Реферат на тему:
«Корпускулярно-волновой дуализм»
Выполнила: ученица 11 класса Г
средней школы №18
Амосова Александра
(активную помощь в написании реферата оказывал студент факультета Технической кибернетики и информатике
Казанского государственного технического университета)
Бужин Юрий
ICQ number: (257333541) mailto:larry-lamer@mail.ru
Казань 2003 г.
Содержание.
1. Введение.
2. Единство корпускулярных и волновых свойств электромагнитного излучения.
3. Волновые свойства света. а) Дисперсия. б) Дифракция. в) Поляризация
4. Квантовые свойства света. а) Фотоэффект. б) Эффект Комптона.
5. Заключение.
6. Список использованной литературы.
Введение.
Уже в древности наметились три основных подхода к решению вопроса о природе света. Эти три подхода в последующем оформились в две конкурирующие теории – корпускулярную и волновую теории света.
Подавляющее большинство древних философов и ученых рассматривало свет как некие лучи, соединяющие светящееся тело и человеческий глаз. При этом одни из них полагали, что лучи исходят из глаз человека, они как бы ощупывают рассматриваемый предмет. Эта точка зрения имела большое число последователей, среди которых был Эвклид. Формулируя первый закон геометрической оптики, закон прямолинейного распространения света, Эвклид писал: “Испускаемые глазами лучи распространяются по прямому пути”. Такого же взгляда придерживался Птолемей и многие другие ученые и философы.
Однако позже, уже в средние века, такое представление о природе
света теряет свое значение. Все меньше становится ученых, следующих этим
взглядам. И к началу XVII в. эту точку зрения можно считать уже забытой.
Другие, наоборот, считали, что лучи испускаются светящимся телом и,
достигая человеческого глаза, несут на себе отпечаток светящегося предмета.
Такой точки зрения придерживались атомисты Демокрит, Эпикур, Лукреций.
Последняя точка зрения на природу света уже позже, в XVII в., оформилась в корпускулярную теорию света, согласно которой свет есть поток каких-то частиц, испускаемых светящимся телом.
Третья точка зрения на природу света была высказана Аристотелем. Он рассматривал свет как распространяющееся в пространстве (в среде) действие или движение. Мнение Аристотеля в его время мало кто разделял. Но в дальнейшем, опять же в XVII в., его точка зрения получила развитие и положила начало волновой теории света.
К середине XVII века накопились факты, которые толкали научную мысль
за пределы геометрической оптики. Одним из первых ученых, подтолкнувшим
научную мысль к теории волновой природы света, был чешский ученый Марци.
Его работы известны не только в области оптики, но также и в области
механики и даже медицины. В 1648 им открыто явление дисперсии света.
В XVII в. в связи с развитием оптики вопрос о природе света стал
вызывать все больший и больший интерес. При этом постепенно происходит
образование двух противоположных теорий света: корпускулярной и волновой.
Для развития корпускулярной теории света была более благоприятная почва.
Действительно, для геометрической оптики представление о том, что свет есть
поток особых частиц, было вполне естественным. Прямолинейное
распространение света, а также законы отражения и преломления хорошо
объяснялись с точки зрения этой теории.
Общее представление о строении вещества также не вступало в противоречие
с корпускулярной теорией света. В то время в основе взглядов на строение
вещества лежала атомистика. Все тела состоят из атомов. Между атомами
существует пустое пространство. В частности, тогда считали, что
межпланетное пространство является пустым. В нем и распространяется свет от
небесных тел в виде потоков световых частиц. Поэтому вполне естественно,
что в XVII в. было много физиков, которые придерживались корпускулярной
теории света. В это же время начинает развиваться и представление о
волновой природе света. Родоначальником волновой теории света можно считать
Декарта.
Единство корпускулярных и волновых свойств электромагнитного излучения.
Рассмотренные в данном разделе явления- излучение чёрного тела,
фотоэффекта, эффект Комптона- служат доказательством
квантовых(корпускулярных) представлений о свете как о потоке фотонов. С
другой стороны, такие явления, как интерференция, дифракция и поляризация
света, убедительно подтверждают волновую (электромагнитную) природу света.
Наконец, давление и преломление света объясняются как волновой, так и
квантовой теориями. Таким образом, электромагнитное излучение обнаруживает
удивительное единство, казалось бы, взаимоисключающих свойств-
непрерывных(волны) и дискретных(фотоны), которые взаимно дополняют друг
друга.
Более детальное рассмотрение оптических явлений приводит к выводу, что свойства непрерывности, характерные для электромагнитного поля световой волны, не следует противопоставлять свойствам дискретности, характерным для фотона. Свет, обладая одновременно корпускулярными и волновыми свойствами, обнаруживает определённые закономерности в их проявлении. Так, волновые свойства света проявляются в закономерностях его распространения, интерференции, дифракции, поляризации, а корпускулярные – в процессах взаимодействия света с веществом. Чем больше длина волны, тем меньше энергия и импульс фотона и тем труднее обнаруживаются квантовые свойства света (с этим связано, например, существование красной границы фотоэффекта). Наоборот, чем меньше длина волны, тем больше энергия и импульс фотона и тем труднее обнаруживается волновые свойства (например, волновые свойства (дифракция) рентгеновского излучения обнаружены лишь после применения в качестве дифракционной решётки кристаллов).
