1 ИСХОДНЫЕ ДАННЫЕ
1.1 Краткая геолого-промысловая характеристика месторождения
В геологическом строении Бухарском месторождении принимают участие девонские, каменноугольные, пермские и четвертичные отложения.
В тектоническом отношении месторождение расположено на северном склоне Южно-Татарском своде. С запада оно ограничено узким и глубоким Алтунино-Шунакским прогибом, отделяющим сводную часть южного купола от Акташско-Ново-Елховского вала. По поверхности кристаллического фундамента наблюдается малоамплитудное ступенчатое погружение в северном и северо-восточном направлениях. На этом фоне намечается ряд относительно узких, вытянутых в меридиональном и субмеридиональном направлениях приподнятых блоков фундамента и сопряженных с ними грабенообразных прогибов.
Приуроченность района месторождения к прибортовым зонам Нижнекамского прогиба Камско-Кинельской системы предопределяет заметное изменение структурных планов отложений верхнего девона и нижнего карбона. В разрезе девонской осадочной толщи им соответствует структурные слабовыраженные террасы и прогибы. Более сложный структурный план имеют вышележащие отложения, которым характерны четкие, линейно-вытянутые валообразные зоны, осложненные локальными поднятиями III порядка. Наряду с чертами унаследованного структурного плана появляются локальные седиментационные новообразования в виде рифовых построек верхнефранско-фаменского возраста и связанные с ними структуры облегания – Верхнее-Налимовское и Южно-Налимовское поднятия. Амплитуды этих структур по кровле турнейского яруса достигают 65-70м. В основном для Бухарского месторождения характерными локальными элементами являются малоамплитудные поднятия III порядка. В пределах площади месторождения поверхность турнейского яруса осложнена «русловыми» врезовыми зонами, выделенными по результатам детализационных работ МОГТ в Заинском районе сейсморазведочной партии 9/96, которые были, в основном, подтверждены фактическим бурением 1997-2000 г.г.
Основой для структурных построений послужили результаты детализационных работ МОГТ Бухарской сейсморазведочной партии 9/96 в Заинском районе.
По разрезу Бухарского месторождения нефтеносность различной интенсивности установлена по ряду горизонтов в верхнем девоне и нижнем карбоне.
Продуктивными на месторождении являются терригенные отложения пашийского, кыновского и бобриковского горизонтов, карбонатные коллекторы семилукского, бурегского, заволжского горизонтов и турнейского яруса. Всего выявлено 47 залежей нефти, которые имеют различные размеры и этажи нефтеносности. Они контролируются отдельными локальными поднятиями или группой структурой. Промышленные скопления нефти в пашийском горизонте приурочены к пластам, индексируемым (снизу-вверх), как Д1-в, Д1-б и Д1-а, сложенными песчаниками и алевролитами. Пласты Д1-а, Д1-б рассматриваются как один объект - Д1-а+б, поскольку в 20% скважин они сливаются или имеют маломощные глинистые перемычки толщтной 0,8-1,2 м. Пласт Д1- выделяет как самостоятельный объект с собственным ВНК.
Д1-в представлен мелкозернистыми хорошо отсортированными песчаниками, залегает в подошвенной части пашийского горизонта на глубине 1741,6 м, четко коррелируется по материалам ГИС и отделяются от пласта Д1-а+б перемычкой толщиной в 4,6 м. Тип коллектора – поровый. Нефтеносность пласта Д1-в по площади имеет ограниченное распространение. К нему приурочено всего 2 залежи на самом юге и одна в средней части месторождения. В 13 скважинах по материалам ГИС установлена нефтеносность, в 10 из них проведено опробование, дебиты нефти в которых варьируется от 0,3 до 22,1 т/сут. Эффективные нефтенасыщенные толщины пласта изменяются от 0,6 до 2,8 м. Пласт Д1-в подстилается, в основном, подошвенной водой. Во многих скважинах вскрыт непосредственный ВНК, контуры нефтеносности проведены по усредненным значениям отметок ВНК по скважинам с учетом нижних дыр перфорации.
Пласт Д1-а+б развит повсеместно нефтенасыщенный коллектор вскрыт в 40% скважин от общего пробуренного фонда на девон. Эффективная нефтенасыщенная толщина пласта изменяется от 0,8 до 2,4 м.
Всего выявлено 13 залежей нефти, приуроченных к сейсмоподнятиям III порядка. Залежи небольшие по размеру и высоте. Семь из них вскрыты только одной скважиной. Тип залежей – пласто-сводовый. ВНК вскрыт в 38% скважин, в которых установлена нефтенасыщенность. В связи с этим контуры нефтеносности в 3-х залежах проведены в соответствии с положением ВНК, определенным по ГИС и результатам опробования, в остальных только по абсолютной отметке подошвы нижнего нефтенасыщенного прослоя. Погружение структур наблюдается в северном направлении. Абсолютные отметки ВНК, по которым проведены контуры залежей, изменяются с юга на север от –1496 до –1508,7 м. Контуры залежей в районе скважин 736, 785, 788, 790 и 793а перетерпели изменение по данным НВСП МОВ. Залежь нефти в районе скв.790 (Верхне-Налимовское поднятие) резко изменила ориентацию с субмеридионального направления по результатам сейсмоисследований на северо-восточное по результатам НВСП МОВ. Размеры залежи уменьшились вдвое. Залежь нефти в районе скв.736 изменила направление с северо-западного на северо-восточное, размеры ее увеличились незначительно. На залежах нефти, приуроченных к Восточно-Бухарскому поднятию (район скв.793а) и в районе скв.788, запасы нефти по которой не были утверждены в ГКЗ РФ, площадь нефтеносности увеличилась в два раза. Залежь нефти в районе скв.785 с северо-запада ограничена линией тектонического нарушения, выявленной по НВСП, за которой выявлен сброс на 5 метров по вертикали. Залежь ограничена линией сброса, являющейся в данном случае экраном. Размеры залежи уменьшились в 4 раза. Поэтому после проведения предложенных авторами работ по управлению сети сейсмопрофилей на некоторых участках месторождения, переобработки всего имеющегося материала по сейсмоисследованиям, проведения НВСП МОВ в скважинах, предложенных в главе доразведки, необходимо уточнить запасы нефти по месторождению в соответствии с полученными результатами.
