/(м·мм2), t=tгол=-5°С.


4.4 Расчет напряжений в проводе


По уравнению состояния провода рассчитываются напряжения в проводе для режимов среднегодовой температуры – σtср, режима низшей температуры – σtmin и наибольшей нагрузки – σγmax.

Расчет напряжения в проводе для режима низшей температуры. В уравнение состояния провода подставляются все известные параметры.


Расчет и проектирование воздушных линий электропередач, (4.17)


Расчет и проектирование воздушных линий электропередач

Расчет и проектирование воздушных линий электропередач.

Полученное уравнение приводится к виду:


Расчет и проектирование воздушных линий электропередач


Решение полученного уравнения выполняется итерационным методом касательных. В качестве нулевого приближения принимается значение σ0=10 даН/мм2.

Производная полученной функции y=Расчет и проектирование воздушных линий электропередач:

y’=3·σ2tmin-2·7,766·σtmin

Определяется поправка на первой итерации:


Δ1=y(σ0)/y’(σ0),


Расчет и проектирование воздушных линий электропередач=0,378.

Новое значение напряжения:


σ1=σ0-Δ1,


σ1=10-0,377=9,623.

Проверка итерационного процесса. Для этого задается точность расчета ε=0,01 даН/мм2.

0,377>0,01,

следовательно расчет нужно продолжить, приняв в качестве нового приближения σ=9,623.

Поправка на второй итерации:

Расчет и проектирование воздушных линий электропередач=0,025.

Новое значение напряжения:

σ2=9,623-0,025=9,598.

Выполняется проверка:

0,025>0,01.

Поправка на третьей итерации:

Расчет и проектирование воздушных линий электропередач=0,00013.

Проверка:

0,00013<0,01,

следовательно за искомое выражение σtmin принимаем σ3:

σtmin=9,598 даН/мм2.

Расчеты напряжений в проводе для режимов среднегодовой температуры и наибольшей нагрузки выполняются с помощью программы «MERA2». В результате получены следующие значения:

σtср=7,987 даН/мм2;

σγmax=12,517 даН/мм2.

Выполняется проверка условий механической прочности:

σtср≤[σtср], 7,987<8,7;

σtmin≤[σtmin], 9,598<13,0;

σγmax≤[σγmax], 12,517<13,0.

Условия выполняются, значит механическая прочность проводов будет достаточной для условий проектируемой линии.

По уравнению состояния провода выполняются расчеты напряжений для режимов гололеда без ветра –σгол, высшей температуры – σtmax, грозового режима – σгр. Результаты расчетов следующие:

σtmax=5,475 даН/мм2;

σгол=12,277 даН/мм2;

σгр=7,129 даН/мм2.


4.5 Определение стрелы провеса проводов и троса


Определяются стрелы провеса проводов в режиме гололеда без ветра, высшей температуры и грозовом режиме, м,


Расчет и проектирование воздушных линий электропередач, (4.18)


Расчет и проектирование воздушных линий электропередач=3,24;

Расчет и проектирование воздушных линий электропередач=3,11;

Расчет и проектирование воздушных линий электропередач=2,49.

Проверка соблюдения требуемых расстояний от низшей точки провисания провода до земли по условию:

f≤[f]=6,2;

ftmax=3,24<6,2;

fгол=3,11<6,2.

Условия выполняются, значит расстояние от провода до земли будет не менее габаритного размера.

Стрела провеса грозозащитного троса в грозовом режиме, м,


Расчет и проектирование воздушных линий электропередач, (4.19)


Расчет и проектирование воздушных линий электропередач=2,79.


4.6 Определение напряжений в тросе


Напряжение в тросе в грозовом режиме, даН/мм2,


Расчет и проектирование воздушных линий электропередач, (4.20)


Расчет и проектирование воздушных линий электропередач=14,7.

В качестве исходного принимается грозовой режим с параметрами: σтгр, γт1, t=15°C. По уравнению состояния провода определяются напряжения в тросе для режимов максимальной нагрузки, низшей и среднегодовой температуры.

Расчет напряжения в тросе для режима среднегодовой температуры. В уравнение состояния провода подставляются все известные параметры.

Расчет и проектирование воздушных линий электропередач

Расчет и проектирование воздушных линий электропередач.

Полученное уравнение приводится к виду:


Расчет и проектирование воздушных линий электропередач.


В качестве нулевого приближения принимается значение σ0=16 даН/мм2.

