Рефетека.ру / Коммуникации и связь

Реферат: Дефокусировка. Сферическая аберрация 3 порядка. Кома и неизопланатизм

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Кафедра ЭТТ

РЕФЕРАТ

На тему:

«Дефокусировка. Сферическая аберрация 3 порядка. Кома и неизопланатизм»

МИНСК, 2008


Дефокусировка

.                                                                                   (1)

Дефокусировка не приводит к нарушению гомоцентричности пучка (рисунок 1), а только свидетельствует о продольном смещении плоскости изображения.

Рисунок 1 –  Дефокусировка

При дефокусировке все лучи на выходе оптической системы пересекаются в одной точке, но не в точке идеального изображения. Поэтому в случае дефокусировки продольная аберрация постоянна для всех лучей (для всех точек зрачка):

 .                                                                         (2)

Если дефокусировки нет, то плоскость изображения совпадает с плоскостью Гаусса (плоскостью идеального изображения). Чтобы избавиться от дефокусировки, нужно просто соответствующим образом передвинуть плоскость изображения.

При анализе аберраций оптических систем принято строить графики зависимости поперечной, продольной, и волновой аберраций от зрачковых координат. Если в оптической системе присутствует только дефокусировка, то эти графики будут выглядеть как показано на рисунке 2.

 

Рисунок 2 – Графики аберраций для расфокусировки


Сферическая аберрация 3 порядка

.                                                                                                     (3)

Сферическая аберрация приводит к тому, что лучи, выходящие из осевой точки предмета, не пересекаются в одной точке, образуя на плоскости идеального изображения кружок рассеяния (рис.3). Ею обладают все линзы со сферическими поверхностями. Чтобы ее устранить, необходимо сделать поверхности не сферическими. Сферическую аберрацию 3 порядка называют также первичной сферической аберрацией.

Рисунок – 3. Сферическая аберрация

Продольная и поперечная аберрации в этом случае определяются выражениями:

                                                                                       (4)

                                                                                             (5)

В простых положительных линзах сферическая аберрация 3 порядка отрицательна, а в отрицательных положительна. Графики волновой, продольной и поперечной аберраций в случае сферической аберрации 3 порядка представлены на рис.4.


Рисунок 4 - Графики аберраций для сферической аберрации 3 порядка


Сферическая аберрация 5 порядка

.                                                                                                     (5)

По характеру искажения гомоцентричности пучка лучей сферическая аберрация 5 порядка полностью аналогична сферической аберрации 3 порядка, только имеет более высокий порядок кривых на графиках поперечной и продольной аберраций.

В сложных системах сферические аберрации 3 и 5 порядков имеют разные знаки и могут взаимно компенсировать друг друга. На рис.5 представлен график оптимальной коррекции сферической аберрации 3 и 5 порядков для апертурного луча . В результате коррекции остаточные аберрации становятся меньше, чем сами аберрации 3 и 5 порядка.

Рисунок 5 - Взаимокомпенсация сферической аберрации 3 и 5 порядков

Однако в случае сферической аберрации 3 и 5 порядков может быть и так, как показано на рис.6.: а) – аберрация «недоисправлена», б) – аберрация «переисправлена».


Рисунок 6 - Графики коррекции сферической аберрации.

Поскольку продольной дефокусировкой легко управлять путем перемещения плоскости изображения, то сочетая сферическую аберрацию и дефокусировку, можно выбрать наилучшее с точки зрения минимума главный луч сферической аберрации положение изображения. В частности, для сферической аберрации 3 порядка при помощи выражений (4), (5) можно вычислить положение изображения, в котором кружок рассеяния минимален. При этом продольное смещение изображения составляет 3/4 от продольной аберрации апертурного луча.


Кома

 

От греческого: kωμα – хвост, пучок волос.

Кома появляется при смещениях точки предмета с оси. Кома добавляется к другим аберрациям (например, к сферической), но мы будем рассматривать ее отдельно от других аберраций (рис.7).

Рисунок 7 - Структура пучка лучей при наличии комы.

В первом приближении кома прямо пропорциональна смещению предмета с оси. Если смещение равно нулю, то и кома равна нулю. Таким образом, поперечная аберрация при наличии комы прямо пропорциональна величине предмета:

,                                                                                                     (6)

где d – коэффициент пропорциональности, определяющий качество аберрационной коррекции оптической системы (чем меньше d, тем лучше оптическая система).

Разложение в ряд волновой аберрации при наличии комы 3 и 5 порядков:

                                                                   (7)

или .

Выражение для поперечных аберраций будет выглядеть следующим образом:

  .                                                               (8)

Описание поперечных аберраций комы различно для меридионального и сагиттального сечений. В меридиональном сечении , следовательно:

                                                                                         (9)

В сагиттальном сечении , следовательно:

.                                                                                          (10)

На рис.8 показаны графики поперечных аберраций для комы 3 порядка в меридиональном и сагиттальном сечениях. Кривые на графиках имеют одинаковую форму, но в меридиональном сечении значение  в 3 раза больше, чем в сагиттальном.

Рисунок 8 - Поперечные аберрации при коме 3 порядка

Для того чтобы лучше понять структуру поперечных аберраций при коме, рассмотрим точечную диаграмму лучей. Разобьем зрачок на множество равновеликих площадок и рассмотрим лучи, проходящие через центры этих площадок (рис.9.а). Получим картину лучей, равномерно распределенных по зрачку. Точки пересечения этих лучей с плоскостью изображения образуют точечную диаграмму (рис.9.б).

Рисунок 9 -  Точечная диаграмма


Кома и неизопланатизм

В названии “неизопланатизм” присутствуют корни греческих слов: изос – одинаковый, равный, планета – блуждающее тело.

Изопланатизм (одинаково заблуждающийся) – в окрестности оси оптической системы нет комы, но есть сферическая аберрация (изображение разных точек предмета будет одинаково плохое).

Апланатизм – нет ни комы, ни сферической аберрации (изображение разных точек предмета идеальное). Апланатизм может выполняться только для какой-то части предмета, например в окрестности оси.

О возможной величине комы можно судить, не смещая точку с оси, если количественно оценить неизопланатизм. Такая оценка возможна, если использовать условия апланатизма и изопланатизма.


Закон синусов Аббе (условие апланатизма):

 

.                                                                                         (11)

Если это условие выполняется для всех лучей, то нет ни комы, ни сферической аберрации.

Если присутствует сферическая аберрация, то вместо условия апланатизма используется похожее условие – условие изопланатизма:

 .                                                                                       (12)

Рис. 10 показывает разницу в определении двух условий – условия синусов Аббе и условия изопланатизма.

Рисунок 10 - Углы лучей, используемые в условиях апланатизма и изопланатизма.

Если условие изопланатизма выполняется, то комы в ближайшей окрестности осевой точки не будет. Относительное отступление от изопланатизма (так называемая мера комы) определяется следующим выражением:

.                                                                          (13)

Поперечная аберрация комы 3 порядка для точки изображения с координатой  может быть представлена следующим образом:

                                                                                                  (14)


ЛИТЕРАТУРА

1.                Бегунов Б.Н., Заказнов Н.П. и др. Теория оптических систем. – М.: Машиностроение, 2004

2.                Заказнов Н.П. Прикладная оптика. – М.: Машиностроение, 2000

3.                Дубовик А.С. Прикладная оптика. – М.: Недра, 2002

4.                Нагибина И.М. и др. Прикладная физическая оптика. Учебное пособие.- М.: Высшая школа, 2002

Рефетека ру refoteka@gmail.com