Общая толщина отложений пашийского горизонта составляет в среднем 22,8 м, эффективная нефтенасыщенная – 1,9 м, что соответственно отражается на коэффициенте песчанистости – 0,071, а коэффициент песчанистости по нефтенасыщенной части – 0,631. Коэффициент расчлененности равен 4,067.
Выше по разрезу на глубине 1734,2 м залегают продуктивные отложения кыновского горизонта, приуроченные к пласту Д0-в. Коллектор представлен, в основном, алевролитами, реже песчаниками мелкозернистыми, кварцевыми. Тип коллектора поровый.
Пласт Д0-в развит по площади повсеместно. По нему выявлено и оконтурено 11 залежей нефти, которые, в основном, перекрывают в плане залежи по пашийским отложениям. В 25 скважинах, пробуренных на 9 залежах, нефтенасыщенный пласт Д0-в опробован. Дебиты нефти, полученные при испытании, изменяются от 1,3 до 19,2 т/сут. Тип залежей – пластово-сводовый. В 14 скважинах вскрыт ВНК. Контуры нефтеносности проведены по результатам опробования в соответствии с гипсометрическими отметками нижних дыр перфорации, из которых получена нефть. В четырех залежах положение контуров нефтеносности принято по подошве нижнего нефтенасыщенного пропластка.
Общая толщина кыновского горизонта изменяется от 13,8 до 23,6 м, составляя в среднем 19,3 м. Количество пропластков 1 – 4, коэффициент расчлененности – 1,852. Суммарная эффективная нефтенасыщенная толщина пропластков варьирует в пределах 0,6 – 0,62 м, средняя равна 2,2 м. Коэффициент песчанистости составил 0,712. Толщина непроницаемого прослоя между нефтенасыщенными пропластками небольшая – 0,6-1,4 м.
1.2 Коллекторские свойства продуктивных горизонтов
Отложения пашийского и кыновского горизонта франского яруса верхнего девона сложены алевролитами и песчаниками. Керном они охарактеризованы в 10 скважинах (70 образцов).
Песчаники мономинеральные кварцевые, мелкозернистые. Зерна кварца полуокатанной формы, сортировка зерен хорошая, упаковка средняя, участками плотная. По данным гранулометрического анализа песчаники мелкозернистые (50,1% - 80,8%) с небольшой примесью среднепсаммитовой фракции (0 – 10,3%), сильно алевритистые, глинистые (2,7 – 7,1%). Известковистость колеблется от 0,1 до 3%.
Цементом служит вторичный кварц, образующий регенерационные каемки, и карбонатно-глинистый материал, формирующий контактовый, а на отдельных участках – поровый тип цемента. Пористость песчаников колеблется в пределах 12,9 – 20,4%, проницаемость 118,3 – 644,5*10-3мкм2.
Алевролиты кварцевые по составу с хорошей сортировкой зерен. По гранулометрическому составу: крупнозернистые (43,6-63,7%), средне- и сильнопесчанистые (11,2-44,7%), слабоглинистые (2,2-5,3%) с небольшой примесью средне- и мелкоалевритовой фракции (1,5-8,1%). Тип цемента регенерационный, контактовый и поровый. Пористость алевролитов по керну варьирует от 15 до 21,2%, проницаемость – от 9,6 до 109,9*10-3мкм2.
Пористость коллекторов пашийских отложений, определенная по ГИС (47 скв.) и керну (3 скв. – 33 определения), почти совпадает: 19,7% и 20,5%, нефтенасыщенность соответственно 71,9 и 81,6%. Параметры проницаемости, определенные по ГИС, керну и результатам гидродинамических исследований, различаются, данные представлены в таблице 1.2.1. Для проектирования взято среднее значение по результатом ГИС, как наиболее представительное (46 скв. – 151 определение), которое равно 0,13 мкм2. Кондиционные значения коэффициентов пористости, нефтенасыщенности и проницаемости для терригенных коллекторов пашийского и кыновского возрастов идентичны и составляют соответственно: 0,115, 0,55 и 0,013 мкм2.
Коллекторы относятся к высокоемким высокопроницаемым. Тип коллектора – поровый.
Пашийские отложения характеризуются в целом низким значением песчанистости (0,071), по нефтенасыщенной части – 0,631. На неоднородность объекта указывает довольно высокая величина его расчлененности, равная 4,067. Общая толщина горизонта составляет в среднем 22,8 м, суммарная нефтенасыщенная – 1,9 м. Высокое среднее значение эффективной толщины (10,7м) указывает на наличие значительной водонасыщенной части по пластам с подошвенной водой.
Покрышкой для залежей пашийских отложений служат аргиллиты кыновского возраста мощностью от 2 до 6 м.
Коллекторские свойства кыновских отложений охарактеризованы керновыми данными, результатами ГИС и гидродинамических исследований. По первым они выше, а по более представительным материалам, по геофизическим исследованиям, коллекторы характеризуются следующими величинами: пористости – 19,6%, нефтенасыщенности – 74,3%, проницаемости – 0,126 мкм2, представленным в таблице 1.2.1. Они относятся по своим емкостно-фильтрационным свойствам к высокоемким, высокопроницаемым. Тип коллектора – поровый.
Общая толщина отложений кыновского возраста составляет в среднем 19,3 м, средняя нефтенасыщенная – 2,2 м, эффективная – 3,0 м. Коллекторы харак-тся высокой неоднородностью – расчлененность 1,852, высоким значением песчанистости – 0,712. Покрышкой для кыновских залежей служат глины одноименного возраста толщиной до 10 м.
1.3 Физико-химические свойства пластовых флюидов
Исследование физико-химических свойств нефтей в пластовых и поверхностных условиях проводилось по пластовым пробам в ТатНИПИнефть и в аналитической лаборатории ТГРУ. Пробы отбирались глубинными пробоотборниками типа ПД-3 и исследовались на установках УИПН-2 и АСМ-300 по общепринятой методике. Вязкость нефти определялась вискозиметром ВВДУ (вискозиметр высокого давления универсальный) и капиллярным типа ВПЖ. Плотность сепарированной нефти определялась пикнометрическим способом. Состав нефти и газа после однократного разгазирования пластовой пробы нефти анализировался на хромотографах типа ЛХМ-8М, ХРОМ-5. Все данные исследования приведены согласно РД-153-39-007-96 «Регламент составления проектных технологических документов на разработку нефтяных и газонефтяных месторождений».
