Самостоятельная работа № 1
Вариант № 8
1.Вывести аналитическую зависимость теплового эффекта (Дж) реакции от температуры Т:
Стандартный тепловой эффект и уравнение зависимости из приложения 1.
2.Вычислить тепловой эффект при температуре Т=500 К.
3.Построить графики зависимости:
и - в том интервале температур, для которого справедливо выведенное уравнение зависимости
4.Определить графически как при и сравнить полученный результат с рассчитанным по формуле
Решение.
Таблица 1
Вещество |
|
, Дж/моль∙К |
Температурный интервал | ||
|
-601,49 | 48,98 | 3,14 | -11,44 | 298…3000 |
-241,8 | 30,0 | 10,71 | 0,33 | 298…2500 | |
|
-924,6 | 46,99 | 102,85 | - | 298…541 |
- | 78,98 | 13,85 | -11,11 | 298…541 | |
- | 46,99 | 102,85 | - | 298…2500 | |
-16,9 | 31,99 | -89 | -11,11 | 298…2500 | |
81,3 | - | - | - |
Из данных, приведенных в таблице, получаем:
Проверяем
С учетом последнего выражения найдем интегрированием уравнения Кирхгофа в пределах от 298 до Т (Т Ј 1000):
Результаты расчетов по уравнениям представлены в табл. 2.
Таблица 2
T, К |
, Дж/К |
, Дж/К |
, Дж/К |
, Дж |
300 | 70,791 | 77,760 | -6,969 | 81060 |
325 | 72,963 | 80,331 | -7,368 | 80880 |
350 | 74,758 | 82,903 | -8,145 | 80690 |
375 | 76,273 | 85,474 | -9,201 | 80470 |
400 | 77,576 | 88,046 | -10,47 | 80220 |
425 | 78,715 | 90,618 | -11,903 | 79440 |
450 | 79,726 | 93,189 | -14,74 | 79620 |
475 | 80,635 | 95,761 | -15,126 | 79260 |
500 | 81,461 | 98,332 | -16,871 | 78860 |
525 | 82,222 | 100,90 | -18,678 | 78410 |
541 | 82,667 | 102,55 | -19,883 | 77920 |
На рис. 1 и 2 представлено изменение ; и в зависимости от температуры, а также определение при Т1 = 310 К.
Строим графики зависимостей:
и
Определяем графически, как при и сравниваем полученный результат с рассчитанным по формуле
по модулю
Самостоятельная работа № 2
Вариант № 8
В таблице 1 для некоторого чистого вещества приведены молекулярная масса (кг/кмоль), плотности в твердом и жидком состояниях (и в кг/м3) при температуре трехфазного равновесия (тройная точка), и экспериментальные данные [2] по упругости паров над твердым и жидким веществом при разных температурах. Необходимо:
по графикам зависимостей от или аналитически рассчитать численные значения постоянных коэффициентов в интегральных уравнениях Клаузиуса — Клапейрона
2) вычислить средние для исследованных интервалов температур теплоты испарения, возгонки и плавления; определить координаты тройной точки (параметры трехфазного равновесия);
3) вычислить величину , характеризующую наклон линии фазового равновесия "" в тройной точке;
4) построить диаграмму фазовых равновесий вещества;
5) вычислить температуру плавления вещества при заданном внешнем давлении Р (Па) и оценить нормальную температуру кипения;
6) рассчитать изменение внутренней энергии, энтальпии, свободных энергий Гиббса и Гельмгольца для процесса равновесной возгонки 1 моля вещества при температуре тройного равновесия.
Таблица 1
Вариант | Твёрдое состояние | Жидкое состояние | Условия | ||
|
|
|
|
||
8 |
276,6 278,2 279,2 280,2 281,4 |
1413 1706 1879 2066 2372 |
277,2 279,2 281,4 283,2 285,2 288,7 |
1826 2082 2372 2626 2932 3279 |
; ; ;
|
Решение:
1. Интегрирование уравнения Клаузиуса — Клапейрона в предположении постоянства теплот испарения и возгонки , дает выражения:
потенцирование, которых приводит к зависимости в явном виде давлений насыщенных паров от температуры:
Графики линейных зависимостей от представлены на рис. 3 по данным, приведенным в табл. 5.
По положению прямых на рис. 3 возможно графическое определение постоянных А и В в уравнениях . После чего теплоты испарения и возгонки можно определить из соотношений: и . Такие расчеты связаны с ошибками из-за достаточно произвольного проведения прямых линий по экспериментальным точкам.
