Рефетека.ру / Математика

Курсовая работа: Регрессионный анализ корелляции субъективного ВАШ и лабораторных признаков активности реактивного артрита

Санкт-Петербургский Государственный Университет

Факультет прикладной математики – процессов управления

Кафедра диагностики функциональных систем


Варламова Александра Александровна


Регрессионный анализ корелляции субъективного ВАШ и лабораторных признаков активности реактивного артрита


Заведующий кафедрой

доктор медицинских наук, профессор Шишкин В.И.

Научный руководитель

доктор медицинских наук, профессор Шишкин В.И.


Санкт-Петербург

2008


Содержание


Введение

1 Дисперсионный анализ по одному признаку для проверки равенства нескольких средних

2 Множественная линейная регрессия

3 Дисперсионный анализ

4 Линейная регрессия

Заключение


Введение


Артриты реактивные - термин, принятый для обозначения артритов, развивающихся после инфекций, но не обусловленных попаданием инфекционного агента в полость сустава. Обычно реактивные артриты носят иммунокомплексный характер, т. е. возникают вследствие нарушений иммунитета у генетически предрасположенных лиц из-за недостаточной утилизации комплексов антиген - антитела макрофагальной системой. Реактивные артриты могут развиваться после многих инфекций (бактериальных, вирусных и др. ) независимо от их тяжести, но чаще - после энтероколитов, вызванных иерсиниями, и инфекций мочевых путей, обусловленных хламидиями.

В настоящее время реактивный артрит (РеА) является одним из наиболее частых ревматологических диагнозов. Обычно реактивным считают артрит, который не удовлетворяет диагностическим критериям ревматоидного или подагрического артрита и не сопровождается специфической для системных ревматических заболеваний внесуставной симптоматикой.

Этиология РеА неизвестна. Предположительно, в основе РеА лежит генетически детерминированная аномалия иммунной системы, которая реализуется при инфицировании некоторыми микроорганизмами.

Клиническая картина РеА может включать:

• характерный суставной синдром;

• клинику урогенитальной инфекции;

• внесуставные поражения (кожи и слизистых оболочек);

• поражения позвоночника (обычно сакроилеит);

• висцеральные поражения;

• системную воспалительную реакцию

Суставной синдром (обязательное проявление заболевания) характеризуется:

– асимметричным олигоартритом (воспалением 2-3 суставов или суставных групп) с поражением суставов ног (коленных, голеностопных, плюснефаланговых и межфаланговых) и тендовагинитом (ахиллобурситом);

– началом первого эпизода артрита в период до 30 дней после полового контакта, со средним интервалом в 14 дней между появлением урогенитальных симптомов и артритом;

– болью и ригидностью с отеком или без него в области прикрепления мышц, сухожилий и связок, особенно ахиллова сухожилия и плантарной фасции, к пяточной кости, что часто ведет к затруднениям при ходьбе

Клинические признаки артрита :

1. Боль в суставе/суставах:

• ощущается во всем суставе;

• связана с движениями и суточным ритмом (при любых движениях, усиливается в покое и ночью);

• сопряжена с амплитудой движений в суставе (при движениях во всех плоскостях, нарастающая с увеличением амплитуды движений);

• обычно тупая, ноющая, выкручивающая.

2. Скованность – субъективное ощущение препятствия движению, которое, как правило, наиболее выражено сразу после пробуждения, периода отдыха или неактивности. Скованность обусловлена нарушением оттока жидкости из воспаленного сустава в покое, уменьшается или проходит при возобновлении движений в суставе. Продолжительность и выраженность скованности отражают степень местного воспаления.

3. Припухлость – преходящее увеличение в размерах и изменение контура сустава, обусловленные как накоплением экссудата в полости сустава, так и отеком периартикулярных тканей. Наиболее отчетливо припухлость выявляется на разгибательных (тыльных) поверхностях локтевых и лучезапястных суставов, на кисти, коленных и голеностопных суставах и стопе.

4. Повышение температуры суставов также является признаком воспаления. Определяется проведением тыльной стороной ладони по поверхности сустава.

5. Болезненность сустава при пальпации подтверждает, что боль в суставе обусловлена именно его поражением, а не является отраженной.

Системная воспалительная реакция

Системные симптомы недомогания, усталости, потеря веса и лихорадка встречаются примерно у 10% пациентов. Практические у всех больных в клиническом анализе крови повышена скорость оседания эритроцитов (СОЭ).

Объект, предмет, цель и задача исследования

В качестве исходных данных для исследования даны выборки численных значений медико-биологических показателей человеческого организма, а именно, показатели активности заболевания : СОЭ, наличие С-реактивного белка, уровня фибриногена и гемоглобина в крови больных реактивным артритом. А также выборка значений болевого синдрома оцененного в баллах по визуальной аналоговой шкале (ВАШБП) и синдрома припухлости (ВАШСП).

В целях полноты изложения приведем необходимые определения :

СОЭ (скорость оседания эритроцитов) - свойство эритроцитов оседать при помещении несвернувшейся крови в вертикально поставленную пробирку. Ускорение наблюдается при большинстве воспалительных, инфекционных и др. заболеваниях.

С-реактивный белок (СРБ) очень чувствительный элемент крови, быстрее других реагирующий на повреждения тканей. Наличие реактивного белка в сыворотке крови – признак воспалительного процесса, травмы, проникновения в организм чужеродных микроорганизмов – бактерий, паразитов, грибов. С-реактивный белок стимулирует защитные реакции, активизирует иммунитет. Определение СБР используется для диагностики острых инфекционных заболеваний и опухолей. Также анализ СРБ используется для контроля над процессом лечения, эффективности антибактериальной терапии и т.д.

Гемоглобин (от гемо... и латинское globus - шар), красный дыхательный пигмент крови человека, позвоночных и некоторых беспозвоночных животных. Состоит из белка (глобина) и железопорфирина - гема. Переносит кислород от органов дыхания к тканям и диоксид углерода от тканей к дыхательным органам. Многие заболевания крови (анемии) связаны с нарушениями строения глобина, в том числе наследственными (гемоглобинопатии - серповидноклеточная анемия, талассемия и др.).

Фибриноген (от фибрин и ...ген), растворимый белок плазмы крови, относящийся к группе глобулинов; фактор I свёртывания крови, способный под действием фермента тромбина превращаться в фибрин. Молекула имеет форму глобулы диаметром около 22 нм. Синтез фибриногена в организме происходит в паренхиматозных клетках печени. Содержание фибриногена в плазме крови здорового человека 300- 500 мг%. При недостаточности фибриногена в организме или при образовании молекул с аномальным строением наблюдается кровоточивость.

ВАШБП - оценка интенсивности боли, для характеристики которой используют простые визуальные аналоговые шкалы.

ВАШСП – оценка припухлости суставов, для характеристики которой используют простые визуальные аналоговые шкалы

Регрессионный анализ корелляции субъективного ВАШ и лабораторных признаков активности реактивного артрита


Визуально аналоговые шкалы важный компонент большинства современных клинических методов, применяемых при обследовании пациентов. Специальные опросники позволяют дать более полную характеристику болевого синдрома, выявить связь между выраженностью боли и нарушением функционального состояния больных.

Объект исследования

Объектом нашего исследования являются выборочные данные результатов измерений СОЭ, СРБ, Гемоглобина, Фибриногена, ВАШБП и ВАШСП, причем изучаемые данные разделены на 4 группы. В первой группе представлены данные при болезни, вызванной моче половыми инфекциями, во второй группе - неизвестной этиологии, в третьей – ОРВИ, в четвертой – желудочно-кишечными инфекциями.

Предмет исследования

Предмет исследования определяем, как нахождение зависимости между показателями активности заболевания (СОЭ, СРБ, Фибриноген, Гемоглобин), болевым синдромом оцененным по визуально аналоговой шкале (ВАШБП) и синдромом припухлости оцененным также по визуально аналоговой шкале (ВАШСП).

Используемые методы

1.Дисперсионный анализ по одному признаку для проверки равенства нескольких средних

Во многих случаях практики интерес представляет вопрос о том, в какой мере существенно влияние того или иного фактора на рассматриваемый признак. В данном случае фактором является вид инфекции вызвавший реактивный артрит, а признаками СОЭ, СРБ, Фибриноген, гемоглобин, ВАШБП и ВАШСП. Научное обоснованное решение подобной задачи при некоторых предположениях составляет предмет дисперсионного анализа.

Статистическая модель

Выборки производятся из нормальных совокупностей. Первая выборка производиться из совокупности со среднимРегрессионный анализ корелляции субъективного ВАШ и лабораторных признаков активности реактивного артрита, вторая - со средним Регрессионный анализ корелляции субъективного ВАШ и лабораторных признаков активности реактивного артрита , k-я из совокупности со средним Регрессионный анализ корелляции субъективного ВАШ и лабораторных признаков активности реактивного артрита. Все наблюдения независимы.

Критическая область.

Если значение pРегрессионный анализ корелляции субъективного ВАШ и лабораторных признаков активности реактивного артрита0, то нулевая гипотеза может быть отвергнута, т.е. хотя бы одно среднее арифметическое отличается от остальных значений. Выберем критический уровень значимости pKP для условия принятия нулевой гипотезы pкр=0,05

p>pкр

Гипотезы №1.

Н0 : Регрессионный анализ корелляции субъективного ВАШ и лабораторных признаков активности реактивного артрита= Регрессионный анализ корелляции субъективного ВАШ и лабораторных признаков активности реактивного артрита =…= Регрессионный анализ корелляции субъективного ВАШ и лабораторных признаков активности реактивного артрита

Н1: не все средние равны.

Так как данный метод работает только для нормальных совокупностей то сначала построим графики функций распределения для каждой выборки.

Для экономии времени и упрощения расчетов воспользуемся Matlab.


Регрессионный анализ корелляции субъективного ВАШ и лабораторных признаков активности реактивного артрита

График функции распределения для значений Hb в 1 группе

Регрессионный анализ корелляции субъективного ВАШ и лабораторных признаков активности реактивного артрита

График функции распределения для значений Hb в 2 группе

Регрессионный анализ корелляции субъективного ВАШ и лабораторных признаков активности реактивного артрита

График функции распределения для значений Hb в 3 группе

Регрессионный анализ корелляции субъективного ВАШ и лабораторных признаков активности реактивного артрита

График функции распределения для значений Hb в 4 группе

Регрессионный анализ корелляции субъективного ВАШ и лабораторных признаков активности реактивного артрита

График функции распределения для значений СРБ в 1 группе

Регрессионный анализ корелляции субъективного ВАШ и лабораторных признаков активности реактивного артрита

График функции распределения для значений СРБ в 2 группе

Регрессионный анализ корелляции субъективного ВАШ и лабораторных признаков активности реактивного артрита

График функции распределения для значений СРБ в 3 группе

Регрессионный анализ корелляции субъективного ВАШ и лабораторных признаков активности реактивного артрита

График функции распределения для значений СРБ в 4 группе

Регрессионный анализ корелляции субъективного ВАШ и лабораторных признаков активности реактивного артрита

График функции распределения для значений СОЭ в 1 группе

Регрессионный анализ корелляции субъективного ВАШ и лабораторных признаков активности реактивного артрита

График функции распределения для значений СОЭ в 2 группе

Регрессионный анализ корелляции субъективного ВАШ и лабораторных признаков активности реактивного артрита

График функции распределения для значений СОЭ в 3 группе

Регрессионный анализ корелляции субъективного ВАШ и лабораторных признаков активности реактивного артрита

График функции распределения для значений СОЭ в 4 группе

Регрессионный анализ корелляции субъективного ВАШ и лабораторных признаков активности реактивного артрита

График функции распределения для значений Фибриногена в 1 группе

Регрессионный анализ корелляции субъективного ВАШ и лабораторных признаков активности реактивного артрита

