Рефетека.ру / Физика

Дипломная работа: Вивчення дифракції світла

П Л А Н.

Вступ

Розділ 1. Дифракція і принцип Гюйгенса

1.1 Порушення прямолінійного поширення світла

1.2 Когерентність

1.3 Порушення принципу незалежності світлових пучків

1.4 Принцип суперпозиції. Інтерференція

Розділ 2. Дифракція і принцип Гюйгенса-Френеля

2.1 Розташування і ширина максимумів дифракції на екрані

2.2 Умови чіткого спостереження дифракції від однієї щілини

Розділ 3. Дифракційна природа оптичного зображення

3.1 Критерій Релея

3.2 Роздільна здатність мікроскопа і телескопа

3.3 Дифракційна гратка

Висновки

Список використаних джерел


ВСТУП

Розділ оптики про хвильові властивості світла – це частина так званої фізичної оптики. У променевій або геометричній оптиці розглядаються такі питання, які можна розв’язати на основі уявлень про світлові промені та закони відбивання і заломлення світла.

У хвильовій оптиці розглядаються питання, пов’язані з природою світла. Зрозуміти дифракцію, інтерференцію та поляризацію світла можна лише на основі уявлень про його хвильову природу, еволюція яких закінчилась розробкою електромагнітної теорії світла у другій половині XIX століття. Ця теорія стала провідною у вивченні цих та ряду інших явищ, як, наприклад, дисперсія світла.

Виявилось, що всі закони променевої оптики мають обмежений характер і що їх можна теоретично вивести на основі уявлень про хвильову природу світла. Як відомо, оптичні прилади розглядаються в геометричній оптиці, але важливе питання про можливості відрізняти дуже малі деталі об’єкта (роздільна здатність оптичних приладів) можна розв’язати, тільки враховуючи хвильові властивості світла.

Отже, поділ оптики на геометричну і хвильову – умовний, тому променеву оптику не слід вивчати відокремлено від хвильової теорії світла.

Більшу частину курсу оптики учні вивчають на основі умовного поняття про промінь і тільки згодом, в темі про інтерференцію та дифракцію, довідуються про хвильові властивості світла. Але це здається учням дрібним і незначним і істотно на формування їх знань з фізики не впливає. Насправді хвильові і квантові явища, що розглядаються в хвильовій оптиці, мають величезне наукове, освітнє і практичне значення.

Електромагнітна теорія світла належить до найважливіших теорій фізики і має величезне наукове значення. Пов’язуючи електромагнітні і оптичні явища, вона стверджує основні погляди діалектичного матеріалізму про взаємозв’язок між явищами природи.


Розділ 1.

Дифракція і принцип Гюйгенса

 

1.1. Порушення прямолінійного поширення світла

Вивчення будь-яких фізичних явищ починають із встановлення емпіричних фактів, тобто знань, одержаних дослідним шляхом. Звичайно, що такі емпіричні факти є статистичними узагальненнями спостережень. Спочатку виділимо деякі відомі факти та їх узагальнення, на основі яких можна відтворити найпоширеніші властивості хвильових процесів – інтерференцію і дифракцію світла.

 Кожний хвильовий процес (механічні, звуковий, електромагнітний) характеризується періодичністю в просторі й періодичністю в часі. Періодичність у просторі – це коли в даний момент часу на поверхні води можна побачити гребені, а за ними впадини. Якщо ж у даному місці спостерігається спочатку гребінь, а потім впадина – це ознака періодичності в часі. Завдяки періодичності хвильові процеси різної природи описуються подібними математичними рівняннями. Рівняння, що описують світлові явища, зручно інтерпретувати за допомогою механічних хвиль. При цьому потрібно розрізняти графік поширення коливань у середовищі і графік зміни величини (зміщення, напруженості тощо ) від часу в даній точці простору.

Короткими ударами по поверхні води у хвильовій ванні в деякій точці А можна викликати кільцеві хвилі, що розходяться в усі боки. Ванну перегороджуються екраном з вузькою щілиною В. Коливання, викликані в точці А, проникають крізь щілину В по інший бік екрана. Причому центром збудження цих коливань є не точка А, а щілина В, незалежно від того, в якому місці фронту хвилі вона знаходиться. Досліди з водяною ванною пояснюють відомий принцип Гюйгенса: кожна точка, якої досягає збудження, стає ніби новим центром (джерелом) коливань. Застосовуючи метод аналогії, доходимо висновку, що це характерно для усіх хвиль, у тому числі й світлових.

Факти прямолінійного поширення світла підтверджується повсякденними спостереженнями. Однак ще в 1665 р. італієць Франческо Гримальді звернув увагу на ту обставину, що перехід від світла до тіні відбувається не різко, а з поступовим посиленням освітлення. Він також спостерігав огинання світлом перешкод. Прямолінійність поширення світла порушувалася під час проходження скрізь вузькі щілини і малі отвори. Це явище було названо дифракцією. Для спостереження дифракції від отвору можна вузький промінь ОКГ (оптичного квантового генератора) спрямувати на отвір в непрозорому екрані.

Якщо спостерігати дифракцію від щілин, не важко помітити, що чим вужча щілина тим світло сильніше відхиляється від прямолінійного поширення.