Для более точного аналитического расчета параметров уравнения Клаузиуса — Клапейрона воспользуемся методом наименьших квадратов. Постоянные А и В уравнения , где и , можно рассчитать из известных соотношений:
Таблица 5
Равновесие твёрдое вещество — газ | |||||||
|
|
|
|
|
|
|
|
1 | 1413 | 7,2535 | 276,6 | 0,00361 | 1,300Ч10–5 | 0,0261 | 1421 |
2 | 1706 | 7,4419 | 278,2 | 0,00359 | 1,288Ч10–5 | 0,0267 | 1687 |
3 | 1879 | 7,5385 | 279,2 | 0,00358 | 1,281Ч10–5 | 0,0271 | 1877 |
4 | 2066 | 7,6334 | 280,2 | 0,00356 | 1,267Ч10–5 | 0,0274 | 2086 |
5 | 2372 | 7,7715 | 281,4 | 0,00355 | 1,260Ч10–5 | 0,0279 | 2365 |
n = 5 | 37,6388 | 0,01789 | 6,396∙10–5 | 0,1352 |
Равновесие жидкость — газ
i |
|
|
|
|
|
|
|
1 | 1826 | 7,50988 | 277,2 | 0,00360 | 1,296Ч10–5 | 0,0270 | 1836,324 |
2 | 2082 | 7,64108 | 279,2 | 0,00358 | 1,281Ч10–5 | 0,0273 | 2071,554 |
3 | 2372 | 7,77148 | 281,4 | 0,00355 | 1,260Ч10–5 | 0,0275 | 2360,579 |
4 | 2626 | 7,87321 | 283,2 | 0,00353 | 1,246Ч10–5 | 0,0277 | 2622,843 |
5 | 2932 | 7,98344 | 285,2 | 0,00350 | 1,225Ч10–5 | 0,0279 | 2943,963 |
6 | 3279 | 8,09529 | 288,7 | 0,00346 | 1,197Ч10–5 | 0,0281 | 3589,551 |
n = 6 | 46,874 | 0,02122 | 7,511Ч10–5 | 0,1655 |
где n — число измерений. При использовании данных таблицы получим:
2. Из полученных уравнений рассчитываем среднюю теплоту испарения и возгонки:
.
Теплоту плавления вещества в тройной точке найдем по закону Гесса:
DНпл = DНвозг – DНисп = 68716,04−38776,49=29939,55 Дж/моль.
3. Вычислим dT/dp в тройной точке из уравнения:
Координаты тройной точки определяем совместным решением уравнений:
Ттр.т = 281 К; Ртр.т = 2289,5 Н/м2.
4. На рис. 4 приведены кривые зависимостей давлений насыщенного пара от температуры для твердого и жидкого вещества, рассчитанные по уравнениям . Эти линии определяют параметры фазовых равновесий «тв ® газ» и «ж ® газ». При имеющейся информации линию фазовых равновесий «тв ® ж» проводим с учетом углового коэффициента этой линии в тройной точке
,
который считается независящим от давления (температуры). Получается практически вертикальная линия с неуловимым наклоном вправо. На диаграмме представлены исходные экспериментальные данные.
5. Температуру плавления вещества при давлении вычислим по формуле:
Отсюда
Рис. 2. Температурная зависимость давлений насыщенного пара для твердого и жидкого вещества
Нормальную температуру кипения вещества оценим, подставив в уравнение . Получим
6. Изменение термодинамических функций для процесса равновесной возгонки 1 моля вещества при условиях трехфазного равновесия составят:
Энергии Гиббса |
|
Энергии Гельмгольца |
|
Энтальпии |
|
Внутренней энергии |
|
Самостоятельная работа № 3
Вариант № 8
Выразить и через равновесное число молей продукта х, если исходные вещества А и В взяты в стехиометрических количествах при общем давлении равновесной газовой смеси Р и температуре Т, К;
Рассчитать и при 300 К, если
Вычислить равновесное количество вещества С при давлении в равновесной системе и рассчитайте степень превращения вещества А и В.
A + B = 3C
Решение:
А | В | 3С |
|
|
|
1), что говорит о том, что смесь неравновесная
Равновесные парциальные давления определим по закону Дальтона:
;
;
где - общее давление. Закон действующих масс для данной реакции запишется так:
Константу находим из соотношения:
2) Расчет и при заданной температуре, давлении и известном значении х
3) При изменении давления изменяется параметр х, температура остаётся неизменной, значение не меняется.
молей
Равновесное количество вещества равно:
молей
Рассчитаем степень превращения веществ А и В:
, условие выполнено.