График функции распределения для значений Фибриногена в 2 группе

Регрессионный анализ корелляции субъективного ВАШ и лабораторных признаков активности реактивного артрита

График функции распределения для значений Фибриногена в 3 группе

Регрессионный анализ корелляции субъективного ВАШ и лабораторных признаков активности реактивного артрита

График функции распределения для значений Фибриногена в 4 группе

Регрессионный анализ корелляции субъективного ВАШ и лабораторных признаков активности реактивного артрита

График функции распределения для значений ВАШБП в 1 группе

Регрессионный анализ корелляции субъективного ВАШ и лабораторных признаков активности реактивного артрита

График функции распределения для значений ВАШБП в 2 группе

Регрессионный анализ корелляции субъективного ВАШ и лабораторных признаков активности реактивного артрита

График функции распределения для значений ВАШБП в 3 группе

Регрессионный анализ корелляции субъективного ВАШ и лабораторных признаков активности реактивного артрита

График функции распределения для значений ВАШБП в 4 группе

Регрессионный анализ корелляции субъективного ВАШ и лабораторных признаков активности реактивного артрита

График функции распределения для значений ВАШСП в 1 группе

Регрессионный анализ корелляции субъективного ВАШ и лабораторных признаков активности реактивного артрита

График функции распределения для значений ВАШСП в 2 группе

Регрессионный анализ корелляции субъективного ВАШ и лабораторных признаков активности реактивного артрита

График функции распределения для значений ВАШСП в 3 группе

Регрессионный анализ корелляции субъективного ВАШ и лабораторных признаков активности реактивного артрита

График функции распределения для значений ВАШСП в 4 группе

Исходя из вида графиков можно сделать вывод о том что все выборки имеют нормальное распределение и следовательно мы можем использовать выбранный нами параметрический метод дисперсионного анализа.


I) Рассмотрим сначала влияние фактора на уровень Hb (гемоглобин):


Таблица1.1.1.Зависимость уровня Hb от инфекции вызвавшей заболевание

1группа 2группа 3 группа 4группа
124 114 140 124
124 142 121 130
110 156 136 127
93 170 125 130
133 119 138 138
129 128 150 122
149 163 154 160
122 135 127 104
145 120 153 121
124 120 120 131
99 106 171 127
125 130 128 109
137 156 154 158
156 114 140 132
148 137 110 134
138 142 151 164
144 121 142 116
133 121 144 136
145 144 120 122
121 160
150
126 140
112
128 110
124
120 135
137
150 106
130
123 126
160
150 136
150
160 142
107
139 118
114
152 126
124
146 140
120
142 101
115
137 123

148 117

130


152


126


118


140


166


128


165


143


132


130


126


166


168


128


126


125


115


118


117


114


123


150


125


103


142


150


140


94


129


156


141


148


140


141


135


150


150


127


158


131


150


162


134


104


130


136


150


136


105


146


146


138


158


154


141


134


150


150


114


109


157


161


133


166


168



Здесь и далее для экономии времени и упрощения вычислительн6ой работы воспользуемся Matlab для проведения однофакторного дисперсионного анализа для сравнения средних арифметических значений выборок. Будем использовать функцию p = anova1(X) - функция позволяет провести однофакторный дисперсионный анализ для сравнения средних арифметических значений одной или нескольких выборок одинакового объема. Выборки определяются входным аргументом Х. Х задается как матрица с размерностью mxn, где m - число наблюдений в выборке (число строк Х), n - количество выборок (число столбцов матрицы Х). Выходным аргументом функции является уровень значимости p нулевой гипотезы. Нулевая гипотеза состоит в том, что все выборки в матрице Х взяты из одной генеральной совокупности или из разных генеральных совокупностей с равными средними арифметическими. p является вероятностью ошибки первого рода, или вероятностью необоснованно отвергнуть нулевую гипотезу. Если значение pРегрессионный анализ корелляции субъективного ВАШ и лабораторных признаков активности реактивного артрита0, то нулевая гипотеза может быть отвергнута, т.е. хотя бы одно среднее арифметическое отличается от остальных значений. Выбор критического уровня значимости pKP для условия принятия нулевой гипотезы


Регрессионный анализ корелляции субъективного ВАШ и лабораторных признаков активности реактивного артрита


предоставлен исследователю. Здесь и далее примем pKP равным 0,05.

После выполнения вычислений мы получаем:

p = 0.3001

Запишем выходные данные в таблицу дисперсионного анализа


Таблица №1.1.2. Дисперсионный анализ по одному признаку.

Компонента дисперсии Сумма квадратов Степень свободы Средний квадрат
Между выборками 1012,4 3 337,451
Остаточная 30577,2 112 273,011
Полная 31589,5 115 -----

p>pкр


Вывод:

Следовательно мы принимаем нулевую гипотезу, т.е. можно предположить что при 5% уровне значимости уровень гемоглобина в крови не зависит от инфекции вызывающей реактивный артрит.

II) Влияние фактора на наличие СРБ в крови

Таблица1.2.1.Зависимость уровня СРБ от инфекции вызвавшей заболевание

1 группа

2 группа

3 группа

4 группа

0 6 0 0
6 0 0 0
96 48 0 0
192 0 0 0
0 6 12 96
0 6 12 0
0 0 6 0
0 12 0 0
0 0 0 48
0 0 48 0
48 192 0 384
0 0 0 48
12 6 0 0
0 48 0 0
384 6 12 0
192 0 0 0
12 0 0 0
48 0 48 0
0 0 0 0
96 0
0
0 0
0
48 0
96
0 0
96
12 48
48
6 0
0
6 0
0
0 0
0
96 0
0
48 0
48
6 0
48
0 12
0
0 96

0 0

0


0


0


768


96


0


0


0


0


0


12


0


0


6


0


6


0


0


0


0


6


0


0


192


48


0


0


192


768


6


0


96


24


0


6


0


0


0


0


0


0


0


0


0


0


0


0


0


96


48


0


0


48


0


0


6


0


0


0


0


0


0


0


0


0


0



После выполнения вычислений мы получаем:

p =0.4677

Запишем выходные данные в таблицу дисперсионного анализа


Таблица №1.2.2. Дисперсионный анализ по одному признаку.

Компонента дисперсии

Сумма квадратов


Степень свободы


Средний квадрат
Между выборками 23192,8 3 7730,92
Остаточная 1616980,7 178 9084,16
Полная 1640173,5 181 -----

p>pкр

Вывод:

Следовательно, мы принимаем нулевую гипотезу, т.е. можно предположить что при 5% уровне значимости уровень СРБ в крови не зависит от инфекции вызывающей реактивный артрит.


III) Влияние фактора на СОЭ


Таблица1.3.1.Зависимость СОЭ от инфекции вызвавшей заболевание

1 группа

2 группа

3 группа

4 группа

18 34 10 10
19 4 21 26
42 24 3 6
66 1 7 4
25 35 22 12
10 16 26 25
13 1 12 4
28 36 6 40
3 22 1 52
26 34 18 18
28 50 1 62
38 28 2 40
28 14 4 7
1 64 10 5
52 30 23 3
48 9 2 8
26 32 10 12
14 10 17 5
12 2 15 12
48 2
12
19 12
10
28 37
30
25 18
24
6 58
40
11 10
2
26 15
2
2 2
8
51 10
5
24 10
10
13 10
35
6 34
39
10 38

2 25

30


2


3


46


56


3


11


4


4


24


11


7


1


7


9


20


14


4


12


17


14


5


2


40


30


6


3


26


69


25


3


35


6


8


3


5


1


5


5


7


6


3


3


5


10


15


3


3


38


49


5


3


19


2


3


10


5


3


5


16


5


4


4


10


1


4



После вычислений получаем:

p = 0.0810


Таблица №1.3.2. Дисперсионный анализ по одному признаку.

Компонента дисперсии

Сумма квадратов


Степень свободы


Средний квадрат
Между выборками 1658,2 3 552,744
Остаточная 43145,7 178 242,391
Полная 44803,9 181 -----

p>pкр


Вывод:

Следовательно мы принимаем нулевую гипотезу, т.е. можно предположить что при 5% уровне значимости СОЭ не зависит от инфекции вызывающей реактивный артрит.


IV) Влияние фактора на уровень Фибриногена в крови


Таблица1.4.1.Зависимость уровня фибриногена от инфекции вызвавшей заболевание

1 группа

2 группа

3 группа

4 группа

3.00 5.25 6.75 2.80
4.50 2.00 2.50 3.75
3.50 5.75 3.10 2.50
7.25 2.50 3.00 3.00
4.00 5.50 6.75 3.25
3.25 3.50 4.50 3.50
5.50 3.25 3.50 3.75
4.00 7.25 2.50 5.25
3.25 3.75 2.50 5.10
5.00 3.00 4.50 4.50
3.60 7.00 3.00 12.20
4.25 5.50 2.15 5.75
4.25 4.00 2.00 5.50
3.00 7.50 3.25 3.00
10.20 3.50 4.25 2.50
4.75 4.00 2.25 3.00
4.50 5.50 2.10 3.50
5.00 3.25 4.75 3.00
5.50 2.50 3.50 2.00
5.50 3.00
3.50
3.75 3.50
4.00
3.75 5.00
3.50
4.50 3.30
3.00
5.75 5.00
2.75
3.00 4.25
3.00
4.25 3.00
2.75
3.75 2.00
3.00
5.25 3.25
2.00
6.25 2.50
1.75
2.25 3.25
4.25
3.25 4.30
3.00
2.50 4.25

2.75 4.00

4.00


2.75


4.00


4.50


6.75


3.25


3.75


3.25


4.00


4.25


3.50


2.60


2.75


4.25


2.00


3.75


4.00


4.00


3.00


4.00


3.00


3.20


2.00


8.75


4.00


4.00


5.00


5.00


7.50


4.00


3.25


2.90


3.25


2.90


3.00


2.00


3.00


2.00


2.75


3.00


2.93


4.25


3.00


3.75


4.00


3.00


2.75


2.00


6.00


3.50


3.00


2.50


4.75


3.00


2.75


3.25


2.50


2.00


3.10


2.00


3.25


3.25


3.00


3.25


3.25


4.00



После вычислений получаем:

p =0.5494


Таблица №1.4.2. Дисперсионный анализ по одному признаку.

Компонента дисперсии

Сумма квадратов


Степень свободы


Средний квадрат
Между выборками 4.733 3 1.57754
Остаточная 397.546 178 2.2334
Полная 402.278 181 -----

p>pкр


Вывод:

Следовательно мы принимаем нулевую гипотезу. т.е. можно предположить что при 5% уровне значимости уровень фибриногена в крови не зависит от инфекции вызывающей реактивный артрит.


V) Влияние фактора на показатель ВАШБП


Таблица 1.5.1.Зависимость ВАШБП от инфекции вызвавшей заболевание

1 группа

2 группа

3 группа

4 группа

15 25 45 67
28 25 57 65
63 35 40 50
45 33 33 45
40 65 55 55
80 45 50 27
20 50 55 58
48 25 40 45
75 45 0 30
35 44 45 50
55 100 48 35
85 65 30 20
45 55 25 78
43 64 20 50
45 15 40 60
50 15 20 75
50 40 13 75
56 28 30 30
10 15 5 55
55 25
15
45 17
30
95 70
20
32 45
40
25 55
35
70 40
35
45 10
15
28 5
55
27 25
30
75 10
25
45 2
16
55 35
30
35 60

33 45

5


45


35


73


55


56


43


55


20


53


30


55


55


15


70


60


36


20


38


15


53


12


23


40


52


25


0


70


95


25


10


27


40


20


45


15


17


25


25


10


35


70


12


5


38


5


0


5


65


57


5


0


25


5


20


21


5


10


15


15


23


35


3


10


37


После вычислений получаем:

p = 0.4569


Таблица №1.5.2. Дисперсионный анализ по одному признаку.

