1. Кинематическая схема привода пластинчатого конвейера
1 – электродвигатель; 2 – муфта; 3 – редуктор; 4 – цепная передача; 5 – тяговые звездочки; I – вал быстроходный; II, III – валы промежуточные; IV – вал быстроходный; V – вал приводной
2. Выбор электродвигателя
2.1Мощность привода
=
*
/103=3200*0,8/103=2,56
кВт
где
,
кВт – потребляемая
мощность привода
(выходная мощность);
=3,2
кН – окружная
сила (на 2-х звездочках);
=0,8 м/с
– скорость
настила.
2.2Общий коэффициент полезного действия привода
=η2м*η2цил
*η4подш=0,9852*0,994*0,972=0,88,
где
ηм=0,985 – КПД муфты
ηцил=0,97 – КПД цилиндров
ηподш=0,99 – КПД опоры вала
2.3Мощность электродвигателя (требуемая)
кВт
где,
кВт – требуемая
мощность
электродвигателя;
=2,56
кВт – потребляемая
мощность привода;
=0,88
– общий коэффициент
полезного
действия привода;
P’эл.дв =2,56/0,88=2,9 кВт
2.4Частота вращения приводного вала
Nвал=V*6*104/π*Дб
=0,8*6*104/3,14*355=43
где
,
– частота вращения
приводного
вала;
=0,8 м/с
– скорость
настила;
Дб =355 мм – диаметр барабана.
2.5Частота вращения вала электродвигателя
где
,
– предварительное
значение частоты
вращения вала
электродвигателя;
=7,085
– частота вращения
приводного
вала;
=94,09
– рекомендуемое
значение
передаточного
числа редуктора;
=2,25
– рекомендуемое
значение
передаточного
числа цепной
передачи;
2.6Выбор электродвигателя по каталогу
Принимаем
электродвигатель
АИР 80А4 с характеристиками:
номинальная
мощность Р=1,1
кВт, частота
вращения вала
n=1395
,
диаметр вала
dэ=22 мм,
длина выходного
конца вала l1
=60 мм.
3. Определение общего передаточного числа и разбивка его по ступеням
3.1 Общее передаточное число привода
где
=1395
– частота вращения
вала электродвигателя;
=7,085
– частота вращения
приводного
вала.
3.2 Разбивка общего передаточного числа по ступеням
,
где
– передаточное
число редуктора;
– передаточное
число цепной
передачи;
Передаточное
число цепной
передачи:
Передаточное
число редуктора:
Передаточное
число тихоходной
ступени:
Передаточное
число промежуточной
ступени:
Передаточное
число быстроходной
ступени:
4. Определение мощности, крутящего момента и частоты вращения каждого вала привода
4.1 Мощности на валах
;
;
;
;
.
где
– мощности на
валах редуктора;
– коэффициенты
полезного
действия.
4.2 Частоты вращения валов
;
;
;
;
;
где
– частоты вращения
валов;
– передаточные
числа.
4.3 Крутящие моменты на валах привода
;
;
;
где
– крутящие
моменты на
валах.
Результаты расчетов сведем в таблицу
Вал |
Мощность
|
Частота
вращения
|
Крутящий
момент
|
1 | 1,078 | 1395 | 7,406 |
2 | 1,046 | 257,074 | 38,858 |
3 | 1,014 | 59,785 | 161,975 |
4 | 0,948 | 15,942 | 589,462 |
5 | 0,925 | 7,085 | 1246,824 |
5. Расчет ступеней редуктора
5.1Быстроходная ступень
5.1.1Выбор материалов и определение допускаемых напряжений
Колесо: | Шестерня: | |
Сталь 40Х, улучшение,
|
Сталь 40Х, улучшение+закалка ТВЧ,
|
|
Частота
вращения вала
колеса:
Ресурс
передачи:
Передаточное
число:
Передача работает с режимом III. |
||
1) Коэффициент приведения для расчетов на: | ||
а)
контактную
выносливость
б)
изгибную
выносливость
|
|
|
2)
Числа циклов
пределу выносливости для расчетов на: |
||
а)
контактную
выносливость
б)
изгибную
выносливость
|
|
|
3) Суммарное число циклов перемены напряжений: | ||
|
|
|
4) Эквивалентные числа циклов перемены напряжений для расчета на: | ||
а)
контактную
выносливость
б)
изгибную
выносливость
|
|
|
5) Предельные допускаемые напряжения для расчетов на прочность при действии пиковых нагрузок: а) контактная прочность |
||
|
|
|
б) изгибная прочность | ||
|
|
|
6) Допускаемые напряжения для расчета на контактную выносливость: |
||
|
|
|
Так
как разница
допускаемое напряжение:
или
Для
расчета принимаем
меньшее значение,
т.е.
|
7) Допускаемые напряжения для расчета на изгибную выносливость:
|
|
5.1.2 Определение коэффициентов нагрузки
Коэффициент нагрузки при расчете на контактную выносливость:
.
