Министерство образования и науки Украины
Кафедра КИТ
“ВЕРОЯТНОСТНЫЕ ПРОЦЕССЫ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА В АВТОМАТИЗИРОВАННЫХ СИСТЕМАХ”
2008
РЕФЕРАТ
Пояснительная записка к расчетно-графической работе: 29 стр., 9 рис., 1 прил., 5 источников.
Объект исследования – оптимальный предел прочности алюминиевых деформируемых сплавов при испытании на растяжение.
Метод исследования – применение математико-статистических методов в автоматизированных системах, реализация программ статистической обработки эксперимента на ЭВМ.
Многие детали и конструкции испытывают нагрузки на растяжение. При чем эти нагрузки часто являются основным фактором, влияющим на выход из строя деталей и конструкций. Поэтому очень важной и актуальной является задача нахождения оптимального состава материала, в течение длительного времени испытующего нагрузки на растяжение.
ДЕФОРМИРУЕМЫЙ АЛЮМИНИЕВЫЙ СПЛАВ, ЛИТИЙ, ТЕМПЕРАТУРА СТАРЕНИЯ, ВРЕМЯ СТАРЕНИЯ, МНОГОФАКТОРНЫЙ ЭКСПЕРИМЕНТ.
СОДЕРЖАНИЕ
Введение
1 Постановка задачи
2 Этапы планирования и статической обработки результатов эксперимента для построения модели 2-го порядка
2.1 Построение модели плана II порядка
2.3 Составление план – матрицы
2.4 Проверка воспроизводимости опытов
2.5 Расчет коэффициентов регрессии
2.6 Определение значимости коэффициентов
2.7 Проверка адекватности модели
3 Выбор и описание метода условной оптимизации
3.1 Выбор метода условной оптимизации
3.2 Описание метода условной оптимизации (Фиако-МакКормика)
4.3 Описание логической структуры программы
4.4 Используемые технические средства
5 Результаты обработки данных эксперимента
Список использованных источников
Введение
Развитие современной техники связано с созданием новых и постоянным совершенствованием существующих технологических процессов. Основой их разработки и оптимизации является эксперимент. Заметное повышение эффективности экспериментальных исследований и инженерных разработок достигается использованием математических методов планирования экспериментов. Использование математико-статистических методов при постановке задач. В процессе экспериментирования и при обработке полученных данных существенно сокращает сроки решения, снижает затраты на исследования и повышает качество полученных результатов.
Встречающиеся на практике реальные задачи весьма разнообразны. Достаточно грубо их можно разделить на три основных задачи:
1 Выявление количественных зависимостей между параметрами процесса – задачи описания;
2 Определение оптимальных условий протекания процесса – экстремальные задачи;
3 Выбор оптимального состава многокомпонентных смесей.
Часто, приступая к изучению какого-либо процесса экспериментатор не имеет исчерпывающих сведений о механизме процесса. Можно только указать параметры определяющие условия протекания процесса, и, возможно требования к его результатам. Поставленная проблема является задачей кибернетики. Действительно, если считать кибернетику «наукой, изучающей системы любой природы, способные воспринимать, хранить и перерабатывать информацию для целей оптимального управления» [1], то такую систему можно представить в виде черного ящика.
Черный ящик – объект исследования, имеющий (k+p) входов и m выходов.