Компонента дисперсии

Сумма квадратов


Степень свободы


Средний квадрат
Между выборками 1210.5 3 403.498
Остаточная 82391 178 462.871
Полная 83601.5 181 -----

p>pкр


Вывод:

Следовательно мы принимаем нулевую гипотезу. т.е. можно предположить что при 5% уровне значимости ВАШБП не зависит от инфекции вызывающей реактивный артрит.


VI) Влияние фактора на показатель ВАШСП


Таблица 1.6.1.Зависимость ВАШСП от инфекции вызвавшей заболевание

1 группа

2группа

3группа

4группа

20 35 62 70
53 32 70 78
68 28 40 41
55 40 50 30
43 65 60 60
75 25 56 40
12 70 68 60
40 38 20 42
67 52 10 83
38 40 40 53
80 100 70 70
80 55 50 51
41 50 34 70
65 78 30 80
50 15 32 70
48 38 25 80
45 50 20 75
50 28 39 30
25 30 10 19
40 35
10
55 29
31
89 68
60
60 45
45
25 70
45
70 50
39
50 10
15
50 20
50
55 35
20
55 20
20
60 2
50
55 37
40
40 55

32 50

40


54


47


80


78


65


50


62


25


52


50


30


60


19


70


70


41


30


43


17


60


15


20


41


43


40


5


80


95


35


20


35


40


48


18


18


40


60


10


20


12


10


50


3


0


5


63


58


10


0


80


10


30


20


5


9


10


40


20


33


5


18


40


15



После вычислений получаем:

p = 0.3222


Таблица №1.6.2. Дисперсионный анализ по одному признаку.

Компонента дисперсии

Сумма квадратов


Степень свободы


Средний квадрат
Между выборками 1701.7 3 567.223
Остаточная 85230.9 176 484.266
Полная 86932.5 179 -----

p>pкр


Вывод:

Следовательно мы принимаем нулевую гипотезу. т.е. можно предположить что при 5% уровне значимости ВАШСП не зависит от инфекции вызывающей реактивный артрит.

В связи с тем что не один из показателей активности заболевания а также показатели ВАШ не зависят от инфекции предшествующей реактивному артриту дальнейшее разделение данных на группы можно считать не целесообразным.


2 Множественная линейная регрессия


Общее назначение множественной регрессии (этот термин был впервые использован в работе Пирсона - Pearson. 1908) состоит в анализе связи между несколькими независимыми переменными (называемыми также регрессорами или предикторами) и зависимой переменной.

В общественных и естественных науках процедуры множественной регрессии чрезвычайно широко используются в исследованиях. В общем. множественная регрессия позволяет исследователю задать вопрос (и. вероятно. получить ответ) о том. "что является лучшим предиктором для...".

Общая вычислительная задача. которую требуется решать при анализе методом множественной регрессии. состоит в подгонке прямой линии к некоторому набору точек.В многомерном случае. когда имеется более одной независимой переменной. линия регрессии не может быть отображена в двумерном пространстве. однако она также может быть легко оценена. В общем случае. процедуры множественной регрессии будут оценивать параметры линейного уравнения вида:


Y = a + b1*X1 + b2*X2 + ... + bp*Xp


Регрессионные коэффициенты (или B-коэффициенты) представляют независимые вклады каждой независимой переменной в предсказание зависимой переменной.

Линия регрессии выражает наилучшее предсказание зависимой переменной (Y) по независимым переменным (X). Однако обычно имеется существенный разброс наблюдаемых точек относительно подогнанной прямой. Отклонение отдельной точки от линии регрессии (от предсказанного значения) называется остатком.

Чем меньше разброс значений остатков около линии регрессии по отношению к общему разбросу значений. тем. очевидно. лучше прогноз. Например. если связь между переменными X и Y отсутствует. то отношение остаточной изменчивости переменной Y к исходной дисперсии равно 1.0. Если X и Y жестко связаны. то остаточная изменчивость отсутствует. и отношение дисперсий будет равно 0.0. В большинстве случаев отношение будет лежать где-то между этими экстремальными значениями. т.е. между 0.0 и 1.0. 1.0 минус это отношение называется R-квадратом или коэффициентом детерминации. Это значение непосредственно интерпретируется следующим образом. Значение R-квадрата является индикатором степени подгонки модели к данным (значение R-квадрата близкое к 1.0 показывает. что модель объясняет почти всю изменчивость соответствующих переменных).

Обычно. степень зависимости двух или более предикторов (независимых переменных или переменных X) с зависимой переменной (Y) выражается с помощью коэффициента множественной корреляции R. По определению он равен корню квадратному из коэффициента детерминации. Это неотрицательная величина. принимающая значения между 0 и 1. Для интерпретации направления связи между переменными смотрят на знаки (плюс или минус) регрессионных коэффициентов или B-коэффициентов. Если B-коэффициент положителен. то связь этой переменной с зависимой переменной положительна; если B-коэффициент отрицателен. то и связь носит отрицательный характер. Конечно. если B-коэффициент равен 0. связь между переменными отсутствует.

Прежде всего. как это видно уже из названия множественной линейной регрессии. предполагается. что связь между переменными является линейной. На практике это предположение. в сущности. никогда не может быть подтверждено; к счастью. процедуры множественного регрессионного анализы в незначительной степени подвержены воздействию малых отклонений от этого предположения.

Основное концептуальное ограничение всех методов регрессионного анализа состоит в том. что они позволяют обнаружить только числовые зависимости. а не лежащие в их основе причинные связи.

Важность анализа остатков. Хотя большинство предположений множественной регрессии нельзя в точности проверить. исследователь может обнаружить отклонения от этих предположений. В частности. выбросы (т.е. экстремальные наблюдения) могут вызвать серьезное смещение оценок. "сдвигая" линию регрессии в определенном направлении и тем самым. вызывая смещение регрессионных коэффициентов. Часто исключение всего одного экстремального наблюдения приводит к совершенно другому результату.

Используя Matlab найдем уравнение множественной регрессии для нахождения зависимости ВАШБП и ВАШСП от других показателей а также найдем коэффициент корреляции для определения зависимости между данными выборками и критерий Фишера для определения уровня доверия к полученному уравнению.

Аппарат множественной линейной регрессии реализуется в Matlab при помощи функции regress. Анализ основывается на нахождении коэффициентов b уравнения вида:


y = b0 + b1x1 + b2x2 + b3x3 + ... + bnxn


Методом наименьших квадратов.

Входными данными для программы будут:

Матрица X по одному измерению равная длине вектора Y (ВАШБП, ВАШСП), а по другому количеству переменных, по которым должна предсказываться переменная “Y” плюс один. Ещё один столбик нам понадобиться для того, чтобы matlab мог по нему рассчитать свободный член уравнения b0, расположен он должен быть первым и заполнен единицами. Т.е. 2-й столбец матрицы X это значения Hb, 3-й столбец значения СОЭ, 4-й значения СРБ и 5-й Фибриноген.

Y – значения ВАШ (ВАШБП, ВАШСП)

Функция regress задается следующим образом:

[b.bint.r.rint.stats] = regress(y.X.0.01)

regress(y.X.0.01) – означает что мы будем искать зависимость Y от Х и с вероятностью 99% коэффициенты b будут принадлежать рассчитанным нами доверительным интервалам.

Выходные данные:

Вектор коэффициентов b.

Матрица bint. содержащая 99% доверительные интервалы для b.

Вектор r (длина которого равна длине Y). содержащий остатки. т.е. разницу между исходными значениями Y. и рассчитанными по полученному уравнению регрессии.

Матрицу rint. содержащую значения 99% доверительного интервала для r

Вектор stats. состоящий из следующих 4 характеристик:

первое значение – коэффициент множественной корреляции R2. показывающий связь исходных данных y и рассчитанных по полученному уравнению. другими словами – это коэффициент. показывающий на сколько хорошо «работает» полученное уравнение. Чем ближе это значение к единице. тем лучше.

второе значение – F-статистика (её ещё называют критерием Фишера).

третье значение – p. табличное значение критерия Фишера при данных степенях свободы. Если критерий Фишера выше этого значения. то уравнению можно верить.

четвёртое значение – оценка дисперсии ошибок

I) рассчитаем уравнение множественной линейной регрессии для ВАШБП

После выполнения расчетов для ВАШБП получили следующие переменные:


b

bint

r

rint

42.1283 1.8780 82.3786 -21.9027 -73.5518 29.7465
-0.1015 -0.3855 0.1824 -10.4547 -62.2125 41.3031
0.2908 -0.1418 0.7233 14.2154 -36.8404 65.2711
0.0326 -0.0177 0.0829 -18.2805 -68.5417 31.9806
0.7105 -3.0313 4.4524 1.2654 -50.5643 53.0951