Производная полученной функции


y=Расчет и проектирование воздушных линий электропередач:


y’=3·σт2tср-2·6,979·σтtср


Определяется поправка на первой итерации:


Δ1=y(σ0)/y’(σ0),


Расчет и проектирование воздушных линий электропередач=0,225.

Новое значение напряжения:


σ1=σ0-Δ1,


σ1=16-0,225=15,775.

Проверка итерационного процесса, ε=0,01 даН/мм2.

0,225>0,01,

следовательно расчет нужно продолжить, приняв в качестве нового приближения σ=15,775

Поправка на второй итерации:

Расчет и проектирование воздушных линий электропередач=0,003.

Проверка:

0,003<0,01,

следовательно за искомое выражение σтtср принимаем σ1:

σтtср=15,775 даН/мм2.

В результате расчетов остальных режимов получены следующие значения:

σтγmax=31,476 даН/мм2;

σтtmin=17,606 даН/мм2.

Проверка условий механической прочности троса:

σтγmax=31,476 даН/мм2≤ [σтγmax]=60 даН/мм2;

σтtmin=17,606 даН/мм2≤ [σтtmin]=60 даН/мм2;

σтtср=15,775 даН/мм2≤ [σтtср]=42 даН/мм2.

Условия выполняются, значит выбранный провод пригоден для условий проектируемой линии.

5 Выбор изоляторов и линейной арматуры


Тип изолятора выбирается по механической нагрузке с учетом коэффициента запаса прочности, который представляет собой отношение разрушающей электромеханической нагрузки к нормативной нагрузке на изолятор. Согласно ПУЭ, коэффициенты запаса прочности в режиме наибольшей нагрузки должны быть не менее 2,7, а в режиме среднегодовой температуры – не менее 5,0.

В нормальных режимах поддерживающая гирлянда изоляторов воспринимает осевую нагрузку, состоящую из веса провода, гололеда и веса самой гирлянды.

Нагрузка для изоляторов поддерживающих гирлянд, даН,

2,7·(Gг+Gи)≤ Gэм,

5,0·(Gп+Gи)≤Gэм, (5.1)

где Gг – нагрузка на изолятор от веса провода, покрытого гололедом, даН,


Gг=γ7·F·lвес, (5.2)


где lвес=280 м – длина весового пролета;

F – общее фактическое сечение провода, мм2;

Gи – нагрузка на изолятор от веса гирлянды, даН, предварительно Gи=50 даН;

Gп – нагрузка на изолятор от веса провода, даН,


Gп=γ1·F·lвес, (5.3)


Тогда

2,7·( γ7·F·lвес+ Gи)=2,7·(8,5·10-3·173,2·280+50)=1248;

5,0·( γ1·F·lвес+ Gи)=5,0·(3,46·10-3·173,2·280+50)=1089.

Выбирается изолятор с такой разрушающей электромеханической нагрузкой, чтобы выполнялись условия (5.1). Выбирается изолятор ПФ70-В с разрушающей электромеханической нагрузкой 7500 даН:

1248<7500;

1089<7500,

т.е. условия выполняются.

Определяется число изоляторов в поддерживающей гирлянде,


n≥Расчет и проектирование воздушных линий электропередач, (5.4)


где λэф – нормированная удельная эффективная длина пути утечки. Для степени загрязненности атмосферы I λэф=13 мм/кВ;

Uнаиб=1,15·Uном;

lэф – эффективная длина пути утечки, мм,

lэф=lут/k, (5.5)

где lут =355 мм для выбранного изолятора;

k – поправочный коэффициент,


k=Расчет и проектирование воздушных линий электропередач, (5.6)


где D – диаметр тарелки изолятора, D=270 мм;

k=Расчет и проектирование воздушных линий электропередач=1,157;

lэф=355/1,157=306,8;

n≥Расчет и проектирование воздушных линий электропередач=5,4.

Полученное значение округляется до шести и увеличивается на один. В итоге число изоляторов в поддерживающей гирлянде равно семи.

При выборе изоляторов натяжных гирлянд в условия (5.1) добавляется величина тяжения провода.

Нагрузка на изолятор натяжной гирлянды, даН,


Расчет и проектирование воздушных линий электропередач


Расчет и проектирование воздушных линий электропередач, (5.7)


Расчет и проектирование воздушных линий электропередач=5894,

Расчет и проектирование воздушных линий электропередач=6949.