Коэффициент нагрузки при расчете на изгибную выносливость:
.
,
;
,
;
;
Передача выполняется по 8-й степени точности.
;
.
Коэффициенты нагрузки:
5.1.3 Проектный расчет
Крутящий
момент на валу
колеса:
Н/м.
Частота
вращения вала
шестерни:
.
Передаточное
число ступени:
.
1) Предварительное значение межосевого расстояния:
.
Принимаем
=90 мм.
2) Рабочая ширина венца колеса:
.
3) Рабочая ширина шестерни:
.
4) Модуль передачи:
;
;
;
;
.
Принимаем
.
5) Минимальный угол наклона зубьев:
;
.
6) Суммарное число зубьев:
.
7) Действительное значение угла наклона зубьев:
.
8) Число зубьев шестерни:
;
;
.
9) Число зубьев колеса:
.
10) Фактическое передаточное число:
.
Ошибка передаточного числа:
.
11) Проверка зубьев на изгибную выносливость:
,
где
Эквивалентное число зубьев колеса:
.
Коэффициент, учитывающий форму зуба колеса:
.
Коэффициент, учитывающий наклон зуба:
.
Напряжение в опасном сечении зуба колеса:
Эквивалентное число зубьев шестерни:
.
Коэффициент, учитывающий форму зуба шестерни:
.
Напряжение в опасном сечении зуба шестерни:
;
.
12) Диаметры делительных окружностей:
;
.
Проверка:
13) Диаметры окружностей вершин и впадин зубьев:
14) Проверка возможности обеспечения принятых механических характеристик при термической обработке заготовки:
Наружный
диаметр заготовки
шестерни
.
Толщина сечения обода колеса
.
Следовательно, требуемые механические характеристики могут быть получены при термической обработке.
15) Силы, действующие на валы от зубчатых колёс:
Окружная
сила: .
Радиальная
сила:
.
Осевая
сила:
.
5.2Промежуточная ступень
5.2.1Выбор материалов и определение допускаемых напряжений
Колесо: | Шестерня: | |
Сталь 40Х, улучшение,
|
Сталь 40Х, улучшение+закалка ТВЧ,
|
|
Частота
вращения вала
колеса:
Ресурс
передачи:
Передаточное
число:
Передача работает с режимом III. |
||
1) Коэффициент приведения для расчетов на: | ||
а)
контактную
выносливость
б)
изгибную
выносливость
|
|
|
2)
Числа циклов
|
||
а)
контактную
выносливость
б)
изгибную
выносливость
|
|
|
3) Суммарное число циклов перемены напряжений: | ||
|
|
|
4) Эквивалентные числа циклов перемены напряжений для расчета на: | ||
а)
контактную
выносливость
б)
изгибную
выносливость
|
|
|
5) Предельные допускаемые напряжения для расчетов на прочность при действии пиковых нагрузок: а) контактная прочность |
||
|
|
|
б) изгибная прочность | ||
|
|
|
6) Допускаемые напряжения для расчета на контактную выносливость: |
||
|
|
|
Так
как разница
допускаемое напряжение:
или
Для
расчета принимаем
меньшее значение,
т.е.
|
7) Допускаемые напряжения для расчета на изгибную выносливость:
|
|
5.2.2 Определение коэффициентов нагрузки
Коэффициент нагрузки при расчете на контактную выносливость:
.
Коэффициент нагрузки при расчете на изгибную выносливость:
.
,
;
,
;
;
Передача выполняется по 8-й степени точности.
;
.
Коэффициенты нагрузки:
5.2.3 Проектный расчет
Крутящий
момент на валу
колеса:
Н/м.
Частота
вращения вала
шестерни:
.
Передаточное
число ступени:
.
1) Предварительное значение межосевого расстояния:
.
Принимаем
=125 мм.