45.7534 -5.3326 96.8394



-14.6868 -66.0309 36.6572



7.2762 -44.4701 59.0225



44.4133 -6.6808 95.5074



-5.6498 -57.3639 46.0644



10.6615 -40.5673 61.8902



41.4956 -9.2270 92.2183



5.2307 -46.4949 56.9564



14.2893 -37.3388 65.9175



-16.9757 -64.8977 30.9463



-1.7014 -52.3459 48.9432



11.3454 -40.2887 62.9794



18.1895 -33.3589 69.7380



-24.8022 -75.9894 26.3849



4.1667 -47.1548 55.4881



7.4767 -44.4040 59.3575



53.4995 2.7606 104.2384



-8.4099 -60.1502 43.3304



-8.1185 -59.1222 42.8851



34.8356 -16.4892 86.1604



7.3277 -44.1261 58.7815



-1.1282 -52.7224 50.4660



-22.7002 -73.0690 27.6685



35.3231 -15.4605 86.1067



12.1224 -39.4234 63.6682



23.2364 -28.4547 74.9275



2.0986 -49.7444 53.9416



3.3639 -48.4351 55.1629



-35.4930 -86.7043 15.7183



15.7701 -35.8987 67.4389



1.9511 -49.4156 53.3179



1.2643 -37.9653 40.4940



2.8817 -47.4120 53.1755



27.5456 -23.6290 78.7202



8.0058 -43.8027 59.8144



26.1533 -25.0770 77.3836



-11.6135 -63.2959 40.0690



14.2769 -37.5125 66.0664



-5.0043 -56.8847 46.8760



21.7829 -29.7810 73.3468



27.4824 -23.6602 78.6249



-15.3203 -66.5536 35.9129



36.8308 -14.3416 88.0032



21.9905 -29.7372 73.7183



-0.3487 -52.1580 51.4607



-14.4565 -65.3638 36.4507



2.2326 -49.4426 53.9079



-23.0332 -74.5239 28.4574



16.0495 -35.4532 67.5522



-21.3666 -72.7803 30.0472



-5.9001 -57.5397 45.7395



-13.5376 -63.5547 36.4796



7.2019 -44.2296 58.6334



-7.2965 -59.0702 44.4772



-31.3225 -82.2665 19.6215



24.7206 -26.5090 75.9502



12.0085 -29.4721 53.4890



-14.3362 -66.1232 37.4507



-19.4698 -71.0521 32.1125



-16.1754 -66.8306 34.4799



8.0639 -43.7532 59.8809



-12.2995 -64.1466 39.5476



13.9893 -37.7707 65.7493



-16.2954 -67.9216 35.3308



-12.3199 -64.0425 39.4027



-4.7723 -56.3885 46.8438



-7.6406 -59.3361 44.0548



-20.2521 -71.7464 31.2422



2.3469 -49.4690 54.1627



39.2104 -11.8405 90.2614



-16.6829 -68.1490 34.7832



-27.6404 -79.0945 23.8136



0.6820 -50.1330 51.4970



-30.4212 -81.9717 21.1294



-31.1453 -82.5884 20.2978



-24.1908 -75.6191 27.2374



18.2420 -33.1537 69.6377



7.2360 -43.3212 57.7931



-25.8891 -77.5028 25.7247



-29.9523 -81.4193 21.5148



-13.5789 -65.3925 38.2347



-23.7983 -75.2594 27.6627



-9.3176 -61.0193 42.3841



-12.2236 -64.0984 39.6512



-26.7522 -78.2955 24.7910



-19.1908 -70.7002 32.3185



-15.5540 -67.2924 36.1844



-21.6260 -72.8683 29.6163



-11.8236 -62.7620 39.1148



5.3410 -46.3573 57.0393



-26.0752 -77.4141 25.2636



-23.8405 -75.5436 27.8627



9.1271 -42.3050 60.5592



-22.0750 -73.2466 29.0966



-19.3643 -70.7356 32.0071



-5.2939 -57.0079 46.4201



-3.9155 -55.2281 47.3971



6.0662 -45.1461 57.2784



20.6750 -30.6746 72.0246



8.5343 -43.3618 60.4303



21.8225 -29.5504 73.1954



-19.4300 -70.1039 31.2439



5.9953 -45.8101 57.8006



2.0391 -49.2100 53.2883



42.8692 -7.4532 93.1915



24.0227 -27.3822 75.4275



21.6036 -29.8883 73.0954



7.9463 -42.0260 57.9186



-24.6224 -75.8610 26.6162



-18.1688 -69.9114 33.5739



-3.0542 -54.5917 48.4834



-7.0589 -58.7440 44.6261



-14.8646 -66.5830 36.8538



-3.5953 -55.2165 48.0260



-16.8888 -68.7256 34.9480



24.7304 -26.4446 75.9054



9.0011 -42.8700 60.8722



1.6549 -48.7937 52.1035



4.7382 -46.8959 56.3724



-24.8120 -76.4793 26.8554



-24.7124 -76.2026 26.7778



-10.3635 -61.9389 41.2118



-24.0183 -75.5760 27.5393



-31.1297 -82.7024 20.4430



-10.2047 -61.4757 41.0663



13.1655 -38.3588 64.6897



4.6407 -47.1058 56.3873



9.3834 -40.9519 59.7187



19.2757 -32.2076 70.7590



8.6060 -43.1614 60.3735



-0.6029 -52.3315 51.1257



15.3004 -35.5974 66.1982



11.9546 -39.5044 63.4137



22.3373 -29.2132 73.8877



7.2462 -44.4642 58.9567



-28.6600 -80.0657 22.7457



5.0618 -46.6397 56.7633



20.8124 -30.2927 71.9175



-1.2405 -52.8524 50.3713



-4.0754 -55.6256 47.4747



-13.1297 -64.9991 38.7397



-1.0570 -52.6293 50.5152



-8.9762 -60.6462 42.6938



-19.1095 -70.6665 32.4476



-7.3882 -59.1979 44.4216



-31.7918 -83.1929 19.6092



32.5654 -18.8114 83.9423



25.8476 -25.6974 77.3926



17.2462 -34.3729 68.8654



12.7771 -38.9022 64.4564



17.9586 -33.6785 69.5957



-12.4963 -64.2189 39.2263



28.2903 -23.0283 79.6090



-1.9287 -53.1104 49.2530



-20.1486 -70.8255 30.5284



12.7423 -39.0574 64.5419



-33.4366 -79.4435 12.5702



-28.3399 -79.4332 22.7535



45.9715 -4.3766 96.3197



17.6894 -33.9998 69.3786



28.8293 -22.6317 80.2902



45.0664 -5.5918 95.7246



38.6743 -12.3544 89.7029



-1.9044 -53.7565 49.9477



20.3493 -31.0914 71.7901



-17.8734 -69.5782 33.8313



-6.5057 -57.7216 44.7103



-23.8741 -75.3281 27.5800



-0.4543 -52.0199 51.1113



-9.0759 -59.6117 41.4599



6.4047 -45.2060 58.0155



-14.4330 -66.1409 37.2749



19.2787 -31.6829 70.2403



-3.4277 -54.6947 47.8392



-10.2520 -61.6535 41.1494



-28.7033 -80.0804 22.6737



-13.9223 -64.7794 36.9348

stats = 0.1569; 8.2341; 0.0000; 398.2227;


Следовательно наше уравнение будет выглядеть следующим образом:

ВАШБП= 42.1283 – 0.1015 Hb + 0.2908 СОЭ + 0.0326 СРБ +0.7105 Фибриноген

R2=0.1569 - 15.69% от исходной изменчивости могут быть объяснены. а 84.31% остаточной изменчивости остаются необъясненными.

F=8.2341

p= 0

F>p следовательно полученному уравнению можно верить с вероятностью в 99%

Далее произведем анализ остатков и исключим из выборки экстремальные наблюдения. а затем заново рассчитаем уравнение множественной регрессии.

После вычислений получаем новые переменные и новое уравнение:


b

bint

r

rint

68.6128 42.6275 94.5981 -9.0527 -37.3058 19.2004
-0.3179 -0.4996 -0.1362 12.6863 -14.9838 40.3564
0.2660 0.0000 0.5319 4.7180 -23.6375 33.0735
0.0363 0.0073 0.0653 -7.8665 -35.8002 20.0673
0.5753 -1.9305 3.0812 8.4230 -19.8230 36.6691



-3.9845 -32.2508 24.2819



6.5985 -21.2655 34.4624



9.6122 -18.6033 37.8276



-10.2044 -35.0328 14.6240



2.7871 -24.8193 30.3934



17.2257 -10.7195 45.1709



5.4367 -22.5254 33.3988



9.2325 -19.0964 37.5614



-7.7024 -35.9560 20.5512



-1.2661 -28.9378 26.4056



14.4948 -13.4018 42.3914



7.5633 -20.5114 35.6379



-17.4951 -44.6647 9.6746



17.8317 -9.9962 45.6596



5.8425 -22.4781 34.1631



9.3237 -18.9007 37.5480



3.3445 -24.6908 31.3798



-0.8088 -21.5731 19.9554



8.6299 -18.5165 35.7762



9.9962 -18.2684 38.2609



-6.5170 -34.7503 21.7163



17.5223 -10.5451 45.5896



-2.6598 -31.0639 25.7443



-4.7289 -32.6182 23.1603



1.1007 -27.2539 29.4553



-15.4184 -42.9371 12.1002



1.9826 -26.2594 30.2246



14.9612 -12.9779 42.9002



0.3910 -27.7965 28.5784



-11.5190 -38.0908 15.0528



4.1080 -23.9282 32.1441



-2.3669 -30.6874 25.9536



5.7176 -16.0196 27.4548



-11.7715 -40.0204 16.4775



-11.6867 -39.7871 16.4137



-11.2514 -38.7594 16.2566



14.1006 -14.0387 42.2399



-7.9019 -36.2419 20.4382



18.4706 -9.5140 46.4553



-13.1757 -41.2401 14.8888



-5.9183 -34.1797 22.3430



1.5930 -26.5748 29.7608



-6.1504 -34.3885 22.0877



-11.9710 -40.0136 16.0715



4.7517 -23.5772 33.0805



-7.6354 -35.6957 20.4249



-2.5114 -30.1466 25.1238



-17.8750 -45.7099 9.9598



4.9776 -22.4033 32.3584



-9.2707 -37.5638 19.0224



-15.6411 -43.5795 12.2973



-2.0349 -30.2891 26.2193



-7.5352 -35.9057 20.8354



-12.8750 -40.8787 15.1286



-9.0399 -37.2915 19.2118



-14.1604 -41.7111 13.3903



13.3652 -14.6783 41.4087



-17.2193 -45.0403 10.6016



19.0244 -8.6055 46.6542



-11.5693 -39.3592 16.2207



-19.6532 -47.3414 8.0351



-0.6843 -28.9330 27.5644



4.5464 -23.3429 32.4356



16.7275 -10.8084 44.2634



10.5922 -17.7215 38.9060



-14.8775 -42.1330 12.3780



6.5270 -21.7825 34.8365



2.7666 -25.1568 30.6900



8.5476 -18.2907 35.3860



-13.1649 -41.3581 15.0284



-1.8218 -29.9553 26.3117



-6.6755 -34.9033 21.5523



-9.8041 -38.0180 18.4097



4.9947 -23.1450 33.1345



-12.3110 -40.5921 15.9700



12.6185 -15.6296 40.8666



0.0386 -27.2984 27.3755



6.3388 -21.8537 34.5312



-10.6292 -38.7183 17.4599



-13.4573 -41.1993 14.2847



14.4516 -13.5325 42.4357



4.6315 -23.6516 32.9145



14.3512 -12.5735 41.2759



12.0414 -16.1382 40.2210



0.5380 -27.7541 28.8300



20.0878 -7.0899 47.2654



19.1331 -8.6111 46.8774



8.7274 -19.4685 36.9234



5.4167 -22.8281 33.6615



0.3107 -27.8741 28.4954



3.1306 -24.9738 31.2350



-8.6352 -36.9898 19.7193



-2.6414 -30.7999 25.5171



-2.4350 -30.6568 25.7869



-14.3378 -42.3473 13.6717



-1.8313 -30.1660 26.5034



18.7274 -9.1685 46.6234



14.9255 -13.1336 42.9846



-11.4913 -39.6756 16.6930



-4.2104 -32.0433 23.6225



-18.6544 -45.9305 8.6218



15.6565 -12.4643 43.7773



1.5669 -26.8071 29.9410



-11.1319 -39.3470 17.0832



-7.9681 -35.8440 19.9077



3.3454 -24.8477 31.5384



-6.2493 -33.6830 21.1844



14.9947 -12.9265 42.9160



-8.0405 -36.2726 20.1915



16.5496 -10.9807 44.0799



-4.8517 -32.7475 23.0440



-9.6016 -37.5465 18.3433



-14.1529 -41.6157 13.3098

stats = 0.5231; 30.9919; 0; 118.0091;

ВАШБП= 68.6128 – 0.3179 Hb + 0.2660 СОЭ + 0.0363 СРБ +0.5753 Фибриноген

R2=0.5231 - 52.31% от исходной изменчивости могут быть объяснены. а 47.69% остаточной изменчивости остаются необъясненными.

F=30.9919

p= 0

F>p следовательно полученному уравнению можно верить.

Исключая и далее экстремальные наблюдения. возможно построить уравнение объясняющее еще больший процент изменчивости переменной Y (ВАШБП).

Построенное уравнение показывает что наилучшим предсказывающим фактором (предиктором) для ВАШБП является Фибриноген.