Є дві схеми спостереження дифракції від отвору і щілини, коли, відповідно, світло направляють на отвір і щілину, та коли віддалене джерело світла розглядають крізь отвір і щілину. Отвір і щілина дають не лише дійсне, але й уявне зображення нескінченно віддалених джерел у вигляді дифракційної картини. Оскільки світло - це електромагнітні хвилі, явище огинання світлом перешкод легко пояснити за допомогою відомого принципу Гюйгенса (цей принцип був корисним для пояснення заломлення світла). Однак на основі принципу Гюйгенса можна встановити лише те, що зображення світної точки у формі розмитого світлого диска перевищує розміри отвору (щілини).

1.2. Когерентність

Дифракцію і інтерференцію електромагнітних хвиль можна зафіксувати, якщо хвилі однакової частоти мають сталу різницю фаз і одну площину коливань. Такі узгоджені в просторі і в часі хвилі називаються когерентними. У оптиці мають справу не з довготривалими монохроматичними синусоїдальними хвилями, а із затухаючими коливаннями, так званими цугами хвиль, що являють собою лише відрізки синусоїд (Рис.2). Час висвічування атома (10-8 с) називають часом когерентності, а довжину цуга –

відстанню когерентності ().

В кожному наступному цугу площина коливань електричного вектора, яка збігається з коливаннями електрона в атомі, щоразу змінюється. Змінюються й фазові співвідношення між окремими випромінюваннями одного і того самого атома. Кожен атом випромінює світло різних частот, яке не є монохроматичним. Тому світлові пучки, що складаються із сукупності багатьох цугів різної частоти, за таких умов некогерентні. Світловий фронт хвиль, створений розжареним тілом, змінюється від точки до точки і від одного моменту часу до іншого. За аналогією він може нагадувати хвильовий фронт, що створюється в калюжі, якщо туди кинути пригорщу камінців. Однак зауважимо, що один камінець (як точкове джерело), кинутий у воду, створює когерентний хвильовий фронт. Продовжуючи подібні порівняння, уявімо собі існування точкових світлових джерел (своєрідних “камінців”), які можуть генерувати когерентні світлові хвилі. Підстава для цього є, бо явища інтерференції й дифракції світла спостерігаються лише при взаємодії когерентних хвиль. Але площина цугів, фази та їх частоти різні, і когерентність світлових пучків не слід розуміти в традиційному смислі. Під когерентністю в оптиці розуміють здатність світлових хвиль до інтерференції. Чим вона зумовлюється?

Відомо, що чим вужча щілина, тим більше світло відхиляється від прямолінійного поширення. Подумки перейдімо до граничного випадку в розвитку цієї закономірності. Якби розміри щілини чи отвору були меншими від довжини хвилі, вона (щілина), напевно, освітлювала б весь екран. Отже, абстрагуючись від ширини щілини (отвору), переходимо до моделі лінійного (точкового) джерела, що випромінює гармонічні хвилі. Однак точкових джерел не існує, як не існує математичних маятників і матеріальних точок. І все-таки це корисна абстракція, оскільки вона дає змогу описувати спонтанне (самодовільне) випромінювання світлових джерел лише однією синусоїдальною хвилею. “Синусоїдальні” коливання від точкових джерел – це випромінювання монохроматичного світла.

Завдяки введенню монохроматичної ідеалізації можна говорити про інтерференцію від двох електромагнітних хвиль. На практиці точковим джерелом можна вважати джерело, розміри якого дорівнюють 250 довжинам хвиль. Розрахунки показують, що джерело світла розміром 0,15 мм мало чим відрізняються від точкового джерела.

Будь-які просторово рознесені точки такого джерела є когерентними. У свій час Юнг замінив вузький отвір великим джерелом світла, і інтерференційна картина на екрані відразу ж зникла. Юнг пояснив це тим, що на щілини потрапляло світло від різних ділянок великого джерела, а таке світло не має властивості просторової когерентності.

Отже, просторова когерентність – це когерентність, яка забезпечується просторовим розміщенням (рознесенням) точкових джерел. Просторова когерентність зумовлюється поділом фронту хвилі.

1.3. Порушення принципу незалежності світлових пучків

Цілком звичним для нас є таке явище. Два світлові пучки, що поширюється від двох електричних ламп, не впливають один на одного. Узагальненням цього явища став відомий із часів Гюйгенса закон незалежності світлових пучків. І лише в 1801р. англійський фізик Томас Юнг здійснив експеримент, що демонстрував інтерференцію світла. Він знайшов такі умови досліду, за які два з’єднанні пучки давали систему темних і світлих смуг, а це означає, “що світло додане, до світла, викликає темряву”. Юнг пропускав сонячне світло скрізь невеликій отвір S в екрані і направляв його на два невеликі близько розміщені отвори S1 і S2 в другому екрані (Рис. 3). Від кожного з них виходили конусоподібні дифрагуючі пучки світла, Що перекривалися один одним. На екрані спостерігається інтервенційна картина. В одному досліді із ОКГ (відстань між точковими діафрагмами становила 0,2 мм, а їх діаметри - 0,05 мм) спостерігається взаємне чергування семи світлих і темних смуг .