2) Рабочая ширина венца колеса:
.
3) Рабочая ширина шестерни:
.
4) Модуль передачи:
;
;
;
;
.
Принимаем
.
5) Минимальный угол наклона зубьев:
;
.
6) Суммарное число зубьев:
.
7) Действительное значение угла наклона зубьев:
.
8) Число зубьев шестерни:
;
;
.
9) Число зубьев колеса:
.
10) Фактическое передаточное число:
.
Ошибка передаточного числа:
.
11) Проверка зубьев на изгибную выносливость:
,
где
Эквивалентное число зубьев колеса:
.
Коэффициент, учитывающий форму зуба колеса:
.
Коэффициент, учитывающий наклон зуба:
.
Напряжение в опасном сечении зуба колеса:
Эквивалентное число зубьев шестерни:
.
Коэффициент, учитывающий форму зуба шестерни:
.
Напряжение в опасном сечении зуба шестерни:
;
.
12) Диаметры делительных окружностей:
;
.
Проверка:
13) Диаметры окружностей вершин и впадин зубьев:
14) Проверка возможности обеспечения принятых механических характеристик при термической обработке заготовки:
Наружный
диаметр заготовки
шестерни
.
Толщина сечения обода колеса
.
Следовательно, требуемые механические характеристики могут быть получены при термической обработке.
15) Силы, действующие на валы от зубчатых колёс:
Окружная
сила:
.
Радиальная
сила:
.
Осевая
сила:
.
5.3Тихоходная ступень
5.3.1 Выбор материалов и определение допускаемых напряжений
Колесо: | Шестерня: | |
Сталь 40Х, улучшение,
|
Сталь 40Х, улучшение+закалка ТВЧ,
|
|
Частота
вращения вала
колеса:
Ресурс
передачи:
Передаточное
число:
Передача работает с режимом III. |
||
1) Коэффициент приведения для расчетов на: | ||
а)
контактную
выносливость
б)
изгибную
выносливость
|
|
|
2)
Числа циклов
|
||
а)
контактную
выносливость
б)
изгибную
выносливость
|
|
|
3) Суммарное число циклов перемены напряжений: | ||
|
|
|
4) Эквивалентные числа циклов перемены напряжений для расчета на: | ||
а)
контактную
выносливость
б)
изгибную
выносливость
|
||
5) Предельные допускаемые напряжения для расчетов на прочность при действии пиковых нагрузок: а) контактная прочность |
||
|
|
|
б) изгибная прочность | ||
|
|
|
6) Допускаемые напряжения для расчета на контактную выносливость: |
||
|
|
|
Так
как разница
или
Для
расчета принимаем
меньшее значение,
т.е.
|
7) Допускаемые напряжения для расчета на изгибную выносливость:
|
|
5.3.2 Определение коэффициентов нагрузки
Коэффициент нагрузки при расчете на контактную выносливость:
.
Коэффициент нагрузки при расчете на изгибную выносливость:
.
,
;
,
;
;
Передача выполняется по 8-й степени точности.
;
.
Коэффициенты нагрузки:
5.3.3 Проектный расчет
Крутящий
момент на валу
колеса:
Н/м.
Частота
вращения вала
шестерни:
.
Передаточное
число ступени:
.
1) Предварительное значение межосевого расстояния:
.
Принимаем
=160 мм.
2) Рабочая ширина венца колеса:
.
3) Рабочая ширина шестерни:
.
4) Модуль передачи:
;
;
;
;
.
Принимаем
.
5) Минимальный угол наклона зубьев:
;
.
6) Суммарное число зубьев:
.
7) Действительное значение угла наклона зубьев:
.
8) Число зубьев шестерни:
;
;
.
9) Число зубьев колеса:
.
10) Фактическое передаточное число:
.
Ошибка передаточного числа:
.
11) Проверка зубьев на изгибную выносливость:
,
где
Эквивалентное число зубьев колеса:
.
Коэффициент, учитывающий форму зуба колеса:
.
Коэффициент, учитывающий наклон зуба:
.
Напряжение в опасном сечении зуба колеса:
Эквивалентное число зубьев шестерни:
.
Коэффициент, учитывающий форму зуба шестерни:
.
Напряжение в опасном сечении зуба шестерни:
;
.
12) Диаметры делительных окружностей:
;
.