Всего по Бухарскому месторождению проанализировано: пластовых – 39 проб, поверхностных – 37 проб. Ввиду отсутствия данных по турнейскому ярусу и бурегскому горизонту были использованы усредненные параметры по Кадыровскому и Ромашкинскому месторождениях соответственно.
Физико-химические свойства флюидов представлены в таблице
Таблица 1 Физико-химические свойства
Наименование |
Пашийский горизонт | |||
Кол-во исследованных | Диапазон | Среднее | ||
скважин | проб | изменения | значение | |
1 | 2 | 3 | 4 | 5 |
Нефть | ||||
Давление насыщения газом, МПа | 4 | 7 | 4.4-9.5 | 7,56 |
Газосодержание, при однократном | ||||
разгазировании, м3/т | 4 | 7 | 32.77-60.2 | 57,6 |
Объемный коэффициент при однократном | ||||
разгазировании, доли ед. | 4 | 7 | 1.1060-1.1700 | 1,1411 |
Плотность, кг/м3 | 4 | 7 | 804.3-865.0 | 815,4 |
Вязкость, мПа*с | 4 | 7 | 7.32-9.12 | 6,6 |
Объемный коэффициент при дифферен-ном | ||||
разгазировании в рабочих условиях, доли ед. | 2 | 2 | 1,1078 | 1,1078 |
Пластовая вода | ||||
Продолжение таблицы 1 | ||||
1 | 2 | 3 | 4 | 5 |
Газосодержание, м3/т | 0.25-0.42 | 0,335 | ||
в т.ч. сероводорода, м3/т | н.о. | н.о. | ||
Объемный коэффициент, доли ед. | 0,9987 | |||
Вязкость, мПа*с | 30 | 30 | 1.73-1.95 | 1,84 |
Общая минерализация, г/л | 30 | 30 | 230.89-291.82 | 269,01 |
Плотность, кг/м3 | 30 | 30 | 1167.0-1190.0 | 1182,67 |
Кыновский горизонт | ||||
Нефть | ||||
Давление насыщения газом, МПа | 6 | 14 | 4.5-9.1 | 7,25 |
Газосодержание, при однократном | ||||
разгазировании, м3/т | 6 | 14 | 42.8-68.0 | 59,28 |
Объемный коэффициент при однократном | ||||
разгазировании, доли ед. | 6 | 14 | 1.1131-1.1680 | 1,1501 |
Плотность, кг/м3 | 6 | 14 | 810.0-860.0 | 823,1 |
Вязкость, мПа*с | 6 | 14 | 4.95-8.51 | 5,45 |
Объемный коэффициент при дифферен-ном | ||||
разгазировании в рабочих условиях, доли ед. | 1 | 3 | 1,1387 | 1,1387 |
Газосодержание, м3/т | 0.25-0.42 | 0,335 | ||
в т.ч. сероводорода, м3/т | н.о. | н.о. | ||
Объемный коэффициент, доли ед. | 0,9987 | |||
Вязкость, мПа*с | 30 | 30 | 1.73-1.95 | 1,84 |
Общая минерализация, г/л | 30 | 30 | 230.89-291.82 | 269,01 |
Плотность, кг/м3 | 30 | 30 | 1167.0-1190.0 | 1182,67 |
Бурегский горизонт | ||||
Нефть | ||||
Давление насыщения газом, МПа | 1 | 2 | 7 | |
Газосодержание, при однократном | ||||
разгазировании, м3/т | 1 | 2 | 50,7 | |
Объемный коэффициент при однократном | ||||
разгазировании, доли ед. | 1 | 2 | 1,124 | |
Плотность, кг/м3 | 1 | 2 | 826,3 | |
Вязкость, мПа*с | 1 | 2 | 7,39 | |
Объемный коэффициент при дифферен-ном | ||||
разгазировании в рабочих условиях, доли ед. | 1 | 2 | 1,1129 | |
Пластовая вода | ||||
Газосодержание, м3/т | 0.1-0.13 | 0,12 | ||
в т.ч. сероводорода, м3/т | н.о. | |||
Объемный коэффициент, доли ед. | 0,9989 | |||
Вязкость, мПа*с | 1 | 1,74 | ||
Общая минерализация, г/л | 1 | 209,77 |
Плотность, кг/м3 | 1 | 1168 | ||
Турнейский ярус | ||||
Нефть | ||||
Давление насыщения газом, МПа | 3 | 8 | 4.95-5.05 | 4,99 |
Газосодержание, при однократном | ||||
разгазировании, м3/т | 3 | 8 | 16.6-20.6 | 18,6 |
Объемный коэффициент при однократном | ||||
разгазировании, доли ед. | 3 | 8 | 1.056-1.060 | 1,058 |
Плотность, кг/м3 | 3 | 8 | 853.93-854.0 | 853,9 |
Вязкость, мПа*с | 3 | 8 | 10.69-15.9 | 13,3 |
Объемный коэффициент при дифферен-ном | ||||
разгазировании в рабочих условиях, доли ед. | 3 | 8 | 1,0475 | 1,0475 |
Продолжение таблицы 1 | ||||
1 | 2 | 3 | 4 | 5 |
Пластовая вода | ||||
Газосодержание, м3/т | 0.20-0.25 | 0,225 | ||
в т.ч. сероводорода, м3/т | н.о. | |||
Объемный коэффициент, доли ед. | 0,9982 | |||
Вязкость, мПа*с | 1 | 1 | 1,69 | |
Общая минерализация, г/л | 1 | 1 | 236,05 | |
Плотность, кг/м3 | 1 | 1 | 1161 | |
Бобриковский горизонт | ||||
Нефть | ||||
Давление насыщения газом, МПа | 3 | 8 | 1.6-4.5 | 2,46 |
Газосодержание, при однократном | ||||
разгазировании, м3/т | 3 | 8 | 5.03-11.38 | 1,0216 |
Объемный коэффициент при однократном | ||||
разгазировании, доли ед. | 3 | 8 | 1.0140-1.0282 | 1,0216 |
Плотность, кг/м3 | 3 | 8 | 895.0-907.0 | 905,9 |
Вязкость, мПа*с | 3 | 8 | 28.91-88.43 | 55,54 |
Объемный коэффициент при дифферен-ном | ||||
разгазировании в рабочих условиях, доли ед. | 3 | 8 | 1,0001 | 1,0001 |
Пластовая вода | ||||
Газосодержание, м3/т | 0.08-0.12 | 0,1 | ||
в т.ч. сероводорода, м3/т | н.о. | |||
Объемный коэффициент, доли ед. | 0,998 | |||
Вязкость, мПа*с | 2 | 2 | 1.71-1.72 | 1,71 |
Общая минерализация, г/л | 2 | 2 | 235.27-260.80 | 248,04 |
Плотность, кг/м3 | 2 | 2 | 1164.0-1165.0 | 1164,5 |
1.4 Краткая технико-эксплуатационная характеристика фонда
скважин
Девонские отложения месторождения.
