1. Парная линейная регрессия и корреляция
Цель работы - овладеть навыками определения параметров линейной регрессии и корреляции с использованием формул и табличного процессора MS Excel.
1.1 Решение задач с использованием формул
1.1.1 Параметры a и b линейной регрессии
рассчитываются с помощью метода наименьших квадратов. Для этого составим систему нормальных уравнений (1).
По исходным данным определим , , , , в расчетной таблице 1.
Таблица 1 Расчет показателей парной линейной регрессии и корреляции
№ |
2 |
2 | |||||||
1 | 9.8 | 10.2 | 99.96 | 96.04 | 104.04 | 9.847 | 0.035 | 0.125 | -1.575 |
2 | 11.3 | 10.1 | 114.13 | 127.69 | 102.01 | 10.088 | 0.001 | 0.000 | 11.300 |
3 | 11.5 | 10.1 | 116.15 | 132.25 | 102.01 | 10.120 | -0.002 | 0.000 | 11.500 |
4 | 11.3 | 9.2 | 103.96 | 127.69 | 84.64 | 10.088 | -0.096 | 0.788 | 11.300 |
5 | 10.9 | 10.7 | 116.63 | 118.81 | 114.49 | 10.023 | 0.063 | 0.458 | 10.900 |
6 | 11.4 | 9 | 102.6 | 129.96 | 81 | 10.104 | -0.123 | 1.218 | 11.400 |
7 | 12.6 | 10.4 | 131.04 | 158.76 | 108.16 | 10.297 | 0.010 | 0.011 | 12.409 |
8 | 12.2 | 11.1 | 135.42 | 148.84 | 123.21 | 10.232 | 0.078 | 0.753 | 12.164 |
Итого | 91 | 80.8 | 919.89 | 1040.04 | 819.56 | 80.797 | -0.034 | 3.353 | 79.397 |
Среднее | 11.375 | 10.1 | 114.986 | 130.005 | 102.445 | 10.100 | -0.004 | ´ | ´
|