Проверка:
13) Диаметры окружностей вершин и впадин зубьев:
14) Проверка возможности обеспечения принятых механических характеристик при термической обработке заготовки:
Наружный
диаметр заготовки
шестерни
.
Толщина сечения обода колеса
.
Следовательно, требуемые механические характеристики могут быть получены при термической обработке.
15) Силы, действующие на валы от зубчатых колёс:
Окружная
сила:
.
Радиальная
сила:
.
Осевая
сила:
.
6. Определение диаметров участков валов
6.1. Для быстроходного вала 1
Принимаем:
По d выбираем t=1,5 и r=1,5
Принимаем:
Принимаем:
6.2. Для промежуточного вала 2
Принимаем:
По dк выбираем f=1 и r=2
Принимаем:
Принимаем:
Принимаем:
6.3 Для промежуточного вала 3
Принимаем:
По dк выбираем f=1,2 и r=2,5
Принимаем:
Принимаем:
Принимаем:
6.4 Для тихоходного вала 4
Принимаем:
По d выбираем t=3,5 и r=2,5
Принимаем:
Принимаем:
Принимаем:
Принимаем:
7. Расчет цепной передачи
Исходные данные:
Т4=589,5 Н∙м – крутящий момент на валу ведущей звездочки;
n4=15,94 мин-1 – частота вращения ведущей звездочки;
U=2,25 – передаточное число цепной передачи.
7.1 Выбор цепи
Назначим двухрядную роликовую цепь типа ПР.
Предварительное значение шага цепи:
По стандарту выбираем цепь:
2ПР – 25,4–11340; значение А=256 мм2
7.2 Назначение основных параметров
а) Рекомендуемое число зубьев звездочки:
Найдем
рекомендуемое
число зубьев
Z1 в зависимости
от передаточного
числа:
б) Межосевое расстояние:
примем, что а = 30∙Р = 30∙25,4 = 762 мм.
в) Наклон передачи примем меньше 60°.
г) Смазывание цепи нерегулярное.
7.3 Определение давления в шарнире
Найдем значение коэффициента КЭ, учитывающего условия эксплуатации цепи
КЭ = Кд∙ КА ∙ КН∙ Крег ∙Ксм ∙ Креж =1∙1∙1∙1∙1,5∙1,45=2,175
Где:
Кд =1 – нагрузка без толчков и ударов;
КА=1 – оптимальное межосевое расстояние;
КН=1 – наклон передачи менее 60°;
Крег=1 – передача с нерегулируемым натяжением цепи;
Ксм=1,5 – смазывание цепи нерегулярное;
Креж =1 – работа в три смены.
Окружная сила, передаваемая цепью:
.
Давление в шарнире двухрядной цепи (mp=1,7):
.
[σ]=40 MПа – допускаемое давление в шарнире
7.4 Число зубьев ведомой звездочки
Z2 =U∙Z1 =2,25 ∙23=51.
7.5 Уточнение передаточного числа
7.6 Частота вращения ведомой звездочки
.
7.7 Делительный диаметр ведущей звездочки
.
7.8 Делительный диаметр ведомой звездочки
.
7.9 Диаметр окружности выступов ведущей звездочки
.
7.10 Диаметр окружности выступов ведомой звездочки
.
7.11 Диаметр обода ведущей звездочки (наибольший)
.
Принимаем
.
7.11 Диаметр обода ведущей звездочки (наибольший)
.
Принимаем
.
7.13 Потребное число звеньев цепи
Принимаем
.
7.14 Уточненное межосевое расстояние
7.15 Окончательное значение межосевого расстояния
;
;
.
7.16 Нагрузка на валы звездочек
.
8. Выбор и расчет предохранительного устройства
В качестве предохранительного устройства выберем предохранительную муфту с разрушающимся элементом, так как конвейер подвергается случайным и редким перегрузкам. Муфту расположим на приводном валу.
Для определения величины расчетного момента для предохранительной муфты воспользуемся формулой:
;
Примем
Тогда
По таблице
определяем
стандартное
значение усилия
среза
.
Этому
значению
соответствует
штифт диаметром
.
Предусмотрим в конструкции муфты два штифта, расположенных симметрично.
Определим диаметр, на котором будут расположены штифты:
Отсюда
.
9. Выбор подшипников
Для быстроходного вала I редуктора выбираем радиальные однорядные шарикоподшипники средней серии №305 ГОСТ 8338–75.