Фонд скважин на горизонт Д0+Д1, предусмотренный проектом опытно-промышленной эксплуатации и дополнительными документами, определен в количестве 85 единиц, в том числе добывающих - 18, оценочных - 6, разведочных - 61.Плотность сетки при этом 16 га/скв.
Фактически на 1.01.2004 года пробурено 79 скважин, из них 18 добывающих, 55 разведочных , 6 оценочных.
Добывающий фонд на конец 2004 года по объекту составил 28скважин.
В течение 2004 года в добывающем фонде произошли следующие изменения: введена на нефть 1 новая скважина (№793а) из пьезометрического фонда.
На 1.01.2005 года действующий фонд составляет 25 скважин. В 2004 году из действующего фонда ушла в бездействие 1 скважина (№750), введены из бездействия 4 скважины (№№785, 792, 794, 1027).
В бездействующем фонде находятся 3 скважины: все 3 скважины – в ожидании ПРС.
Динамика добывающего фонда приведена ниже:
Таблица 1 Динамика добывающего фонда
Категория | Количество скважин |
скважин | на 1.01.2004 г. | на 1.01.2005 г. | +,- |
1. Добывающий фонд | 27 | 28 | +1 |
в том числе: фонт | 1 | 1 | - |
ЭЦН | - | 8 | +8 |
ШГН | 26 | 19 | -7 |
2. Действующий фонд | 21 | 25 | +4 |
в том числе: фонт | - | - | - |
ЭЦН | 5 | 8 | +3 |
ШГН | 16 | 17 | +1 |
3.Бездействующий фонд | 6 | 3 | -3 |
4.В освоении | - | - | - |
Динамику среднесуточного дебита одной действующей скважины можно проследить по таблице:
Таблица 2 Среднесуточный дебит скважины.
на 1.01.2004 г. | на 1.01.2005 г. | +,- | |||||||
Способ эксплуатации | нефть | жидк. | нефть | жидк. | нефть | жидк. | |||
Сред. дебит 1 скв., т/сут | 4,2 | 20,1 | 4,1 | 31,9 | -0,1 | +11,8 | |||
фонт. | - | - | - | - | - | - | |||
ЭЦН | 6,6 | 50,5 | 7,2 | 82,4 | +0,6 |
+31,9 |
|||
Продолжение таблицы 2 | |||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | |||
ШГН | 3,5 | 10,4 | 2,6 | 8,0 | -0,9 | -2,4 |
На конец 2004 года нагнетательный фонд по объекту составляет 1 скважина.
Динамика нагнетательного фонда скважин на 1.01.2005 года приведена ниже:
Таблица 3 Динамика нагнетательного фонда скважин
Категория | Количество скважин | ||
скважин | на 1.01.2004 г. | на 1.01.2005 г. | +,- |
Весь нагнетательный фонд | 1 | 1 | - |
а) скважины под закачкой | 1 | 1 | - |
б) бездействующий фонд | - | - | - |
в) работающие на нефть | - | - | - |
г) пьезометрические | - | - | - |
д) в освоении | - | - | - |
Действующий фонд нагнетательных скважин составляет 1 скважина (№1009).
Прочие скважины.
К этой категории отнесены пьезометрические, ожидающие ликвидации, ликвидированные, поглотительные и консервированный фонд скважин.
На 1.01.2005 года фонд пьезометрических скважин составляет 12 скважин. В отчетном году в этот фонд перешла из наблюдательного фонда скважина №1038, из пьезометрического фонда ушла в добычу 1 скважина.
Количество ликвидированных скважин на конец отчетного года составляет 25 скважин, как и в прошлом году.
По состоянию на 1.01.2005 г. в консервированном фонде скважин нет.
Добыча нефти за 2004 год по горизонту Д0 и Д1 Бухарского месторождения планировалось добыть 27,934 тыс. тонн, фактически добыто 28,768 тыс. тонн. Темп выработки по объекту составил 1,45 % от начальных извлекаемых запасов и 1,65 % от текущих извлекаемых запасов.
В отчетном году введена на нефть 1 новая скважина, за счет чего получено 0,271 тыс. тонн нефти. Средний дебит нефти новой скважины составил 1,6 т/сут.
За счет ввода из бездействия 4 скважин добыто 0,932 тыс.тонн нефти. Средний дебит нефти одной введенной из бездействия скважины составил 1,3 т/сут, по жидкости – 8,6 т/сут.
За 2004 год добыто: ШГН - 13769 тонн нефти (47,9%), ЭЦН -14999 (52,1%) .С начала разработки на 1.01.2005 года отобрано 269,547 тыс.тонн нефти или 13,6% от начальных извлекаемых запасов
За счет ввода из бездействия 4 скважин добыто 0,932 тыс.тонн нефти. Средний дебит нефти одной введенной из бездействия скважины составил 1,3 т/сут, по жидкости – 8,6 т/сут.
Закачка воды в 2003 году технологическая закачка составила 29,186 тыс. м3. Годовой отбор жидкости в пластовых условиях компенсирован технологической закачкой на 14,2 %.
В целом по горизонту Д0+Д1 на 1.01.2005 года работают с водой 25 скважин, все скважины обводнены пластовой водой.
По степени обводненности добываемой продукции обводненный фонд скважин распределяется в таблице 4.
Таблица 4 Обводненость добываемой продукции.
Степень | Количество скважин |
обводненности | на 1.01.2004 г. | на 1.01.2005 г. | +,- |
до 2% | - | - | - |
2 – 20% | 3 | - | -3 |
20 – 50% | 2 | 5 | +3 |
50 – 90% | 9 | 9 | - |
Продолжение таблицы 4 | |||
1 | 2 | 3 | 4 |
Больше 90% | 7 | 11 | +4 |
Всего | 21 | 25 | +4 |
Состояние пластового давления.