II) рассчитаем уравнение множественной линейной регрессии для ВАШСП


После выполнения расчетов для ВАШСП получаем:


b

bint

r

rint

34.4446 -5.3696 74.2588 -22.0047 -73.0438 29.0343
-0.0248 -0.3063 0.2567 9.4034 -41.7566 60.5635
0.4860 0.0556 0.9164 11.0867 -39.4013 61.5746
0.0269 -0.0230 0.0768 -18.9427 -68.5986 30.7132
0.6296 -3.0822 4.3415 -2.8132 -54.0347 48.4083



36.8501 -13.8945 87.5948



-28.5283 -79.0411 21.9845



-7.5443 -58.6841 43.5956



32.6494 -18.1678 83.4666



-9.1522 -60.2423 41.9378



30.8460 -19.4622 81.1541



27.5125 -22.9630 77.9879



-6.6522 -57.7655 44.4612



32.0518 -18.6502 82.7538



-22.7943 -70.0647 24.4762



-14.5034 -64.4720 35.4653



-1.6638 -52.7402 49.4126



7.6126 -43.4318 58.6569



-15.1416 -65.8714 35.5883



-20.8158 -71.3764 29.7448



12.0866 -39.1543 63.3276



40.4712 -10.1110 91.0534



13.5493 -37.5432 64.6418



-12.5814 -62.9502 37.7874



31.2113 -19.5904 82.0130



3.8039 -47.0594 54.6671



16.1928 -34.6959 67.0816



-6.6698 -56.6177 43.2782



7.4368 -43.2022 58.0757



21.2822 -29.5356 72.1001



19.1169 -32.0283 70.2620



2.5209 -48.7140 53.7558



-1.4753 -52.6685 49.7179



-8.3178 -59.3686 42.7330



20.6240 -30.3657 71.6137



11.7056 -39.0037 62.4150



2.6396 -36.0613 41.3405



12.9805 -36.6568 62.6177



31.1705 -19.3079 81.6490



11.0245 -40.1560 62.2050



27.6597 -22.9260 78.2454



-10.3585 -61.4439 40.7269



6.4906 -44.7533 57.7345



10.9088 -40.3295 62.1471



-6.3570 -57.4778 44.7639



27.4574 -23.0693 77.9842



-17.5149 -68.1171 33.0872



33.0984 -17.5583 83.7551



26.4393 -24.5970 77.4755



0.3345 -50.8698 51.5388



-6.0534 -56.4208 44.3141



3.7625 -47.3066 54.8317



-25.3221 -76.1620 25.5178



19.5298 -31.3220 70.3816



-20.8371 -71.6505 29.9762



-12.9534 -63.9315 38.0246



-20.4564 -69.7872 28.8745



-7.2787 -58.1104 43.5530



3.6446 -47.5376 54.8268



-30.3284 -80.6854 20.0286



28.0814 -22.4730 78.6359



3.9765 -37.0488 45.0017



-11.0738 -62.2851 40.1374



-14.0776 -65.1176 36.9624



-17.3640 -67.3964 32.6683



3.6203 -47.6074 54.8481



13.6091 -37.5453 64.7636



-17.4134 -68.5347 33.7079



-14.4674 -65.4316 36.4968



4.9588 -46.2466 56.1643



25.0177 -25.7733 75.8087



-25.8147 -76.5983 24.9690



-15.9546 -67.0693 35.1600



-22.5584 -73.2294 28.1126



-25.9105 -76.7866 24.9657



10.7575 -39.4114 60.9264



-37.3978 -88.1530 13.3575



-34.2591 -85.0080 16.4898



-28.4395 -79.1662 22.2873



7.1019 -43.8000 58.0038



-1.1487 -51.1280 48.8305



-25.1404 -76.1545 25.8736



-33.8536 -84.6079 16.9008



35.4639 -15.3332 86.2611



-23.3846 -74.2392 27.4701



-3.8124 -54.9315 47.3066



-18.0134 -69.2128 33.1859



-30.1234 -80.9801 20.7333



-24.4395 -75.2474 26.3685



-25.1041 -76.0837 25.8755



-0.6512 -51.4711 50.1687



-16.2161 -66.5045 34.0724



-1.5388 -52.6389 49.5613



-29.2822 -79.9380 21.3737



-20.0506 -71.2057 31.1045



7.1426 -43.6939 57.9791



-19.7381 -70.3403 30.8641



-16.6074 -67.4100 34.1953



-2.1240 -53.2381 48.9901



-19.1491 -69.7304 31.4321



7.7141 -42.8786 58.3068



12.8733 -37.9695 63.7160



-16.4096 -67.6248 34.8056



37.0681 -13.3471 87.4834



-15.4789 -65.6088 34.6509



7.4797 -43.7139 58.6732



-9.8804 -60.4900 40.7292



34.3137 -15.6535 84.2810



6.7098 -44.2910 57.7105



9.9425 -41.0808 60.9658



9.2656 -40.0972 58.6285



-32.9906 -83.4306 17.4494



0.1865 -51.0727 51.4458



-0.4577 -51.3953 50.4799



-10.3484 -61.4071 40.7103



-3.4172 -54.6044 47.7701



1.6651 -49.3512 52.6814



-10.0063 -61.3041 41.2914



15.1540 -35.5594 65.8675



3.0794 -48.2116 54.3703



5.5574 -44.2786 55.3934



11.1460 -39.8436 62.1357



-30.2489 -81.1894 20.6917



-13.1520 -64.1954 37.8915



-3.4228 -54.4306 47.5849



-17.7521 -68.8004 33.2962



-35.8769 -86.7118 14.9581



-14.4932 -65.1229 36.1365



-0.1188 -51.1060 50.8683



3.7897 -47.3559 54.9354



21.9194 -27.6652 71.5039



26.7776 -23.9676 77.5227



5.5205 -45.6555 56.6965



13.3664 -37.6893 64.4221



13.7147 -36.6026 64.0320



9.4851 -41.3890 60.3592



29.1797 -21.6240 79.9835



-15.7831 -66.8133 35.2470



-22.7078 -73.6132 28.1977



-4.3393 -55.4381 46.7594



37.4241 -12.6945 87.5427



16.4062 -34.4985 67.3108



0.1738 -50.7715 51.1190



-7.8769 -59.1793 43.4256



-13.8921 -64.7886 37.0044



-8.0860 -59.1509 42.9788



-17.1031 -68.0762 33.8699



-4.4151 -55.6334 46.8032



-30.9607 -81.7690 19.8475



32.0094 -18.7677 82.7865



31.7837 -19.0185 82.5860



5.2169 -45.8980 56.3317



-5.0515 -56.1756 46.0727



18.5197 -32.4990 69.5385



-5.7714 -56.9352 45.3925



25.2208 -25.5482 75.9898



-12.6104 -63.1297 37.9090



21.7828 -28.2603 71.8259



10.2245 -40.9908 61.4398



-9.4350 -55.3153 36.4453



-5.0919 -55.8748 45.6909



32.6112 -17.5312 82.7536



44.5121 -5.9272 94.9515



35.8486 -14.8237 86.5210



43.8482 -6.2251 93.9214



35.3981 -15.1079 85.9040



-5.3886 -56.6237 45.8465



-19.5086 -70.3569 31.3398



-28.7582 -79.6589 22.1426



-8.0440 -58.6477 42.5597



9.2664 -41.7655 60.2984



-2.1800 -53.1386 48.7786



-8.6818 -58.6147 41.2510



5.6651 -45.3400 56.6702



-18.4257 -69.4724 32.6210



12.4336 -38.0096 62.8769



-15.3049 -65.8878 35.2780



-17.3295 -68.1602 33.5013



-2.4444 -53.5238 48.6351



-13.7255 -64.1018 36.6508

stats = 0.2171 12.1355 0.0000 388.8866

Следовательно наше уравнение будет выглядеть следующим образом:

ВАШСП= 34.4446 – 0.0248 Hb + 0.4860 СОЭ + 0.0269 СРБ +0.6 296Фибриноген

R2=0.2171 - 21.71% от исходной изменчивости могут быть объяснены

F=12.1355

p= 0

F>p следовательно полученному уравнению можно верить.

Далее произведем анализ остатков и исключим из выборки экстремальные наблюдения. а затем заново рассчитаем уравнение множественной регрессии.

Новое уравнение будет выглядеть следующим образом:

ВАШСП= 32.6943 – 0.0638 Hb + 0.4418 СОЭ + 0.0269 СРБ +1.9637 Фибриноген

stats =0.5550; 34.9170; 0; 111.2369;

R2=0.5550 - 55.50% от исходной изменчивости могут быть объяснены

F=34.9170

p= 0

F>p следовательно полученному уравнению можно верить.

Вывод: исходя из полученного уравнения, можно сделать вывод о том, что наилучшим предсказывающим фактором для ВАШСП является фибриноген.

Зависимость ВАШБП и ВАШСП от показателей активности в динамике

Разобьем наши данные на три группы. В первую группу войдут данные полученные до лечения. во вторую данные после 2 месяцев лечения а в третью после трех месяцев.

Так как ранее мы уже проводили исследование на проверку распределения выборок то мы можем воспользоваться параметрическим методом дисперсионного анализа для проверки различий средних. Проверка необходима для подтверждения целесообразности разделения данных, если это подтвердится, то затем мы рассчитаем для каждой группы уравнение зависимости ВАШСП и ВАШБП от показателей активности заболевания.

3 Дисперсионный анализ


Таблица 2.1.1. Зависимость Hb от стадии лечения

1 группа

2 группа

3 группа

124 125 134
124 115 104
110 118 130
93 117 136
133 114 150
129 123 136
149 150 105
122 125 146
145 103 146
124 142 138
99 150 158
125 140 154
137 94 141
156 129 134
148 156 150
138 141 150
144 148 114
133 141 109
145 135 157
121 150 161
126 150 133
128 127 166
120 158 168
150 131 136
123 162 142
150 121 118
160 144 126
139 160 140
152 140 101
146 110 123
142 135 117
137 106 151
148 126 142
130 154 144
152 140 120
126 110 107
118 116 114
140 136 124
166 122 120
128 150 115
165 112
143 124
132 137
130 130
126 160
166 150
168

128

126

114

142

156

170

119

128

163

135

120

120

106

130

156

114

137

142

121

140

121

136

125

138

150

154

127

153

120

171

128

124

130

127

130

138

122

160

104

121

131

127

109

158

132

134

164


После вычислений получаем:

p =0.7913

Запишем выходные данные в таблицу дисперсионного анализа


Таблица №2.1.2. Дисперсионный анализ по одному признаку.

Компонента дисперсии

Сумма квадратов


Степень свободы


Средний квадрат
Между выборками 136,7 2 68,326
Остаточная 51587,5 177 291,455
Полная 51724,2 179 -----

p>pкр


Вывод:

Следовательно мы принимаем нулевую гипотезу, т.е. можно предположить что при 5% уровне значимости уровень гемоглобина в крови не зависит от стадии лечения.

Таблица 2.2.1. Зависимость СОЭ от стадии лечения

1 группа

2 группа

3 группа

18 14 5
19 4 10
42 12 15
66 17 3
25 14 3
10 5 38
13 2 49
28 40 5
3 30 3
26 6 19
28 3 2
38 26 3
28 69 10
1 25 5
52 3 3
48 35 5
26 6 16
14 3 5
12 5 4
48 1 4
19 5 10
28 5 1
25 7 4
6 6 15
11 3 2
26 10 10
2 2 10
51 2 10
24 12 34
13 37 38
6 18 25
10 58 2
2 10 10
30 4 17
2 10 15
3 23 8
46 12 5
56 5 10
3 12 35
11 12 39
4 10
4 30
24 24
11 40
7 2
1 2
7

9

20

34

4

24

1

35

16

1

36

22

34

50

28

14

64

30

9

32

10

21

3

7

22

26

12

6

1

18

1

2

10

26

6

4

12

25

4

40

52

18

62

40

7

5

3

8


После вычислений получаем:

p = 0.0219

Запишем выходные данные в таблицу дисперсионного анализа


Таблица №2.2.2. Дисперсионный анализ по одному признаку.

Компонента дисперсии

Сумма квадратов


Степень свободы


Средний квадрат
Между выборками 136,7 2 68,326
Остаточная 51587,5 177 291,455
Полная 51724,2 179 -----

p<pкр


Вывод:

Следовательно мы отвергаем нулевую гипотезу, т.е. можно предположить что при 5% уровне значимости СОЭ зависит от стадии лечения. Используя функцию multcompare, целесообразно определить для какой пары выборок средние арифметические значения имеют статистически значимое различие. Для проверки такой параметрической гипотезы используется процедура множественного сравнения. При проверке простой параметрической гипотезы (нулевой гипотезы) о равенстве средних одной группы выборок по отношению к другой по статистике t необходимо задать уровень значимости Регрессионный анализ корелляции субъективного ВАШ и лабораторных признаков активности реактивного артрита, определяющий критическое значение статистикиРегрессионный анализ корелляции субъективного ВАШ и лабораторных признаков активности реактивного артрита. ПримемРегрессионный анализ корелляции субъективного ВАШ и лабораторных признаков активности реактивного артрита равным 0,05. Это означает, что в 5% случаев будет неверно отвергнута нулевая гипотеза.