Самостоятельная работа №4
Вариант № 8
Гетерогенная реакция между веществами А и В (табл. 1) протекает при постоянной температуре Т;
определите стандартное сродство веществ А и В при 298 К;
вычислите константы равновесия и при температуре Т;
определите количество прореагировавшего твёрдого вещества А, если объём системы V м3, а исходное давление газа В равно Р1, объёмом твердой фазы можно пренебречь;
4) определите изменение энергии Гиббса, для начала реакции, если исходное давление газообразных веществ В и С соответственно равны Р2 и Р3, реакция протекает при температуре Т, К идеально обратимо.
Таблица 1
Реакция | Т, К |
Па |
Па |
Па |
м3 |
773 | 10 | 705 | 800 | 2 |
Решение:
1) Вычисление стандартного сродства веществ А и В при 298 К;
2)Вычисление констант равновесия и при температуре 773 К.
Вещество |
|
, Дж/моль∙К |
Температурный интервал | ||
0 | 16,86 | 4,77 | – 8,54 | 298…2500 | |
0 | 31,46 | 3,39 | – 3,77 | 298…3000 | |
-110,53 | 28,41 | 4,10 | – 0,46 | 298…2500 | |
- | 28,41 | 4,10 | – 0,46 | 298…2500 | |
- | 48,32 | 8,16 | 12,31 | 298…2500 | |
-9,47 | – 19,91 | –4,06 | –12,77 | 298…2500 |
Константу равновесия можно найти из соотношения:
3)Определение количества прореагировавшего твёрдого углерода, если объём системы м3, а исходное давление газа равно Па
, что говорит о том, что смесь неравновесная
2 |
,
Равновесные парциальные давления определим по закону Дальтона:
;
;
где - общее давление. Закон действующих масс для данной реакции запишется так:
С учетом того, что углерода расходуется в 2 раза больше, чем кислорода, то количество прореагировавшего углерода составит 0,005 молей.
4) Определение изменения энергии Гиббса для начала реакции
Самостоятельная работа № 5
Вариант 8
Зависимость константы равновесия реакции от температуры (табл. 9) выражается уравнением коэффициенты a, b, c и d приведены в табл. 1, давление выражено в Паскалях:
определите константу равновесия реакции при Т, К;
постройте график зависимости в интервале температур от (Т – 100) до (Т + 100) К;
укажите, как изменяется константа равновесия при повышении температуры;
определите тепловой эффект реакции при Т, К;
сопоставьте тепловой эффект, вычисленный в п. 4, с тепловым эффектом, вычисленным по закону Кирхгофа при температуре Т, К;
определите стандартное сродство реагирующих веществ при температуре Т, К.
Реакция (А) | К | Т, К |
500 |
Таблица 1
a | b | c | d |
– 4600 | 0,623 | – 0,001 02 | 17,776 |
Решение:
1)Определение константы равновесия при 500 К.
Заменяем десятичный логарифм натуральным, для чего умножаем обе части уравнения на .
Подставляем значение Т в полученное уравнение:
2)Построение графика зависимости в интервале температур от 400 до 600 К;
400 | 7,489 | 475 | 9,724 | 550 | 10,558 |
425 | 8,156 | 500 | 9,747 | 575 | 10,908 |
450 | 8,747 | 525 | 10,173 | 600 | 11,228 |
3) Константа равновесия при повышении температуры увеличивается. Принимаем Т=1000К и повторяем расчет. Функция экспоненты в степени х является возрастающей, значит чем больше значение логарифма функции, тем больше сама функция.
4)Определение стандартного теплового эффекта при Т=500К
5)Сопоставление теплового эффекта, вычисленного в п. 4, с тепловым эффектом, вычисленным по закону Кирхгофа при температуре 500 К;
Сначала вычисляем стандартный тепловой эффект при 298 К.
Вычисление теплоёмкостей конечных и исходных продуктов реакции. Значения и взяты из приложения 1 методического пособия.
Небольшая разница возникает из-за погрешности вычисления.
6) Вычисление стандартного сродства веществ А и В при 500 К;
Самостоятельная работа №7
Вариант № 8
Вычислите константу равновесия Кр реакции при заданной температуре Т. Для расчета воспользоваться методом Темкина — Шварцмана и прил. 1 и 2.
Реакция | Т, К |
400 |
Воспользуемся формулой:
Вещество |
, Дж/моль∙К |
5,75 | 175,11 | — | – 57,85 |
28,41 | 4,10 | – 0,46 | — |
22,47 | 201,80 | — | – 63,50 |
22,47 | 201,80 | — | – 63,50 |
34,16 | 179,21 | – 0,46 | – 57,85 |
−11,69 | 22,59 | – 0,46 | – 5,65 |