На 1.01.2005 года пластовое давление по объекту в зоне отбора составило 163,1 ат, против 164,2 ат в прошлом году.
Бобриковские отложения месторождения.
1997 году введены в разработку отложения бобриковского горизонта.
Фонд скважин на бобриковский горизонт, предусмотренный проектом опытно-промышленной эксплуатации и дополнительными документами, определен в количестве 25 единиц, в том числе добывающих - 20, резервных – 1, оценочных – 2, разведочных - 2.
Плотность сетки при этом 16,0 га/скв.
Фактически на 1.01.2005 года пробурены 17 скважин, из них 13 добывающих, 2 разведочных, 2 оценочных.
Добывающий фонд на конец 2004 года по объекту составил 23 скважины.
На 1.01.2005 года действующий фонд составляет 23 скважины. В 2004 году выведены из бездействия 2 скважины (№№1022,1029). В бездействующем фонде скважин нет.
Динамика добывающего фонда приведена в таблице 5.
Таблица 5 Динамика добывающего фонда.
Категория | Количество скважин | ||||
скважин | на 1.01.2004 г. | на 1.01.2005 г. | +,- | ||
1. Добывающий фонд | 23 | 23 | - | ||
В том числе: фонт | - | - | - | ||
ЭЦН | - | - | - | ||
ШГН | 23 | 23 | - | ||
Продолжение таблицы 5 | |||||
1 | 2 | 3 | 4 | ||
2. Действующий фонд | 21 | 23 | +2 | ||
в том числе: фонт | - | - | - | ||
ЭЦН | - | - | - | ||
ШГН | 21 | 23 | +2 | ||
Бездействующий фонд | 2 | - | -2 | ||
В освоении | - | - | - |
Динамику среднесуточного дебита одной действующей скважины можно проследить по таблице 6.
Таблица 6 Дебит среднесуточный действующий скважины.
на 1.01.2004 г. | на 01.2005 г. | +,- | ||||
Способ эксплуатации | нефть | жидк. | нефть | жидк. | нефть | жидк. |
Сред. дебит 1 скв. т/сут. | 6,5 | 13,5 | 4,4 | 11,6 | -2,1 | -1,9 |
Фонт. | - | - | - | - | - | - |
ЭЦН | - | - | - | - | - | - |
ШГН | 6,5 | 13,5 | 4,4 | 11,6 | -2,1 | -1,9 |
Прочие скважины.
К этой категории отнесены пьезометрические, ожидающие ликвидации, ликвидированные, поглотительные и консервированный фонд скважин.
На 1.01.2005 года в пьезометрическом фонде находится 1 скважина (№ 25490), как в прошлом году.
В наблюдательном фонде также находится 1 скважина (№ 25489), как в прошлом году.
Количество ликвидированных скважин на конец отчетного года составляет 2 скважины.
По состоянию на 1.01.2005 г. в консервированном фонде скважин нет.
За 2004 год по бобриковскому горизонту Бухарского месторождения планировалось добыть 39,884 тыс. тонн, фактически добыто 38,075 тыс. тонн. Темп выработки по объекту составил 2,95 % от начальных извлекаемых запасов и 3,27% от текущих извлекаемых запасов.
В 2004 году за счет ввода из бездействия 2 добывающих скважин получено 0,367 тыс.тонн нефти. Средний дебит нефти одной введенной из бездействия скважины составил 0,7 т/сут, по жидкости – 2,6 т/сут.
С начала разработки на 1.01.2005 года отобрано 163,089 тыс.тонн нефти или 12,7% от начальных извлекаемых запасов.
Обводненность на 1.01.2005 года составляет 61,9%. В 2004 году отобрано 50,408 тыс. тонн воды, водонефтяной фактор - 1,18.
В целом по бобриковскому горизонту на 1.01.2005 года работают с водой 23 скважины. Все скважины обводнены пластовой водой.
По степени обводненности добываемой продукции обводненный фонд скважин распределяется в таблице 7.
Таблица 7 Обводненость добываемой продукции
Степень | Количество скважин | ||
обводненности | на 1.01.2004 г. | на 1.01.2005 г. | +,- |
до 2% | - | - | - |
2 - 20% | 8 | 6 | -2 |
20 - 50% | 5 | 5 | - |
50 - 90% | 5 | 8 | +3 |
больше 90% | 3 | 4 | +4 |
Всего | 21 | 23 | +2 |
На 1.01.2005 года пластовое давление по объекту в зоне отбора составило89,6 ат, против 88,5 ат в прошлом году.
2 ОХРАНА ТРУДА И ПРОТИВОПОЖАРНАЯ ЗАЩИТА
2.1 Профессиональные вредности и опасности в нефтяной
промышленности
В составе загрязнителей содержатся многочисленные реагенты, катализаторы, ПАВ, ингибиторы, щелочи, кислоты, вещества, образующиеся при горении, химическом превращении и т.д..
Сырая нефть. Действие на организм паров сырой нефти непостоянно и зависит от ее состава. Большое воздействие оказывает соприкосновение с жидкой нефтью кожи человека, вследствие чего могут возникать дерматиты или экземы.
Бензин поступает в организм через дыхательные пути, может заглатываться с воздухом и затем всасываться в кровь из желудочно-кишечного тракта. Бензин оказывает сильное действие на центральную неровную систему, кожный покров. Может вызвать острые и хронические отравления, иногда со смертельным исходом.
Окись углерода. СО - бесцветный газ без вкуса и запаха. Поступление СО в организм подчиняется закону диффузии газов. ПДК СО в воздухе рабочей зоны 20 мг/мЗ.
Двуокись углерода СО2-бесцветный газ, тяжелый, малореакционноспо-собный газ. При низких и умеренных температурах обладает слегка кисловатым запахом и вкусом.
Углекислый газ оказывает наркотическое действие на человека и может изменять его поведение, раздражать слизистые оболочки.
Предельные углеводороды, химически наиболее инертные среди органических соединений, они являются в то же время сильнейшими наркотиками. Действие их ослабляется ничтожной растворимостью в воде и крови, вследствие чего только при высоких концентрациях создается опасность отравления этими веществами.