При увеличении групп выборок, увеличивается число проверяемых гипотез.

При использовании простой параметрической гипотезы по статистике t, уровень значимости Регрессионный анализ корелляции субъективного ВАШ и лабораторных признаков активности реактивного артритабудет применяться к каждой гипотезе отдельно, что повлечет к росту вероятности неверно отвергнуть нулевую гипотезу пропорционально количеству выполненных проверок. Т.е., неверно определить значимое отличие выборочных средних. Процедура множественного сравнения обеспечивает заданный уровень значимости для каждой проверки.

Выходной параметр с представляет результаты множественного сравнения в виде матрицы из 5 столбцов. Срока матрицы с соответствуют результатам проверки одной параметрической гипотезы. Таким образом, каждая строка с соответствует одной паре выборок. Первые два значения в строке с показывают номера сравниваемых выборок, пятый - величину разности средних арифметических сравниваемых выборок, четвертый и третий столбцы - 95% доверительный интервал полученной разности средних арифметических.


Таблица 2.2.3 Различия между средними для СОЭ

группы

группы

Нижняя граница доверительного интервала

Разница средних арифметических

Верхняя граница доверительного интервала

1 группа 2 группа -1.2331 5.3127 11.8585
1 группа 3 группа 0.5745 7.4420 14.3096
2 группа 3 группа -5.7354 2.1293 9.9941

Полученные значения показывают, что значимая разница средних арифметических наблюдается между 1 и 3 группой, величина их разности равна 7.4420, 95% доверительный интервал полученной разности средних арифметических составил [0,5745, 14.3096]. Различия считаются значимыми, если в доверительный интервал не попало нулевое значение. Т.е. средние арифметические выборок статистически значимо отличаются друг от друга, для Регрессионный анализ корелляции субъективного ВАШ и лабораторных признаков активности реактивного артрита.

Отобразим графически значения средних арифметических и их доверительных интервалов. Два выборочных средних значимо отличаются, если их доверительные интервалы не пересекаются на графике. При наложении границ доверительных интервалов двух средних арифметических, различие между ними можно считать статистически незначимым.


Регрессионный анализ корелляции субъективного ВАШ и лабораторных признаков активности реактивного артрита


Таблица 2.3.1. Зависимость СРБ от стадии лечения

1 группа

2 группа

3 группа

0 0 0
6 0 0
96 0 0
192 0 0
0 6 0
0 0 96
0 0 48
0 192 0
0 48 0
0 0 48
48 0 0
0 192 0
12 768 6
0 6 0
384 0 0
192 96 0
12 24 0
48 6 0
0 0 0
96 0 0
0 0 0
48 0 0
0 0 0
12 0 0
6 0 0
6 0 0
0 0 0
96 0 0
48 0 12
6 0 96
0 0 0
0 48 0
0 0 0
0 0 48
0 0 0
0 12 0
768 0 0
96 0 0
0 0 48
0 0 48
0 0
0 96
0 96
12 48
0 0
0 0
6

0

6

6

0

48

0

6

6

0

12

0

0

192

0

6

48

6

0

0

0

0

0

0

12

12

6

0

0

48

0

0

0

0

0

0

96

0

0

0

48

0

384

48

0

0

0

0


После вычислений:

p = 0.4019

Запишем выходные данные в таблицу дисперсионного анализа


Таблица №2.3.2. Дисперсионный анализ по одному признаку.

Компонента дисперсии

Сумма квадратов


Степень свободы


Средний квадрат
Между выборками 16791,5 2 8395,73
Остаточная 1621687,7 177 9162,08
Полная 1638479,2 179 -----

p>pкр


Вывод:

Следовательно мы принимаем нулевую гипотезу, т.е. можно предположить что при 5% уровне значимости уровень СРБ в крови не зависит от стадии лечения.


Таблица 2.4.1. Зависимость фибриногена от стадии лечения

1 группа

2 группа

3 группа

3,00 4,00 3,75
4,50 4,00 4,00
3,50 3,00 3,00
7,25 4,00 2,75
4,00 3,00 2,00
3,25 3,20 6,00
5,50 2,00 3,50
4,00 8,75 3,00
3,25 4,00 2,50
5,00 4,00 4,75
3,60 5,00 3,00
4,25 5,00 2,75
4,25 7,50 3,25
3,00 4,00 2,50
10,20 3,25 2,00
4,75 2,90 3,10
4,50 3,25 2,00
5,00 2,90 3,25
5,50 3,00 3,25
5,50 2,00 3,00
3,75 3,00 3,25
3,75 2,00 3,25
4,50 3,00 4,00
5,75 2,93 3,00
3,00 4,25 2,00
4,25 3,25 3,25
3,75 2,50 2,50
5,25 3,00 3,25
6,25 3,50 4,30
2,25 5,00 4,25
3,25 3,30 4,00
2,50 5,00 2,25
2,75 4,25 2,10
4,00 2,00 4,75
2,75 3,25 3,50
4,00 4,25 3,00
4,50 3,50 2,00
6,75 3,00 1,75
3,25 2,00 4,25
3,75 3,50 3,00
3,25 4,00
4,00 3,50
4,25 3,00
3,50 2,75
2,60 3,00
2,75 2,75
4,25

2,00

3,75

5,25

2,00

5,75

2,50

5,50

3,50

3,25

7,25

3,75

3,00

7,00

5,50

4,00

7,50

3,50

4,00

5,50

6,75

2,50

3,10

3,00

6,75

4,50

3,50

2,50

2,50

4,50

3,00

2,15

2,80

3,75

2,50

3,00

3,25

3,50

3,75

5,25

5,10

4,50

12,20

5,75

5,50

3,00

2,50

3,00


p = 0.0003

Запишем выходные данные в таблицу дисперсионного анализа


Таблица №2.4.2. Дисперсионный анализ по одному признаку.

Компонента дисперсии

Сумма квадратов


Степень свободы


Средний квадрат
Между выборками 34,806 2 17,4029
Остаточная 365,662 177 2,0659
Полная 400,467 179 -----

p<pкр


Вывод:

Следовательно мы отвергаем нулевую гипотезу, т.е. можно предположить что при 5% уровне значимости фибриноген зависит от стадии лечения. Используя функцию multcompare, целесообразно определить для какой пары выборок средние арифметические значения имеют статистически значимое различие.


Таблица 2.4.3 Различия между средними для фибриногена

группы

группы

Нижняя граница доверительно интервала

Разница средних арифметических

Верхняя граница доверительного интервала

1 группа 2 группа -0.1003 0.6532 1.4067
1 группа 3 группа 0.2579 1.0484 1.8389
2 группа 3 группа -0.5101 0.3952 1.3005

Полученные значения показывают, что значимая разница средних арифметических наблюдается между 1 и 3 группой, величина их разности равна 1.0484, 95% доверительный интервал полученной разности средних арифметических составил [0,2579, 1.8389]. Т.е. средние арифметические выборок статистически значимо отличаются друг от друга, для Регрессионный анализ корелляции субъективного ВАШ и лабораторных признаков активности реактивного артрита.

Отобразим графически значения средних арифметических и их доверительных интервалов.


Регрессионный анализ корелляции субъективного ВАШ и лабораторных признаков активности реактивного артрита


Таблица 2.5.1. Зависимость ВАШБП от стадии лечения

1 группа

2 группа

3 группа

15 36 5
28 20 38
63 38 5
45 15 0
40 53 5
80 12 65
20 23 57
48 40 5
75 52 0
35 25 25
55 0 5
85 70 20
45 95 21
43 25 5
45 10 10
50 27 15
50 40 15
56 45 23
10 15 35
55 17 3
45 25 10
95 25 37
32 10 7
25 35 10
70 12 5
45 28 25
28 15 10
27 25 2
75 17 35
45 70 60
55 45 45
35 55 20
33 40 13
5 25 30
45 20 5
35 40 55
73 75 30
55 30 25
56 55 16
43 15 30
55 30
20 20
53 40
30 35
55 35
55 15
15

70

60

25

25

35

33

65

45

50

25

45

44

100

65

55

64

15

15

40

45

57

40

33

55

50

55

40

0

45

48

30

67

65

50

45

55

27

58

45

30

50

35

20

78

50

60

75


После вычислений получаем:

p = 4.8659e-011

Запишем выходные данные в таблицу дисперсионного анализа


Таблица №2.5.2. Дисперсионный анализ по одному признаку.

Компонента дисперсии

Сумма квадратов


Степень свободы


Средний квадрат
Между выборками 19350,2 2 9675,1
Остаточная 62873,6 177 355,22
Полная 82223,8 179 -----

p<pкр


Вывод:

Следовательно мы отвергаем нулевую гипотезу, т.е. можно предположить что при 5% уровне значимости ВАШБП зависит от стадии лечения. Используя функцию multcompare, целесообразно определить для какой пары выборок средние арифметические значения имеют статистически значимое различие.


Таблица 2.5.3 Различия между средними для ВАШБП

группы

группы

Нижняя граница доверительно интервала

Разница средних арифметических

Верхняя граница доверительного интервала

1 группа 2 группа 3,7045 13,5851 23,4657
1 группа 3 группа 15,0439 25,4101 35,7763
2 группа 3 группа -0.0464 11,8250 23,6964

Полученные значения показывают, что значимая разница средних арифметических наблюдается между 1 и 2 группой и 1 и 3 группой.

Отобразим графически значения средних арифметических и их доверительных интервалов.


Регрессионный анализ корелляции субъективного ВАШ и лабораторных признаков активности реактивного артрита


Таблица 2.6.1. Зависимость ВАШСП от стадии лечения

1 группа

2 группа

3 группа

20 41 10
53 30 50
68 43 3
55 17 0
43 60 5
75 15 63
12 20 58
40 41 10
67 43 0
38 40 80
80 5 10
80 80 30
41 95 20
65 35 5
50 20 9
48 35 10
45 40 40
50 48 20
25 18 33
40 18 5
55 40 18
89 60 40
60 10 15
25 20 10
70 12 20
50 28 35
50 30 20
55 35 2
55 29 37
60 68 55
55 45 50
40 70 25
32 50 20
40 34 39
54 30 10
47 32 50
80 75 20
78 30 20
65 19 50
50 10 40
62 31
25 60
52 45
50 45
30 39
60 15
19

70

70

35

32

28

40

65

25

70

38

52

40

100

55

50

78

15

38

50

62

70

40

50

60

56

68

20

10

40

70

50

70

78

41

30

60

40

60

42

83

53

70

51

70

80

70

80


После вычислений получаем:

p =1.0573e-011

Запишем выходные данные в таблицу дисперсионного анализа

Таблица №2.6.2. Дисперсионный анализ по одному признаку.

Компонента дисперсии

Сумма квадратов


Степень свободы


Средний квадрат
Между выборками 21595,1 2 10797,6
Остаточная 65337,4 177 369,1
Полная 86932,6 179 -----

p<pкр


Вывод:

Следовательно мы отвергаем нулевую гипотезу, т.е. можно предположить что при 5% уровне значимости ВАШСП зависит от стадии лечения. Используя функцию multcompare, целесообразно определить для какой пары выборок средние арифметические значения имеют статистически значимое различие.


Таблица 2.6.3 Различия между средними для ВАШСП

группы

группы

Нижняя граница доверительно интервала

Разница средних арифметических

Верхняя граница доверительного интервала

1 группа 2 группа 5,2663 15,3386 25,4109
1 группа 3 группа 15,9332 26,5005 37,0679
2 группа 3 группа -0.9398 11,1620 23,2637

Полученные значения показывают, что значимая разница средних арифметических наблюдается между 1 и 2 группой и 1 и 3 группой.

