Рефетека.ру / Математика

Реферат: Дифференциальные уравнения линейных систем автоматического регулирования

Определение динамических свойств объектов с помощью дифференциальных уравнений может быть пока успешно выполнена только для сравнительно простых объектов. Как правило, в редких случаях можно при небольшой затрате времени составить достаточно точное дифференциальное уравнение объекта.

В настоящие время при составлении дифференциальных уравнений элементов и систем регулирования принято пользоваться безразмерными переменными величинами. Для этого отклонения величин относят к каким-либо постоянным (базовым) значениям величин, например к максимальным или средним (номинальным). Выражая входную и выходную величины элемента (или системы) в долях от этих базовых величин, вводят безразмерные координаты.

Например, уравнение


(С*d (DQ) /СC*dt) + DQ= 2*I0*R*DI/ СC*F (1)


DI/I = XВХ характеризует относительное отклонение входной величины от базового значения, а DQ/ Q0 = Хвых относительное отклонение выходной величины. Для перехода от размерной формы записи дифференциального уравнения к безразмерной производят замену абсолютных координат относительными. Так, например, уравнение (1) можно записать в безразмерной форме, заменив:


DQ = Q0вых и DI = I *XВХ


Тогда


С* Q0* d Хвых / СC* F* dt + Q0 Хвых = 2* I02* R* XВХ/ СC*F


Разделив обе части уравнения на Q0, получим:


С* d Хвых / СC* F* dt + Хвых = 2* I02* R* XВХ/ СC*F* Q0


Обозначим:


С / СC* F= Т 2* I02* R/ СC*F* Q0 = R


Коэффициенты при производных от выходной величины называются постоянными времени и имеют размерность времени

В самом деле,


С[дж/град] / СC[вт/см2*град]* F[ см ]= С / СC* F[дж*см2*град/град*вт*см2]


Коэффициент К при XВХ называется коэффициентом усиления, и естественно должен быть безразмерным:


2* I02[А2]* R[Ом]/ СC[ вт/см2*град ]*F[ см ]* Q0[град] =

= 2* I02* R/ СC*F* Q0[А2*Ом*см2*град/Вт*см2*град] =

= 2* I02* R/ СC*F* Q0[0] = К


Уравнение (1) с учетом введённых обозначений будет иметь в безразмерной форме следующий вид:


Т* Х/ вых + Х вых = К* Х вх (2)


Определим для примера уравнение кривой разгона термической печи, дифференциальное уравнение которой было введено ранее:


Т* Х/ вых + Х вых = К* Х вх


Будем искать решение этого уравнения в виде


Х вых = С*еrt + K* Х вх 0


Где r и С подлежат определению

Подставляя значения Х вых и Х/ вых в уравнение (2). Получим


Т* С*r*еrt + С*еrt = 0


Сокращая на С*еrt будем иметь:


Т* r + 1 = 0


Откуда r = - 1/Т и решение примет вид


Х вых = К* Х вх 0 (1-е-t/T)


При t = 0Х вых = 0 следовательно С = К* Х вх 0. тогда уравнение кривой разгона будет:


Х вых = К* Х вх 0 (1-е-t/T)


График кривой разгона:

При t = Ґ выходная величина Х вых достигает предельного значения


Х вых. уст = К* Х вх 0


Коэффициент усиления К определяет отношение установившихся значений выходной величины к входной:


К = Х вых. уст/ Х вх 0


Коэффициент усиления может быть непосредственно найден из графика переходной функции; постоянная времени Т характеризует инерционность процесса.

Таким образом, кривые разгона дают наглядное представление о характере протекания переходных процессов в системе или объекте.

Похожие работы:

  1. • Управление электроснабжением потребителей электроэнергии на ...
  2. • Дифференциальные уравнения и описание непрерывных систем
  3. • Разработка имитационной модели системы массового ...
  4. • Решение систем линейных дифференциальных уравнений ...
  5. • ЭВМ с использованием математического пакета ...
  6. • Линейные системы дифференциальных уравнений с ...
  7. • Система автоматического регулирования напряжения ...
  8. • Решение систем линейных дифференциальных уравнений ...
  9. • РЕШЕНИЕ СИСТЕМ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ...
  10. • Синтез частотных характеристик линейных систем ...
  11. •  ... 98 для решения дифференциального уравнения n-го ...
  12. • Автоматические системы управления
  13. • Разработка программы поиска решения системы ...
  14. • Элементы теории автоматического регулирования
  15. • Решение систем дифференциальных уравнений при помощи ...
  16. • Теории управления
  17. • Дифференциальные уравнения I и II порядка
  18. •  ... компьютерного решения дифференциальных уравнений
  19. • Роль теории дифференциальных уравнений в современной ...
Рефетека ру refoteka@gmail.com