Природный газ обычно рассматривается как безвредный газ. Действие его идентично действию предельных углеводородов. Главная опасность связана с асфиксией при недостатке кислорода.
Нефтяной крекинг-газ. Действует на человека, как смесь углеводородов. Сернистые соединения. Профессиональная вредность сернистых соединений определяется наиболее токсичными ингредиентами газовыделений из многосернистой нефти, природного газа и конденсата.
Сероводород. Бесцветный газ с неприятным запахом, ощутимым даже при незначительных концентрациях 1:1000000. Главное токсическое действие сероводорода проявляется не в раздражении слизистых оболочек, а в его общем действии на организм.
Он действует на центральную нервную систему, окислительные процессы и кровь.
2.2 Меры безопасности при производстве СКО
Работы по подготовке скважины к выполнению на ней требуемых технологическим процессом операций и выполнение этих операций должны проводиться по плану, утвержденному главным инженером НГДУ и под руководством ответственного лица.
К работам по приготовлению нефтекислотной и обратной эмульсий, применению их и соляной кислоты допускаются лица старше 18 лет, прошедшие мед.осмотр и обучение согласно «Положению о порядке обучения рабочих и инженерно-технических работников методам работы на предприятиях и организациях Миннефтепрома» и требованиям настоящего РД и только после проверки их знаний комиссией, назначенной приказом по предприятию.
Работники, занимающиеся приготовлением нефтекислотной и обратной эмульсией, применением их и соляной кислоты, д.б. обеспечены комплектом спецодежды, спецобувью.
Техническое обслуживание технических средств должно производиться согласно паспортам и инструкциям по эксплуатации на технические средства.
При эксплуатации насосных и кислотных агрегатов, диспергатора необходимо руководствоваться требованиями «Правил устройства и безопасной эксплуатации сосудов, работающих под давлением».
При наличии в продукции скважины сероводорода работы по промывке скважины выполнять только с применением обратной эмульсии, условная вязкость д.б. не ниже 250 с по ВП-5. Пи использовании других жидкостей должны применяться нейтрализаторы сероводорода.
В плане по ОПЗ скважины указать объем, плотность и вязкость обратной и нефтекислотной эмульсий, основные операции и ответственных лиц по обработке.
В течение всего времени работ с применением нефтекислотной и обратной эмульсий или товарной нефти на расстоянии менее 25 м от устья скважины и емкостей эмульсиями или нефтью запрещается: пользование открытым огнем (курение, электросварочные работы и др.); пребывание техники, не оборудованной искрогасителями на выхлопных трубах; пребывание посторонних людей.
До начала работ по обработке необходимо: подготовить и спланировать территорию вокруг устья скважины в радиусе 50 м для размещения агрегатов и другого оборудования; опрессовать устьевую арматуру; расположить спецтехнику и оборудование с наветренной стороны от устья скважины на расстоянии не менее 10 м; закачку производить только после опрессовки нагнетательной линии и диспергатора на 1,5-кратное давление от ожидаемого максимального с составлением акта; установить манометр для контроля за давлением в затрубном пространстве скважины.
Перед началом проведения работ ответственной за выполнение технологии обязан:
Ознакомить рабочих с планом работ и ликвидацией возможных осложнений провести инструктаж по технике безопасности, включающий все виды предусмотренных планом работ, с отметкой в «Журнале регистрации инструктажа на рабочем месте» и подписью инструктируемого;
Проверить состояние техники безопасности на рабочем месте, наличие и пригодность средств защиты.
При проведении работ под давлением обслуживающий персонал и участ-ники обработки д.б. удалены за пределы опасной зоны. При работе с нефтекислотной эмульсией и кислотой должны применяться индивидуальные средства защиты: противогаз марки «В», защитные очки, резиновые перчатки, фартук, обувь.
При попадании нефтекислотной эмульсии на кожу рук и других частей тела эмульсию следует удалить с помощью ветоши, обмыть эти участки струей воды в течение 3-5 минут, вымыть с мылом и наложить на поверхность кожи водную кашицу чайной соды.
При попадании кислоты на кожу человека немедленно обмыть этот участок струей воды в течение 3-5 минут и наложить на поверхность кожи кашицу чайной соды.
При попадании кислоты и нефтекислотной эмульсии в глаза обильно промыть их чистой водой и немедленно направить пострадавшего в больницу.
При проведении всех работ по выполнению данной технологии исключить разбрызгивание и разливание нефти, обратной и нефтекислотной эмульсий, кислоты, для чего:
Перед закачкой указанных жидкостей в скважину устьевая арматура, диспергатор, манифольд должны быть опрессованы пресной водой;
Подъем НКТ из скважины должен осуществляться с использованием устройства по очистке наружной поверхности труб;
устройство – «юбку» против разбрызгивания.
Обратная эмульсия или нефть, используемые в качестве продавочной и промывочной жидкостей, должны быть откачены в систему сбора нефти.
После закачки химреагентов до разборки нагнетательной системы агрегата должна прокачиваться инертная жидкость объемом, достаточным для промывки нагнетательной системы. Сброс жидкости после промывки должен производиться в сборную емкость; из емкости жидкость вывозится в пункты утилизации технологических жидкостей.
2.3 Обеспечение пожарной безопасности
При испытаниях необходимо руководствоваться «Правилами безопасности в нефтяной и газовой промышленности», утвержденными Госгортехнадзором России 14.12.92 г., М., НПО ОБТ, 1993 г., «Правилами пожарной безопасности в нефтяной промышленности», ППБО 85, «Недра», 1987 г. и другими руководящими документами в нефтяной и газовой промышленности.
Закачка рабочих агентов в пласт осуществляется подготовленной бригадой под руководством ответственного лица из числа ИТР, назначенного приказом по предприятию, производящему работы. До проведения закачки д.б. разработаны план производства работ на конкретной скважине и план ликвидации возможных аварий, утвержденные главным инженером предприятия.
Ответственный за закачку реагентов обязан:
Знать инструкцию по технике безопасности;
Ознакомить исполнителей с характером работ, мерами предосторожности, расположением оборудования и режимом его работы;
Произвести проверку применяемого оборудования;
Не допускать расстановку агрегатов, автоцистерны и спецоборудования под действующими линиями электропередач;
Обеспечить место работ средствами пожаротушения (огнетушители, кошма, песок).