Выбирается изолятор ПФ70-В с разрушающей электромеханической нагрузкой 7500 даН:

5894<7500;

6949<7500,

т.е. условия выполняются.

Число изоляторов в натяжной гирлянде принимается на один больше, чем в поддерживающей, т.е. восемь штук. Выбор арматуры аналогичен выбору изоляторов. Коэффициент запаса прочности для условий гололеда должен быть не менее 2,5. Нагрузка на арматуру поддерживающей гирлянды, даН,

2,5·(Gг+Gи)≤ Gр, (5.8)

2,5·(8,5·10-3·173,2·280+50)=1156.

Выбирается узел крепления гирлянды к траверсе опоры КГП-7-1, серьгу СР-7-16, ушко У1-7-16 с разрушающей минимальной нагрузкой 70 кН; глухой поддерживающий зажим ПГН-3-5 с минимальной разрушающей нагрузкой 25 кН.

Нагрузка на арматуру натяжной гирлянды, даН,


Расчет и проектирование воздушных линий электропередач, (5.9)


Расчет и проектирование воздушных линий электропередач=5457.

Для натяжной гирлянды выбирается та же арматура что и для поддерживающей. Для натяжной гирлянды выбираем болтовой зажим.

Изолятор и линейная арматура изображены на рисунках 5.1-5.5.


Расчет и проектирование воздушных линий электропередач

Рисунок 5.1 – Изолятор ПФ70-В


Расчет и проектирование воздушных линий электропередач

Рисунок 5.2 – Узел крепления КГП-7-1

D=16 мм; А=17 мм; d=16 мм; L=80 мм; Н1=32 мм; Н=82 мм


Расчет и проектирование воздушных линий электропередач

Рисунок 5.3 – Зажим поддерживающий ПГН-3-5


L=220 мм; А=20 мм; Н=66 мм


Расчет и проектирование воздушных линий электропередач

Рисунок 5.4 – Серьга СР-7-16


D=17 мм; d=16 мм; А=65 мм; b=16 мм


Расчет и проектирование воздушных линий электропередач

Рисунок 5.5 – Ушко У1-7-16

D=17 мм;D1=19,2 мм; b=16 мм; Н=104 мм

Фактический вес поддерживающей гирлянды, даН,


Расчет и проектирование воздушных линий электропередач, (5.10)


где Gиз – вес одного изолятора, даН;

Gарм – суммарный вес элементов арматуры, даН;

Расчет и проектирование воздушных линий электропередач=37,81.

Фактическая длина поддерживающей гирлянды, м,


Расчет и проектирование воздушных линий электропередач, (5.11)


где Низ – высота одного изолятора, м;

Нарм – суммарная высота элементов арматуры, м;

Расчет и проектирование воздушных линий электропередач=1,339.

Получили λгир.ф =1,339 больше, чем принятое в расчетах λ=1,3.

Проверка соблюдения габарита.

Пересчитанная допустимая стрела провеса, м,


Расчет и проектирование воздушных линий электропередач,


Расчет и проектирование воздушных линий электропередач=6,161.

Проверка соблюдения требуемых расстояний от низшей точки провисания провода до земли по условию:

f≤[f]=6,161,

ftmax=3,24<6,161.

Условие соблюдается, т.е. такая длина гирлянды допустима.

Защита от вибрации осуществляется с помощью гасителей вибрации, представляющих собой два груза, закрепленных на стальном тросике (рисунок 5.6).


Расчет и проектирование воздушных линий электропередач


Рисунок 5.6 – Гаситель вибрации ГПГ-1,6-11-400/21


d=11 мм; 2R=21 мм; L=400 мм; H=78 мм

Выбор гасителя вибрации осуществляется с учетом марки и сечения провода. Выбирается гаситель вибрации ГПГ-1,6-11-400/21. Для грозозащитного троса гаситель вибрации не требуется, так как σтtср<18,0 даН/мм2.

Расстояние от зажима до места крепления виброгасителя, мм,


Расчет и проектирование воздушных линий электропередач, (5.12)


где d – диаметр провода, мм;

Gп – вес одного метра провода, даН;

Расчет и проектирование воздушных линий электропередач=1067,4 мм≈1,07 м.

6 Расстановка опор по профилю трассы


6.1 Построение шаблона


На заданном профиле трассы расстановка опор производится с помощью специальных шаблонов. Шаблон представляет собой три кривые провисания провода, сдвинутые относительно друг друга, построенные в виде парабол для режима, при котором возникает наибольшая стрела провеса. В п. 4.5 была определена максимальная стрела провеса, которая соответствует режиму максимальной температуры, fmax=3,24 м.