Для них имеем:
–
диаметр
внутреннего
кольца;
–
диаметр
наружного
кольца;
–
ширина подшипника;
–
динамическая
грузоподъёмность;
–
статическая
грузоподъёмность;
– предельная
частота вращения
при жидком
смазочном
материале.
На подшипник
действуют:
–
радиальная
сила;
–
осевая сила;
Частота
вращения:.
Требуемый
ресурс работы:
.
Для промежуточного вала II редуктора выбираем радиальные однорядные шарикоподшипники средней серии №306 ГОСТ 8338–75.
Для них имеем:
–
диаметр
внутреннего
кольца;
–
диаметр
наружного
кольца;
–
ширина подшипника;
–
динамическая
грузоподъёмность;
–
статическая
грузоподъёмность;
– предельная
частота вращения
при жидком
смазочном
материале.
На подшипник
действуют:
–
радиальная
сила;
–
осевая сила;
Частота
вращения:.
Требуемый
ресурс работы:
.
Для промежуточного вала III редуктора выбираем радиальные однорядные шарикоподшипники средней серии №308 ГОСТ 8338–75.
Для них имеем:
–
диаметр
внутреннего
кольца;
–
диаметр
наружного
кольца;
–
ширина подшипника;
–
динамическая
грузоподъёмность;
–
статическая
грузоподъёмность;
– предельная
частота вращения
при жидком
смазочном
материале.
На подшипник
действуют:
–
радиальная
сила;
–
осевая сила;
Частота
вращения:.
Требуемый
ресурс работы:
.
Для тихоходного вала IV редуктора выбираем радиальные однорядные шарикоподшипники средней серии №311 ГОСТ 8338–75.
Для них имеем:
–
диаметр
внутреннего
кольца;
–
диаметр
наружного
кольца;
–
ширина подшипника;
–
динамическая
грузоподъёмность;
–
статическая
грузоподъёмность;
– предельная
частота вращения
при жидком
смазочном
материале.
На подшипник
действуют:
–
радиальная
сила;
–
осевая сила;
Частота
вращения:.
Требуемый
ресурс работы:
.
Для
приводного
вала V редуктора
выбираем радиальные
двухрядные
сферические
шарикоподшипники
ГОСТ 5720–75.
Для них имеем:
– диаметр
внутреннего
кольца подшипника;
– диаметр
наружного
кольца подшипника;
– ширина
подшипника;
– динамическая
грузоподъёмность;
– статическая
грузоподъёмность;
– коэффициент
осевого нагружения;
– предельная
частота вращения
при пластичном
смазочном
материале.
Частота
вращения:.
Требуемый
ресурс работы:
.
10. Проверка подшипников наиболее нагруженного вала редуктора по динамической грузоподъемности
Рассчитываем подшипники тихоходного вала. Имеем радиальные однорядные шарикоподшипники средней серии №311 ГОСТ 8338–75.
Для них имеем:
–
диаметр
внутреннего
кольца;
–
диаметр
наружного
кольца;
–
ширина подшипника;
–
динамическая
грузоподъёмность;
–
статическая
грузоподъёмность;
– предельная
частота вращения
при жидком
смазочном
материале.
На подшипник
действуют:
–
радиальная
сила;
–
осевая сила;
Частота
вращения:.
Требуемый
ресурс работы:
.
Найдём:
–
коэффициент
безопасности
–
температурный
коэффициент
–
коэффициент
вращения
Определяем эквивалентную нагрузку:
Определим
.
Находим
.
Определим
Определяем значение коэффициента радиальной динамической нагрузки x=0,56 и коэффициента осевой динамической нагрузки y=1,99.
Определяем эквивалентную радиальную динамическую нагрузку:
Определим ресурс принятого подшипника:
или
,
что удовлетворяет
требованиям.
11. Проверочный расчет наиболее нагруженного вала редуктора
11.1 Выбор расчетной схемы и определение расчетных нагрузок
Проводим расчет тихоходного вала.
Действующие
силы и моменты
от колеса:
– окружная
сила;
– осевая сила;
– радиальная
сила;
– крутящий
момент.
От звездочки:
– горизонтальная
составляющая,
– вертикальная
составляющая.
Расчетная схема по чертежу тихоходного вала
.
Определим реакции опор в вертикальной плоскости.
1.:
,
отсюда находим
,
что
.
2.
,
,
.
Получаем, что
.