Отобразим графически значения средних арифметических и их доверительных интервалов.

Регрессионный анализ корелляции субъективного ВАШ и лабораторных признаков активности реактивного артрита


4 Линейная регрессия


1. Построим уравнение зависимости ВАШБП и ВАШСП для первой группы


После выполнения расчетов для ВАШБП получаем:

b

bint

r

rint

55.5897 -1.0234 112.2027 -32.5449 -81.3671 16.2774
-0.0352 -0.4366 0.3663 -16.7412 -66.1905 32.7082
0.1469 -0.4263 0.7201 9.0742 -39.3668 57.5152
0.0356 -0.0260 0.0972 -8.5563 -55.9419 38.8293
-2.1095 -6.7707 2.5517 -6.1470 -55.9481 43.6541



34.3332 -14.4218 83.0883



-20.6578 -69.6085 28.2929



1.0256 -48.6646 50.7159



30.9239 -18.0042 79.8520



-9.5008 -59.1208 40.1192



4.6638 -43.7703 53.0980



37.1898 -10.8186 85.1982



-1.3469 -51.0447 48.3509



-0.9230 -50.3921 48.5461



-5.1806 -49.4128 39.0516



-4.6042 -52.2626 43.0542



4.7203 -44.8871 54.3278



11.8687 -37.5070 61.2444



-30.6516 -79.1407 17.8375



4.7988 -44.2927 53.8902



-1.0393 -50.8820 48.8034



45.9999 -2.0349 94.0347



-13.5494 -63.0684 35.9696



-14.4945 -62.8987 33.9097



23.2344 -25.8160 72.2847



-0.3824 -49.5880 48.8231



-14.3471 -63.5227 34.8285



-23.5363 -70.7562 23.6836



32.7050 -15.5714 80.9813



-2.8328 -52.0938 46.4282



10.3778 -39.3362 60.0918



-11.9676 -61.5539 37.6187



-11.8785 -61.3934 37.6363



-41.9868 -90.1676 6.1939



0.2621 -49.2959 49.8201



-8.1621 -56.7824 40.4582



-3.0527 -28.9716 22.8662



6.9288 -40.5712 54.4287



12.6622 -36.2299 61.5544



-1.7940 -51.4348 47.8467



11.4802 -37.4851 60.4455



-22.7112 -71.8517 26.4293



7.4921 -42.3668 57.3509



-15.6784 -65.2347 33.8778



8.2972 -41.0592 57.6536



10.9012 -37.9236 59.7261



-26.9591 -75.2568 21.3387



21.8081 -27.1771 70.7933



13.6002 -36.1128 63.3132



-20.7137 -69.7056 28.2783



-21.9653 -71.0527 27.1220



-8.2091 -57.2974 40.8792



-11.4855 -59.8857 36.9147



19.8426 -29.2750 68.9603



-1.2694 -51.1186 48.5798



6.8505 -42.3175 56.0185



-16.2637 -64.7218 32.1944



-1.6909 -51.3675 47.9858



-6.0354 -54.7918 42.7211



48.7233 2.2018 95.2447



21.4711 -27.8084 70.7507



11.0636 -38.3336 60.4607



17.1311 -30.0069 64.2690



-33.0091 -81.2869 15.2687



-28.4807 -77.6532 20.6918



-4.4328 -53.8928 45.0273



7.1032 -40.3586 54.5650



7.8543 -41.4167 57.1253



-4.7090 -54.2491 44.8311



-12.8942 -62.1290 36.3406



14.8432 -33.7018 63.3881



4.9313 -44.3565 54.2190



10.2322 -39.2524 59.7168



-6.7317 -56.0897 42.6263



-45.0832 -92.8981 2.7317



-1.2306 -50.6325 48.1713



4.6044 -44.0055 53.2143



-16.8474 -65.7849 32.0901



20.2082 -28.9442 69.3606



18.0733 -31.4132 67.5598



3.2683 -46.1174 52.6539



-0.2778 -49.6871 49.1316



5.9373 -43.6017 55.4764



-20.5885 -69.9104 28.7334



15.3592 -33.8331 64.5514



-1.7328 -50.4724 47.0067



-19.9232 -67.8864 28.0400



5.8655 -43.9565 55.6874



-13.1686 -54.8756 28.5383



-27.2116 -75.7461 21.3230



38.5398 -9.0647 86.1444



4.6457 -44.8956 54.1870



13.9550 -35.3909 63.3008



30.3302 -17.8422 78.5026

stats =0.0513 1.2021 0.3156 360.6221

Следовательно наше уравнение будет выглядеть следующим образом:

ВАШБП= 55.5897 – 0.0352 Hb + 0.1469 СОЭ + 0.0356 СРБ -2.1095Фибриноген

R2=0.0513 - 5.13% от исходной изменчивости могут быть объяснены

F=1.2021

p= 0.3156

F>p следовательно полученному уравнению можно верить.

Далее произведем анализ остатков и исключим из выборки экстремальные наблюдения, а затем заново рассчитаем уравнение множественной регрессии.

Новое уравнение будет выглядеть следующим образом:

ВАШБП= 39,5747 +0,1252 Hb + 0.3508СОЭ + 0.0253 СРБ -4,0355 Фибриноген


stats =0.2812 5.5758 0.0007 78.6334

R2=0.2812 - 28,12% от исходной изменчивости могут быть объяснены

F=5,5758

p= 0

F>p следовательно полученному уравнению можно верить..


После выполнения расчетов для ВАШСП получаем:

b

bint

r

rint

50.8776 -3.1564 104.9115 -32.7325 -79.2404 13.7754
0.0166 -0.3665 0.3998 2.5397 -44.8640 49.9434
0.2963 -0.2508 0.8434 6.0810 -40.1855 52.3475
0.0337 -0.0252 0.0925 -10.0531 -55.2500 35.1438
-1.8469 -6.2958 2.6019 -10.1094 -57.5855 37.3666



25.0166 -21.8947 71.9280



-35.0493 -81.0569 10.9584



-13.8155 -61.0841 33.4531



18.8248 -28.3079 65.9575



-13.4091 -60.6874 33.8691



24.2126 -21.5301 69.9554



23.6332 -22.7868 70.0532



-13.0071 -60.3015 34.2874



16.7728 -30.2081 63.7536



-12.8332 -54.9193 29.2530



-17.0851 -62.3357 28.1656



-8.0691 -55.3793 39.2411



0.3814 -46.8518 47.6146



-21.6864 -68.2933 24.9205



-20.1860 -66.7151 26.3432



3.3231 -44.2405 50.8868



33.0074 -13.5531 79.5680



8.0302 -39.3183 55.3788



-19.9338 -65.9570 26.0893



19.1564 -27.7641 66.0770



-3.4287 -50.3828 43.5255



2.7951 -44.2907 49.8809



-6.8360 -52.3028 38.6309



4.4110 -42.4748 51.2967



6.7961 -40.1882 53.7803



5.9857 -41.5151 53.4865



-11.5016 -58.8274 35.8241



-16.8523 -63.9817 30.2772



-14.5411 -61.7055 32.6233



5.0812 -42.1976 52.3600



0.5260 -45.9305 46.9824



-4.0088 -28.7348 20.7172



17.4362 -27.6732 62.5457



16.4756 -30.0832 63.0344



0.6604 -46.7209 48.0417



13.1959 -33.4931 59.8849



-22.0531 -68.9410 24.8349



-0.3347 -47.9643 47.2949



-0.2385 -47.7231 47.2461



-20.2450 -67.0619 26.5718



11.1447 -35.4423 57.7317



-29.0980 -75.0374 16.8415



18.0209 -28.8239 64.8657



17.8249 -29.4994 65.1491



-18.3536 -65.1590 28.4519



-18.7303 -65.6559 28.1952



-23.5790 -70.0136 22.8555



-9.3835 -55.6061 36.8390



11.7287 -35.3366 58.7939



-26.4849 -73.4803 20.5106



22.1181 -24.4339 68.6701



-12.8035 -59.1195 33.5125



-0.4660 -47.8815 46.9495



-17.4071 -63.7135 28.8994



39.0101 -5.9565 83.9767



3.8219 -43.5506 51.1945



-0.4344 -47.6739 46.8052



18.4989 -26.4261 63.4238



-40.7830 -86.2847 4.7188



-10.5180 -57.9744 36.9384



-2.2137 -49.4313 45.0039



18.2980 -26.7498 63.3459



15.5050 -31.3669 62.3769



-8.3026 -55.5452 38.9400



0.5104 -46.6079 47.6286



12.3716 -34.0022 58.7454



2.8311 -44.2230 49.8853



17.2681 -29.7928 64.3289



-30.1500 -76.5286 16.2285



-39.1008 -85.0149 6.8132



-11.5112 -58.5528 35.5305



21.5233 -24.4938 67.5404



0.3722 -46.5532 47.2975



19.2687 -27.6451 66.1824



24.1824 -22.8096 71.1744



-9.1500 -56.2240 37.9239



-18.6838 -65.5500 28.1823



6.0431 -41.2354 53.3216



-13.8500 -61.0871 33.3872



12.2025 -34.8040 59.2090



-12.7632 -59.1466 33.6201



22.5056 -23.1477 68.1590



2.9215 -44.6495 50.4926



8.2468 -31.6490 48.1426



-4.5385 -51.4144 42.3374



24.5790 -21.5012 70.6591



30.9866 -15.5081 77.4813



20.6225 -26.2676 67.5126



29.5655 -16.3814 75.5124

stats =0.0890 2.1745 0.0783 328.5125

Следовательно наше уравнение будет выглядеть следующим образом:

ВАШСП= 50.8776 + 0.0166 Hb + 0.2963 СОЭ + 0.0337 СРБ -1.8469Фибриноген

R2=0.0890 - 8.9% от исходной изменчивости могут быть объяснены

F=2.1745

p= 0.0783

F>p следовательно полученному уравнению можно верить.

Далее произведем анализ остатков и исключим из выборки экстремальные наблюдения, а затем заново рассчитаем уравнение множественной регрессии.

Новое уравнение будет выглядеть следующим образом:

ВАШСП= 39.8065 +0,0884 Hb + 0.0029СОЭ + 0.0389 СРБ -0.4223 Фибриноген

stats = 0.2067 3.3879 0.0155 86.9531

R2=0.2067 - 20,67% от исходной изменчивости могут быть объяснены

F=3.3879

p= 0.0155

F>p следовательно полученному уравнению можно верить.


Рассчитаем уравнение зависимости ВАШБП и ВАШСП для 2 группы


После выполнения расчетов для ВАШБП получаем:

b

bint

r

rint

90.4842 24.1462 156.8221 2.8245 -34.9728 40.6217
-0.4358 -0.8641 -0.0074 -14.6052 -49.9660 20.7557
0.2928 -0.3478 0.9334 0.6256 -36.7237 37.9750
0.0538 -0.0164 0.1239 -22.5401 -58.7748 13.6946
-1.7341 -7.8643 4.3962 12.9742 -23.6786 49.6270



-20.7990 -56.9699 15.3718



0.7644 -36.4334 37.9622



-2.8781 -30.9361 25.1800



1.9709 -34.6095 38.5513



1.5751 -36.0531 39.2034



-17.3262 -52.1622 17.5098



31.2551 -3.0712 65.5815



-3.0250 -15.1183 9.0683



-9.9760 -47.2306 27.2785



-7.7462 -44.9435 29.4512



-12.4228 -46.8670 22.0214



16.5984 -20.5358 53.7326



19.7876 -17.0973 56.6725



-12.9166 -50.4226 24.5895



-4.9428 -42.0645 32.1789



3.6200 -34.1044 41.3445



-8.1368 -44.7904 28.5168



-8.4794 -45.4469 28.4882



4.9262 -32.8340 42.6863



-1.3975 -37.3390 34.5441



-7.0479 -44.4758 30.3800



-8.9832 -46.4682 28.5018



8.8562 -28.0135 45.7259



-9.9203 -47.7456 27.9049



25.2873 -8.4246 58.9992



13.7971 -23.6589 51.2531



-0.1864 -31.3211 30.9483



8.8650 -28.3947 46.1247



3.9219 -33.0458 40.8895



-6.7682 -44.7624 31.2260



-2.5593 -39.5951 34.4765



37.6211 3.9880 71.2542



2.5192 -35.3996 40.4380



17.6346 -18.2831 53.5524



-7.5626 -44.9665 29.8413



-7.6693 -44.0037 28.6650



-24.3264 -60.2566 11.6038



2.2284 -34.9823 39.4392



-8.3589 -42.0641 25.3464



18.8562 -17.3214 55.0339



-5.9350 -43.5076 31.6375

stats =0.5157 10.9162 0.0000 199.2977

Следовательно наше уравнение будет выглядеть следующим образом:

ВАШБП= 90,4842 -0,4358 Hb + 0.2928 СОЭ + 0.0538 СРБ -1.7341Фибриноген

R2=0.5157 - 51,57% от исходной изменчивости могут быть объяснены

F=10,9162

p= 0

F>p следовательно полученному уравнению можно верить.