Кривая 1 – кривая провисания нижнего провода – строится на основе формулы стрелы провеса:


Расчет и проектирование воздушных линий электропередач, (6.1)


где γfmax, σfmax – удельная нагрузка и напряжение в проводе в режиме, отвечающем наибольшей стреле провеса. Данная формула представляется в виде уравнения:


y=a·x2, (6.2)


где

Расчет и проектирование воздушных линий электропередач Расчет и проектирование воздушных линий электропередач; a=Расчет и проектирование воздушных линий электропередач.


Для режима максимальной температуры уравнение примет вид:

Расчет и проектирование воздушных линий электропередач,

Для построения кривой 1 в 1-ом квадранте выполняется несколько расчетов, представленных в виде таблицы 6.1.


Таблица 6.1 – Построение кривой 1

l 0 50 100 150 202,5
x 0 25 50 75 101,
y 0 0,27 0,79 1,78 3,24

Кривая 2, называемая габаритной, сдвинута о вертикали вниз от кривой 1 на расстояние требуемого габарита от земли Г=6 м. Кривая 3 – земляная – сдвинута от кривой 1 вниз на расстояние h2-λгир.ф=13,5-1,339=12,161 м (рисунок 6.1).


Расчет и проектирование воздушных линий электропередач

Рисунок 6.1 – Построение шаблона


Шаблон накладывают на профиль трассы так, чтобы кривая 3 пересекала профиль в месте установки первой анкерной опоры, а кривая 2 касалась его, при этом ось у должна быть строго вертикальной. Тогда другая точка пересечения кривой 3 с профилем будет соответствовать месту установки первой промежуточной опоры. При таком положении шаблона во всех точках пролета габарит будет не меньше допустимого. Аналогично находится место установки второй промежуточной опоры и т.д.

После монтажа анкерного участка в проводах происходит выравнивание напряжения, которое соответствует какому-то условному пролету. Этот пролет называется условным, и его длина, м, определяется из выражения:


Расчет и проектирование воздушных линий электропередач, (6.3)


где li – фактическая длина i-го пролета в анкерном участке, м;

n – количество пролетов в анкерном участке;


Расчет и проектирование воздушных линий электропередач=166.

В результате расчетов получили что lпр отличается от lр на

Расчет и проектирование воздушных линий электропередач∙100%=18%,

что больше допустимых 5%. В таком случае заново проводится механический расчет, построение шаблона и расстановка опор на трассе. Для данного курсового проекта допускается изменить расстановку опор без проведения повторного механического расчета.

Построение нового шаблона.

Расчет и проектирование воздушных линий электропередач,

Для построения кривой 1 в 1-ом квадранте выполняется несколько расчетов.


Таблица 6.2 – Построение кривой 1

l 0 50 100 166
x 0 25 50 83
y 0 0,27 0,79 2,18

Новая расстановка опор показана на рисунке 6.3.

Приведенный пролет, м,

Расчет и проектирование воздушных линий электропередач=132

Проверка:

Расчет и проектирование воздушных линий электропередач∙100%=20%.

В результате повторного расчета разница между приведенным и расчетным пролетом снова велика. Расчет повторяется до тех пор пока разница между значениями пролетов будет не более 5%.


6.2 Проверка опор на прочность


При расстановке опор по профилю трассы все они должны быть проверены на прочность в реальных условиях. Проверка выполняется сопоставлением вычисленных для каждой опоры весового и ветрового пролетов со значениями этих пролетов, указанных в технических характеристиках опоры.

Весовой пролет, м,


Расчет и проектирование воздушных линий электропередач, (6.4)


где эквивалентные пролеты вычисляются по формулам:

-первый (большой) эквивалентный пролет, м,


Расчет и проектирование воздушных линий электропередач, (6.5)


-второй (малый) эквивалентный пролет, м,


Расчет и проектирование воздушных линий электропередач, (6.6),


где l – действительная длина пролета, м;

Δh – разность между высотами точек подвеса провода, м;

Смежными эквивалентными пролетами, прилегающими к опоре, могут быть и два больших или два малых эквивалентных пролета. Тогда выражение (6.4) будет иметь вид:


Расчет и проектирование воздушных линий электропередач;


или


Расчет и проектирование воздушных линий электропередач.


Ветровой пролет, м,


Расчет и проектирование воздушных линий электропередач. (6.7)


Расчет для второй опоры.