Выполним
проверку:
,
,
,
.
Следовательно,
вертикальные
реакции найдены
верно.
Определим реакции опор в горизонтальной плоскости.
3.
,
,
,
получаем, что
.
4.
,
,
,
отсюда
.
Проверим
правильность
нахождения
горизонтальных
реакций:
,
,
,
– верно.
По эпюре видно, что самое опасное сечение вала находится в точке В, причём моменты здесь будут иметь значения:
,
.
11.2 Проверка вала на усталостную выносливость
Расчёт
производим
в форме проверки
коэффициента
запаса сопротивления
усталости ,
значение которого
можно принять
.
При этом должно
выполняться
условие:
,
где
и
– коэффициенты
запаса по нормальным
и касательным
напряжениям.
Найдём результирующий изгибающий момент:
.
Определим
механические
характеристики
материала вала
(Сталь 45):
– временное
сопротивление
(предел прочности
при растяжении);
и
– пределы
выносливости
гладких образцов
при изгибе и
кручении.
Здесь:
Определим запас сопротивления усталости по изгибу:
Определим запас сопротивления усталости по кручению:
Найдём расчётное значение коэффициента запаса сопротивления усталости:
– условие
выполняется.
11.3 Проверка вала на статические перегрузки
Проверку статической прочности производим в целях предупреждения пластических деформаций и разрушений с учетом кратковременных перегрузок.
Определим эквивалентное напряжение
,
где
;
;
.
Тогда
.
11.4 Расчет вала на жесткость
Упругие перемещения вала отрицательно влияют на работу связанных с ним деталей. От прогиба вала в зубчатом зацеплении возникает концентрация нагрузки по длине зуба.
В связи с этим определим прогиб вала под колесом, используя готовую расчетную схему и формулу:
,
где
;
;
;
;
;
;
;
Тогда
.
12. Выбор и расчет шпоночных соединений
Все шпонки редуктора призматические со скругленными торцами. Размеры соответствуют ГОСТ 23360–78.
Для промежуточного вала II:
,
где
По значению диаметра вала определяем размеры b и h.
Принимаем
Выбираем шпонку 12х8х22.
Для промежуточного вала III:
,
где
По значению диаметра вала определяем размеры b и h.
Принимаем
Выбираем шпонку 14х9х36.
Для тихоходного вала IV:
,
где
По значению диаметра вала определяем размеры b и h.
Принимаем
Выбираем две шпонки 14х9х70.
Для приводного вала V:
,
где
По значению диаметра вала определяем размеры b и h.
Принимаем
Выбираем шпонку 14х9х125 и две шпонки 14х9х63.
13. Выбор смазки редуктора
Для уменьшения потерь мощности на трение и снижения интенсивности износа трущихся поверхностей, а также для предохранения их от заедания, задиров, коррозии и лучшего отвода теплоты трущиеся поверхности деталей должны иметь надежную смазку.
Для смазывания передач широко применяют картерную систему. В корпус редуктора заливают масло так, чтобы венцы колес были в него погружены. Колеса при вращении увлекают масло, разбрызгивая его внутри корпуса. Масло попадает на внутренние стенки корпуса, откуда стекает в нижнюю его часть. Внутри корпуса образуется взвесь частиц масла в воздухе, которая покрывает поверхность расположенных внутри корпуса деталей.
Принцип назначения сорта масла следующий: чем выше окружная скорость колеса, тем меньше должна быть вязкость масла, и чем выше контактные давления в зацеплении, тем большей вязкостью должно обладать масло. Поэтому требуемую вязкость масла определяют в зависимости от контактных напряжений и окружной скорости колес.
Выбираем масло И-Г-А-68 ГОСТ 20799–88.
И – индустриальное,
Г – для гидравлических систем,
А – масло без присадок,
68 – класс кинематической вязкости.
Подшипники смазываются тем же маслом, стекающим со стенок корпуса редуктора.
Объем масла V=5 литров.
Список литературы
М.Н. Иванов, В.Н. Иванов. Детали машин. М.: «Высш. школа», 1975.
П.Ф. Дунаев, О.П. Леликов. Конструирование узлов и деталей машин. М.: Издательский центр «Академия», 2007.
Д.Н. Решетов – Детали машин. Атлас конструкций.
М.: «Машиностроение», 1970.
4. Д.Н. Решетов – Детали машин. М.: «Машиностроение», 1989.