Работы должны проводиться в светлое время суток или при освещении 20 люкс.
Технические средства, используемые для подготовки и закачки рабочих агентов, должны соответствовать требованиям ГОСТ 12.2.003-74, ОСТ 39064-74, РД 39-32-617-81. Не допускается использование неисправных технических средств.
Передвижное оборудование и спецтехника должны располагаться с наветренной стороны на расстоянии не менее 20 м от скважины на площадке с уклоном не более 30 и оборудоваться искрогасителями.
Все временные трубопроводы д.б. надежно закреплены и защищены от механических повреждений.
При возникновении загорания применяют песок, асбестовое одеяло, пенные и углекислотные огнетушители.
При работе с химреагентами необходимо пользоваться спецодеждой, защитными очками, резиновыми сапогами, перчатками из кислотостойкой резины и фартуками из кислотостойкой ткани, респираторами РИГ-673 в соответствии с действующими типовыми нормами. При работе в замкнутом помещении, без тяги или при сильном испарении химреагентов необходимо использование противогаза марки БКФ (ГОСТ 12.4.121-85).
Обслуживающий персонал, работающий с химреагентами, должен до начала работ пройти специнструктаж, а также подвергаться предварительному и периодическим медицинским осмотрам.
При появлении признаков отравления (головной боли, головокружения, тошноты, потери аппетита и сна) следует обратиться к руководителю работ и врачу.
Категорически запрещается принимать реагенты для нужд, не связанных с их прямой целью.
В зоне работы с химреагентами запрещается хранение и прием пищи и воды на расстоянии не менее 30 м.
Категорически запрещается попадание химреагентов в водоемы, канализационные системы, почву.
С целью исключения попадания химреагента в воздух рабочей зоны требуется обеспечить необходимую герметичность емкостей, оборудования, коммуникаций.
Режим работы агрегата выбирают таким образом, чтобы давление, создаваемое насосом, было достаточно для продавки раствора в пласт при максимально возможной его подаче. В таблице 1 приведены характеристики агрегата Азинмаш –30А.
Таблица 1 - Техническая характеристика Азинмаш – 30А
Скорость | Подача, л/с | Давление, МПа |
II | 3,60 | 33,2 |
III | 6,85 | 17,4 |
IV | 12,22 | 9,7 |
V | 15,72 | 7,6 |
Определим необходимое давление на выкиде насоса при закачке в скважину жидкости с расходом q = 6,85 л/с по формуле, приведенной в [5]:
Рвн = Рзаб – Рж + Рт,
где Рзаб – максимальное забойное давление при продавке раствора
Рзаб = Рпл + q*10-3*86400/К
Рзаб = 15 + 6,85*10-3*86400/ 51,3 = 26,7 МПа,
Рж – гидростатическое давление столба продавочной жидкости (вода с плотностью 1000 кг/м3)
Рж = ρgL
Рж = 1000*9,81*1280*10-6 = 12,56 МПа,
Рт – потери давления на трение
Рт = λυ2Lρ/ (2d),
где υ – скорость движения жидкости по трубам
υ = q*10-3/ (0,785d2)
υ = 14,6*10-3/ (0,785*0,0732) = 3,49 м/с
λ – коэффициент гидравлического сопротивления
λ = 0,3164/ Re0,25,
Re – число Рейнольдса
Re = υdρ / μ
Re = 3,49*0,073*940/(23*10-3) = 10412
μ – динамическая вязкость воды, равная 6,6 мПа*с.
Отсюда,
λ = 0,3164/ 34741 0,25 = 0,0313,
Рт = 0,0313*3,49 2 * 1280*940*10-6 / (2*0,073) = 3,14 МПа,
Рвн = 26,7 – 12,56 + 3,14 = 17,2 МПа.
Итак, при закачке кислотного раствора агрегат Азинмаш – 30А работает на III скорости при диаметре плунжера 120 мм. При этом давление на выкиде насоса (17,4 МПа) больше, чем необходимо для продавки в пласт раствора с дебитом 6,85 л/с.
3 ОХРАНА НЕДР И ОКРУЖАЮЩЕЙ СРЕДЫ
3.1 Мероприятия, направленные на охрану недр и окружающей
среды
Для предотвращения загрязнения почвы, водоёмов и атмосферного воздуха применяемыми реагентами необходимо предусмотреть:
- герметизацию всех соединений на устье скважины, насосных агрегатах, автоцистернах, ёмкостях и другого оборудования при перевозке, хранении и проведении работ;
- по окончании технологического процесса промыть пресной водой насосы агрегатов, ёмкости, нагнетательные линии, приёмные и выкидные шланги от остатков реагентов в желобную систему с их последующим вывозом в специально отведённые места нейтрализации и захоронения.
В случае разлива раствора силиката натрия на землю, пропитанный им слой почвы нейтрализуется пластовой водой плотностью 1,18 г/см3 и засыпается песком.
Для снижения вредных выбросов в атмосферу должно быть обеспечено выполнение следующих условий:
- поддержания технического состояния существующего оборудования и трубопроводов на надлежащем уровне;
- широкое внедрение новых технологий и технических средств;
- разработка более совершенных технологий и оборудования.
Для осуществления первой из намеченных задач запланированы следующие конкретные мероприятия:
- ремонт и замена резервуаров;
- строительство и замена товарных и технологических нефтепроводов и газопроводов;
- реконструкция установок подготовки нефти и изменение грузопотоков;
Реализации второй – внедрение освоенных технологий и оборудования, что потребует более широкого использования:
- системы УЛФ из резервуаров;
- установки очистки газа от сероводорода с получением элементарной серы;
- мультифазных насосов для утилизации попутного газа;
- газовых электростанций для утилизации попутного газа;
- нейтрализации выхлопных газов на автомобилях;
- строительства объездных дорог;
- проведения мониторинга атмосферного воздуха.