Расчет и проектирование воздушных линий электропередач=108,4;

Расчет и проектирование воздушных линий электропередач=206,9;

Расчет и проектирование воздушных линий электропередач=157,6;

Расчет и проектирование воздушных линий электропередач=141,0.

Для остальных опор расчет сводится в таблицу 6.2.


Таблица 6.2 – Проверка опор на прочность

№ опоры i l'эi-1, м l”эi-1, м l’эi, м l”эi, м Δhi-1, м Δhi, м lвес, м lветр, м

1

2

3

4

5

6

7

-

-

-

-

204,3

-

-

184,3

108,4

43,1

168,0

-

104,6

148,7

205,6

206,9

200,0

-

189,4

173,3

165,0

-

-

-

143,7

-

-

-

0,55

2,23

2,99

0,86

1,54

1,82

0,58

2,23

2,99

0,86

1,54

1,82

0,58

0,41

194,9

157,6

121,5

155,8

196,8

138,9

156,8

175,5

141,0

154,5

179,0

160,5

154,0

158,5


Таким образом, для каждой опоры выполняются условия

Расчет и проектирование воздушных линий электропередач


7 Расчет монтажных стрел провеса провода и троса


Определяется исходный режим из соотношений трех критических пролетов и приведенного пролета: lк1 – мнимый, lпр=166 м>lк3=144,2 м.

На основании полученных соотношений определяется исходный режим. Это режим максимальной нагрузки с параметрами: σи=[σγ.max]=13,0 даН/мм2, γи=γmax=8,5·10-3 даН/(м·мм2), tи=tгол=-5°С.

Расчет напряжения при монтаже осуществляется с помощью уравнения


Расчет и проектирование воздушных линий электропередач. (7.1)


Стрела провеса провода в интересующем пролете lф, м, определяется из выражения


Расчет и проектирование воздушных линий электропередач, (7.2).


Тяжение провода, даН, рассчитывается по формуле


Расчет и проектирование воздушных линий электропередач, (7.3)


С помощью уравнения состояния рассчитывается напряжение в проводе при температуре монтажа tmax=40°C и tmin=-10°C.

при tmax=40°C:

Расчет и проектирование воздушных линий электропередач

Расчет и проектирование воздушных линий электропередач.

Полученное уравнение приводится к виду:

Расчет и проектирование воздушных линий электропередач.

Расчет и проектирование воздушных линий электропередач=5,53 даН/мм2.

Тяжение в проводе, даН,


Расчет и проектирование воздушных линий электропередач,


Расчет и проектирование воздушных линий электропередач=957,8.

при tmin=-10°C:

Расчет и проектирование воздушных линий электропередач

Расчет и проектирование воздушных линий электропередач.

Полученное уравнение приводится к виду:


Расчет и проектирование воздушных линий электропередач.


Расчет и проектирование воздушных линий электропередач=10,74 даН/мм2.

Тяжение в проводе, даН,

Расчет и проектирование воздушных линий электропередач=1860,2 даН.

Для наибольшего пролета lmax=194 м и наименьшего пролета lmin=125 м по формуле (7.2) рассчитываются стрелы провеса при максимальной и минимальной температурах, м,

lmax=194 м

Расчет и проектирование воздушных линий электропередач=2,94;

Расчет и проектирование воздушных линий электропередач=1,52;

lmin=125 м

Расчет и проектирование воздушных линий электропередач=1,22;

Расчет и проектирование воздушных линий электропередач=0,63.

Расчет при других температурах выполняется аналогично, результаты заносятся в таблицу 7.1.

Стрела провеса провода в габаритном пролете при температуре 15°С, м,


Расчет и проектирование воздушных линий электропередач, (7.4)


Расчет и проектирование воздушных линий электропередач=2,84.

Исходные данные для троса: σтгр=14,7 даН/мм2, γт1=8·10-3 даН/(м·мм2), t=15°C.

Стрела провеса троса в габаритном пролете в режиме грозы исходя из требуемого расстояния z для габаритного пролета, м,


Расчет и проектирование воздушных линий электропередач, (7.5)


Расчет и проектирование воздушных линий электропередач=3,104.

Определяется величина напряжения в тросе по известной величине fтгр, даН/мм2,


Расчет и проектирование воздушных линий электропередач, (7.6)


Расчет и проектирование воздушных линий электропередач=16,3.