Так как больше половины от исходной изменчивости переменной ВАШБП могут быть объяснены данным уравнением то проводить исключение выскакивающих вариант мы не будем.


После выполнения расчетов для ВАШСП получаем:

b bint r rint
74.6060 3.7587 145.4533 4.5575 -35.7827 44.8976
-0.2903 -0.7478 0.1671 -4.5586 -42.8568 33.7395
0.4787 -0.2054 1.1629 3.3394 -36.5243 43.2031
0.0482 -0.0267 0.1232 -23.2016 -61.9962 15.5931
-2.1431 -8.6900 4.4039 17.9311 -20.9102 56.7724



-19.4290 -58.3313 19.4733



-7.7251 -47.3157 31.8655



-6.9728 -36.8187 22.8730



-9.8057 -48.6580 29.0465



12.3233 -27.5231 52.1697



-16.7746 -54.1278 20.5786



35.0482 -1.3264 71.4227



-6.3240 -19.0289 6.3809



-5.8368 -45.8054 34.1318



-3.7829 -43.6328 36.0670



-13.8393 -50.5864 22.9079



11.3002 -28.7849 51.3854



18.8223 -20.7830 58.4276



-13.3735 -53.4550 26.7081



-9.2464 -48.7586 30.2659



12.9817 -26.9578 52.9213



24.1607 -13.7819 62.1032



-15.6529 -54.7550 23.4491



-13.1636 -53.1599 26.8327



-7.8977 -46.1393 30.3438



-9.2963 -49.2004 30.6078



1.6043 -38.6321 41.8407



12.3215 -26.9097 51.5527



-3.2014 -43.8275 37.4247



18.3343 -18.6518 55.3204



8.0458 -32.3022 48.3939



6.8037 -26.3203 39.9276



16.2985 -23.0884 55.6855



6.4788 -32.9453 45.9029



-1.7797 -42.4667 38.9074



-13.1496 -52.3195 26.0204



35.8303 -0.9187 72.5792



-1.0831 -41.5932 39.4269



-21.6423 -59.7303 16.4457



-19.2979 -58.5368 19.9410



-7.3021 -46.1387 31.5344



9.9044 -29.8156 49.6244



0.4798 -39.2728 40.2324



-7.4326 -43.4909 28.6257



16.3215 -22.6425 55.2854



-11.1178 -51.0543 28.8187

stats = 0.4741 9.2403 0.0000 227.3133

Следовательно наше уравнение будет выглядеть следующим образом:

ВАШСП= 74,6060 -0,2903 Hb + 0.4787 СОЭ + 0.0482 СРБ -2,1431Фибриноген

R2=0.4741 - 47,41% от исходной изменчивости могут быть объяснены

F=9,2403

p= 0

F>p следовательно полученному уравнению можно верить.

Построим уравнение зависимости ВАШБП и ВАШСП в 3 группе


После выполнения расчетов для ВАШБП получаем:

b

bint

r

rint

51.9250 -16.2666 120.1166 -14.2935 -48.4355 19.8485
-0.3334 -0.7714 0.1046 8.1518 -23.4159 39.7194
-0.0539 -1.0565 0.9488 -12.6251 -47.5751 22.3250
0.3274 -0.1187 0.7736 -15.4497 -50.1677 19.2684
3.2847 -5.2879 11.8572 -3.3181 -37.9505 31.3143



9.3268 -19.0731 37.7267



15.5114 -13.2881 44.3109



-7.8288 -43.3208 27.6632



-11.2942 -46.3668 23.7785



-11.2071 -44.5562 22.1420



-3.9892 -39.0154 31.0369



10.5521 -24.4140 45.5182



3.9876 -31.7774 39.7526



-10.1876 -45.3800 25.0047



1.6819 -32.9763 36.3400



3.1765 -32.2848 38.6378



-4.6214 -38.7327 29.4899



-2.9869 -35.5847 29.6109



24.9639 -8.0240 57.9519



-4.8812 -39.5228 29.7604



-7.7152 -43.2511 27.8206



29.8032 -1.5126 61.1190



-1.8318 -34.4443 30.7806



-5.6245 -40.7179 29.4690



-6.0394 -40.6636 28.5847



2.2833 -32.7475 37.3140



-7.5858 -42.9437 27.7722



-13.3812 -48.4307 21.6683



0.5296 -30.6683 31.7274



5.7404 -22.5060 33.9868



20.2943 -10.7267 51.3154



11.1403 -23.4900 45.7705



2.0630 -32.7541 36.8801



-4.3143 -37.7294 29.1009



-17.6017 -51.7051 16.5017



29.3290 -1.1442 59.8022



9.7861 -22.9731 42.5453



9.2109 -24.7332 43.1550



-23.7047 -56.2236 8.8141



-7.0506 -39.0017 24.9005

stats = 0.5009 8.7816 0.0001 173.5544

Следовательно наше уравнение будет выглядеть следующим образом:

ВАШБП= 51,9250 -0,3334 Hb +0,3274 СОЭ - 0.0534 СРБ +3,2847Фибриноген

R2=0,5009 - 50,09% от исходной изменчивости могут быть объяснены

F=8,7816

p= 0.0001

F>p следовательно полученному уравнению можно верить.


После выполнения расчетов для ВАШСП получаем:

b

bint

r

rint

44.7235 -27.8214 117.2684 -15.6190 -51.9023 20.6643
-0.3118 -0.7778 0.1541 13.4645 -19.7720 46.7010
0.0107 -1.0559 1.0774 -19.4484 -56.0444 17.1477
0.3283 -0.1464 0.8029 -18.9404 -55.6121 17.7314
6.0335 -3.0863 15.1533 -5.0498 -41.8544 31.7548



-7.4380 -37.8063 22.9302



8.6181 -22.7173 39.9534



-7.3520 -45.1540 30.4499



-14.3138 -51.4481 22.8204



33.6879 1.4068 65.9691



-3.5780 -40.8555 33.6994



16.6724 -20.0775 53.4222



-2.4427 -40.5253 35.6399



-13.0771 -50.3597 24.2055



-1.0498 -37.9267 35.8271



-6.7081 -44.3360 30.9198



18.5853 -16.7246 53.8952



-10.3977 -44.7668 23.9713



17.5803 -18.7245 53.8852



-7.6640 -44.4229 29.0949



-4.9677 -42.8951 32.9598



27.4189 -6.7161 61.5538



-1.5148 -36.2139 33.1844



-10.5774 -47.6882 26.5333



7.4664 -29.3253 44.2580



7.3551 -29.7707 44.4808



-0.6253 -38.4278 37.1772



-18.7849 -55.6298 18.0599



-6.4776 -39.5299 26.5747



-8.9331 -38.8279 20.9618



17.3573 -16.1847 50.8992



13.7644 -22.9312 50.4600



6.7772 -30.1412 43.6957



-5.4197 -40.9425 30.1031



-18.5833 -54.8797 17.7131



20.4549 -13.7811 54.6908



-1.2967 -36.4797 33.8862



3.2762 -33.0916 39.6440



0.9204 -35.6226 37.4633



-3.1398 -37.2792 30.9997

stats = 0.5571 11.0045 0.0000 196.4207

Следовательно наше уравнение будет выглядеть следующим образом:

ВАШСП= 44,7235 – 0,3118 Hb + 0.3283 СОЭ + 0.0107 СРБ +6,0335Фибриноген

R2=0.5571 - 55,71% от исходной изменчивости могут быть объяснены

F=11,0045

p= 0

F>p следовательно полученному уравнению можно верить.


Заключение


В данной дипломной работе был проведен математический анализ заболевания реактивный артрит.

Был проведен анализ связи между несколькими независимыми переменными (называемыми также регрессорами или предикторами), а именно показателями активности заболевания и зависимой переменной ВАШ (ВАШБП, ВАШСП).

Полученные уравнения показали, что лучшими предсказывающими факторами (предикторами) для ВАШБП являются уровень фибриногена и гемоглобина в крови, причем связь с гемоглобином носит отрицательный характер, а с фибриногеном положительный. Для ВАШСП лучшими предикторами будут уровень фибриногена в крови и СОЭ, для обоих факторов связь носит положительный характер.

Так же был проведен регрессионный анализ в динамике, в результате которого было установлено что в первой группе (начало лечения) лучшими предсказывающими факторами для ВАШСП и ВАШБП являются уровень фибриногена в крови и СОЭ, причем связь с СОЭ носит положительный характер а связь с фибриногеном отрицательный. Во второй (2 месяца лечения ) группе для ВАШБП – фибриноген и гемоглобин, для обоих факторов связь имеет отрицательный характер. Для ВАШСП – фибриноген и СОЭ, связь с фибриногеном носит отрицательный характер. В третьей (3 месяца лечения) группе для ВАШСП и ВАШБП – фибриноген, гемоглобин, СОЭ, связь носит отрицательный характер только для гемоглобина. Эти данные приведены ниже в таблице.



1 группа

(Начало лечения)

2 группа

(2 месяца)

3 группа

(3 месяца)

Общее уравнение

ВАШБП

1-й предиктор Фибриноген Фибриноген Фибриноген Фибриноген
2-й предиктор СОЭ Гемоглобин Hb/СОЭ Гемоглобин

Характер связи

с первым предиктором


отрицательный


отрицательный


положительный


положительный

Характер связи

со вторым предиктором


положительный


отрицательный

Отрицательный/

положительный


отрицательный

ВАШСП

1-й предиктор Фибриноген Фибриноген Фибриноген Фибриноген
2-й предиктор Гемоглобин СОЭ Hb/СОЭ СОЭ

Характер связи

с первым предиктором


отрицательный


отрицательный


отрицательный


положительный

Характер связи

со вторым предиктором


положительный


положительный

Отрицательный/

положительный


положительный


При выполнении анализа выскакивающих вариант было отмечено что большее их количество находится в первой группе, возможно, это связано с неправильной оценкой субъективного показателя ВАШ, также в этой группе наблюдается небольшой процент объяснения исходной изменчивости переменной ВАШ.

При проведении однофакторного дисперсионного анализа для сравнения средних арифметических значений выборок оказалось, что вид инфекции предшествующей реактивному артриту не влияет на показатели активности и ВАШ. На изменение показателей, а именно СОЭ, фибриногена и ВАШ влияет стадия лечения, причем значительные улучшения показателей ВАШ наступают после 2 месяцев лечения, но далее их значения остаются неизменными, а показатели СОЭ и фибриноген изменяются после 3 месяцев лечения.

Рефетека ру refoteka@gmail.com