В число третьей группы задач вошла разработка:
- технологии очистки попутного газа от сероводорода окислением до элементарной серы на твёрдых катализаторах;
- технологии нейтрализации газовых выбросов;
- технологии и оборудования для откачки газа из затрубного пространства скважин с утилизацией его в систему нефтесбора. Внедрение оборудования позволит сократить выбросы углеводородов и сероводорода в атмосферу;
Мероприятия по охране поверхностных и пресных подземных вод
Поверхностный и подземный стоки тесно взаимосвязаны. Большую часть года реки питаются подземными водами (родниковый сток), лишь в период весеннего снеготаяния (апрель – май) расходы рек резко (до 10 раз) возрастают за счёт поверхностного стока, составляющего 60% годового. Дождевой сток в тёплое время года увеличивает расходы рек незначительно (9% общего годового). В холодный период года реки получают исключительно подземное питание, отражая загрязненность подземных вод (родников).
Поверхностные источники загрязнения рек вполне очевидны: аварийные порывы трубопроводов, разливы нефти и солённых вод в результате нарушения герметичности нефтепромысловых сооружений, стоки промобъектов, объектов сельскохозяйственного назначения, стоки городов и населённых пунктов.
Источники загрязнения подземных вод скрыты. Это фильтрация загрязнённых вод с поверхности (из амбаров, трубпроводов, при скважинной обваловки и др.) или снизу, из негерметичной скважины за счёт заколонных перетоков жидкости. Выявление очагов и источников загрязнения пресных подземных вод требует системы специальных исследований (электроразведка, бурение эколого-гидрогеологических скважин и др.).
Мероприятия по снижению загрязнения пресных и речных подземных вод с поверхности как результата функционирования нефтяной промышленности включают в себя следующие виды работ:
- ликвидацию нефтегазопроявлений на устье скважин при нарушении герметичности эксплуатационных колонн и возникновения заколонных перетоков снизу – вверх;
- сооружения ливневой канализации на промобъектах для сбора и обезвреживания стоков и автомоек;
- утилизацию нефтешламов;
- капитальный ремонт и проектную защиту нефтепроводов;
- оснащение бригад ПКРС оборудованием для предотвращения разливов жидкости;
- гидроизоляцию земляных амбаров;
Мероприятия по снижению загрязнения пресных подземных вод снизу предусматривают:
- герметизацию эксплуатационных колонн скважин;
- ликвидацию заколонных перетоков;
- доподъём цемента за кондуктором и эксплуатационной колонной;
- ликвидацию скважин старого некачественного фонда;
-переликвидацию ранее ликвидированных поисково-разведочных и эксплуатационных скважин;
Повышение долговечности нефтепромыслового оборудования при помощи защитных покрытий НКТ, установки пакер – гильз, протекторной защитой, ингибиторов коррозии.
Мероприятия по хозяйственно-питьевому водоснабжению включает в себя обеспечение населённых пунктов на территории нефтепромыслов питьевой водой согласно санитарно – гигиеническим средствам. Они предусматривают бурение водозаборных скважин, строительство и ремонт водопротоков, каптаж родников, выделение зон санитарной охраны и другие работы.
Мероприятия по охране земельных ресурсов
Перспективные направления работ и объёмы внедрения мероприятий, направленных на обеспечение экологической безопасности при капитальном и подземном ремонте скважин, включает в себя комплекс перечисляемых ниже эффективных технико-технологических решений.
1. Технология герметизации земляных амбаров с использованием полимерно-го листового материала. В ТатНИПИнефти разработана технология герметизации земляных амбаров с использованием полиэтиленовых полотен. Герметизация земляных амбаров при КРС на индивидуальных площадках или на кустах при амбарной и ёмкостной системах очистки жидкости позволяет защитить от загрязнения поверхностные и поземные питьевые воды, а также плодородный слой земли.
2. Освоение скважины на специальной жидкости с вызовом притока насосным оборудованием в линию нефтесбора. Данный способ освоения скважин исключает необходимость установки дополнительного оборудования (ёмкости для сбора нефти), что предотвращает разлив на территории скважины, а следовательно, и загрязнение земель.
3. Приготовление из отработанного глинистого раствора тампонажных паст для изоляции зон поглощения. Это сокращает дополнительные затраты на изоляцию зон поглощения, а также на утилизацию и захоронения раствора.
Мероприятия по обеспечению радиационной безопасности
Мероприятия по обеспечению радиационной безопасности на объектах подготовки нефти при разработке месторождений нефти в девонских отложениях направлены на выполнение требований федеральных законов «Об использовании атомной энергии», «О радиационной безопасности населения», Федеральной целевой программы «Снижения уровня обучения населения России и производственного персонала от природных радиоактивных источников», «временных санитарных правил и норм по ограничению облучения населения Республики Татарстан от природных источников ионизирующего излучения – Временные СанПин №2.6.2.001 – 96», рекомендаций по нормализации радиационно-экологической обстановки на объектах нефтегазодобычи топливно-энергетического комплекса России» «минтоэнерго России, 1996г.).
Целью их является:
- обеспечение радиационной безопасности персонала, проводящего работы по ремонту и очистке технологического оборудования товарных парков и УКПН, загрязнённого нефтешламами, содержащие естественные радионуклиды;
- предотвращения проникновения естественных радионуклидов за пределы территории производственных объектов в окружающую среду.
Прежде всего предусматривается постоянный ведомственный и оперативный контроль радиационной обстановки на объектах подготовки нефти, контроль за уровнем облучения персонала (радиометрическое обследование оборудования и территории товарных парков и УКПН, индивидуальная дозиметрия, контроль за содержанием радиоактивных аэрозолей в воздухе на территории товарных парков и УКПН). На основе полученных данных должен ежегодно проводится анализ радиационной обстановки и составляется радиационно-гигиенический и инвентаризационный паспорта.
В рассматриваемый период часть объектов подготовки нефти будет выводится из эксплуатации. В связи с этим намечены дополнительные меры по обеспечению радиационной безопасности: консервация мест временного размещения нефтешламов, содержащих естественные радионуклиды, путём их дополнительной герметизации. Учитывая, что на территории товарных парков и УКПН в пределах обваловки технологического оборудования практически нет места для временного размещения нефтешламов в земляных амбарах, необходимо провести соответствующие работы по размещению нефтешламов в используемых (высвобождающихся) РВС. Мера эта, однако, временная и требует дальнейшего решения.
Основные направления научно-исследовательских работ, намечаемых на рассматриваемый период, охватывают также проблему радиационной обстановки на объектах подготовки нефти с ориентацией на действующие федеральные законы, санитарные нормы и правила. Прежде всего, это создание соответствующей системы информационного обеспечения планирования и реализации мероприятий по радиационной безопасности.