Определяются напряжения в тросе при температуре монтажа из уравнения состояния, принимая в качестве исходного грозовой режим.


Расчет и проектирование воздушных линий электропередачРасчет и проектирование воздушных линий электропередач, (7.7)


Для наибольшего пролета lmax=194 м и наименьшего пролета lmin=125 м рассчитываются стрелы провеса троса, м,


Расчет и проектирование воздушных линий электропередач, (7.8)


Расчет и проектирование воздушных линий электропередач, (7.9)


Тяжение в тросе, даН,


Расчет и проектирование воздушных линий электропередач, (7.10)


Расчет для температуры -10°С.

Расчет и проектирование воздушных линий электропередач

Расчет и проектирование воздушных линий электропередач

Полученное уравнение приводится к виду:


Расчет и проектирование воздушных линий электропередач.


Расчет и проектирование воздушных линий электропередач=20,33 даН/мм2.

Тяжение в тросе, даН,

Расчет и проектирование воздушных линий электропередач=988 даН.

Стрела провеса при lmax=194 м, м,

Расчет и проектирование воздушных линий электропередач=1,85.

Стрела провеса при lmin=125 м, м,

Расчет и проектирование воздушных линий электропередач=0,77.

Расчет при других температурах выполняется аналогично, результаты заносятся в таблицу 7.2.


Таблица 7.1 – Монтажная таблица провода

Температура, °С Напряжение, даН/мм2 Тяжение, даН Стрела провеса в пролете длиной, м



l=194 l=125

-10

0

10

15

20

30

40

10,74

9,42

8,24

7,70

7,19

6,28

5,53

1860,2

1631,5

1427,2

1333,6

1245,3

1087,7

957,8

1,52

1,73

1,97

2,11

2,26

2,59

2,94

0,63

0,72

0,82

0,88

0,94

1,08

1,22


Таблица 7.2 – Монтажная таблица троса

Температура, °С Напряжение, даН/мм2 Тяжение, даН Стрела провеса в пролете длиной, м



194 м 125 м

-10

0

10

20

30

40

20,33

18,61

17,03

15,60

14,33

13,20

988,0

904,4

827,7

758,2

696,4

641,5

1,85

2,02

2,21

2,41

2,63

2,85

0,77

0,84

0,92

1,00

1,09

1,18


Монтажные графики для провода и троса изображены на рисунках 7.1 и 7.2.


Расчет и проектирование воздушных линий электропередач

Рисунок 7.1 – Монтажные графики для провода


Расчет и проектирование воздушных линий электропередач

Рисунок 7.2 – Монтажные графики для троса

Заключение


В данном курсовом проекте были рассмотрены основные этапы проектирования механической части воздушных ЛЭП: выполнены выбор промежуточных опор, механический расчет проводов и грозозащитного троса, выбор линейной арматуры, произведены расстановка опор по профилю трассы и расчет монтажных стрел провеса.

В ходе выполнения данного курсового проекта получены навыки пользования справочными материалами и нормативными документами, а также навыки выполнения самостоятельных инженерных расчетов с привлечением прикладного программного обеспечения персональных компьютеров.


Список литературы


1. Правила устройства электроустановок. – СПб.: Издательство ДЕАН, 2001. – 928 с.

2. Проектирование механической части воздушных ЛЭП. Учебное пособие по курсовому и дипломному проектированию. – Киров, 2004.-99 с.

4


Похожие работы:

  1. •  ... высоковольтными линиями электропередачи ОАО ...
  2. • Технология монтажа воздушных линий электропередач
  3. • Воздушные линии электропередачи
  4. • Перемещение товаров трубопроводным транспортом и по ...
  5. • Эксплуатация воздушных линий электропередач
  6. • Изоляция высоковольтных линий электропередач
  7. • Линия электропередачи напряжением 500 кВ
  8. • Проектирование электрической сети напряжением 35-110 ...
  9. • Правовой режим земель энергетики и связи
  10. • Совершенствование электротехнической службы ...
  11. • Реконструкция электроснабжения колхоза "Прогресс"
  12. • Оценка эколого-экономического ущерба окружающей среде ...
  13. • Проектирование электрических сетей
  14. • Мероприятия по защите сооружений связи
  15. • Проектирование линии электропередач
  16. •  ... приемника и линии электропередачи постоянного ...
  17. • Требования к организации рабочего места менеджера
  18. • Взрыв вне здания
  19. • Особенности размещения электроэнергетики Украины
Рефетека ру refoteka@gmail.com