Взаимосвязь между двойственными корпускулярно-волновыми свойствами света можно объяснить, если использовать, как это делает квантовая оптика, статистический подход к рассмотрению закономерностей рассмотрения света. Например, дифракция света на щели состоит в том, что при прохождении света через щель происходит перераспределение фотонов в пространстве. Так как вероятность попадания фотонов в различные точки экрана неодинакова, то и возникает дифракционная картина. Освещённость экрана пропорциональна вероятности попадания фотонов на единицу площади экрана. С другой стороны, по волновой теории, освещённость пропорциональна квадрату амплитуды световой волны той же точке экрана. Следовательно, квадрат амплитуды световой волны в данной точке пространства является мерой вероятности попадания фотонов в данную точку.
Волновые свойства света.
1.1 Дисперсия.
Ньютон обратился к исследованию цветов, наблюдаемых при преломлении света,
в связи с попытками усовершенствования телескопов. Стремясь получить линзы
возможно лучшего качества, Ньютон убедился, что главным недостатком
изображений является наличие окрашенных краёв. Исследуя окрашивание при
преломлении, Ньютон сделал свои величайшие оптические открытия.
Сущность открытий Ньютона поясняется следующими опытами (рис.1) свет от
фонаря освещает узкое отверстие S (щель). При помощи линзы L изображение
щели получается на экране MN в виде короткого белого прямоугольника S`.
Поместив на пути призму P, ребро которой параллельно щели, обнаружим, что
изображение щели сместится и превратится в окрашенную полоску, переходы
цветов, в которой от красного к фиолетовому подобны наблюдаемым в радуге.
Это радужное изображение Ньютон назвал спектром.
Если прикрыть щель цветным стеклом, т.е. если направлять на призму вместо
белого света цветной, изображение щели сведется к цветному прямоугольнику,
располагающему на соответствующем месте спектра, т.е. в зависимости от
цвета свет будет отклоняться на различные углы от первоначального
изображения S`. Описанное наблюдения показывает, что лучи разного цвета
различно преломляются призмой.
Это важное заключение Ньютон проверил многими опытами. Важнейший из них
состоял в определении и показателя преломления лучей различного цвета,
выделенных из спектра. Для этой цели в экране MN , на котором получается
спектр, прорезалось отверстие; перемещая экран, можно было выпустить через
отверстие узкий пучок лучей того или иного цвета. Такой способ выделения
однородных лучей более совершенен, чем выделение при помощи цветного
стекла. Опыты обнаружили, что такой выделенный пучок, преломляясь во второй
призме, уже не растягивает полоску. Такому пучку соответствует определенный
показатель преломления, значение которого зависит от цвета выделенного
пучка.
Описанные опыты показывают, что для узкого цветного пучка, выделенного из
спектра, показатель преломления имеет вполне определенное значение, тогда
как преломление белого света можно только приблизительно охарактеризовать
одним каким то значением этого показателя. Сопоставляя подобные наблюдения,
Ньютон сделал вывод, что существуют простые цвета, не разлагающиеся при
прохождении через призму, и сложные, представляющие совокупность простых,
имеющих разные показатели преломления. В частности, солнечный свет есть
такая совокупность цветов, которая при помощи призмы разлагается, давая
спектральное изображение щели.
Таким образом, в основных опытах Ньютона заключались два важных открытия:
1)Свет различного цвета характеризуется различными показателями преломления
в данном веществе (дисперсия).
2)Белый цвет есть совокупность простых цветов.
Мы знаем в настоящее время, что разным цветам соответствуют различные
длины световых волн. Поэтому первое открытие Ньютона можно сформулировать
следующим образом:
Показатель преломления вещества зависит от длины световой волны.
Обычно он увеличивается по мере уменьшения длины волны.
1.2 Дифракция.
У световой волны не происходит изменения геометрической формы
фронта при распространении в однородной среде. Однако если распространение
света осуществляется в неоднородной среде, в которой, например, находятся
не прозрачные экраны, области пространства со сравнительно резким
изменением показателя преломления и т. п., то наблюдается искажение фронта
волны. В этом случае происходит перераспределение интенсивности световой
волны в пространстве. При освещении, например, непрозрачных экранов
точечным источником света на границе тени, где согласно законам
геометрической оптики должен был бы проходить скачкообразный переход от
тени к свету, наблюдается ряд тёмных и светлых полос, часть света проникает
в область геометрической тени. Эти явления относятся к дифракции света.
Итак, дифракция света в узком смысле - явление огибания светом контура
непрозрачных тел и попадание света в область геометрической тени; в широком
смысле - всякое отклонение при распространении света от законов
геометрической оптики.
Определение Зоммерфельда: под дифракцией света понимают всякое отклонение
от прямолинейного распространения, если оно не может быть объяснено как
результат отражения, преломления или изгибания световых лучей в средах с
непрерывно меняющимся показателем преломления.
Если в среде имеются мельчайшие частицы (туман) или показатель преломления
заметно меняется на расстояниях порядка длины волны, то в этих случаях
говорят о рассеянии света и термин «дифракция» не употребляется.
Различают два вида дифракции света. Изучая дифракционную картину в точке
наблюдения, находящейся на конечном расстоянии от препятствия, мы имеем
дело с дифракцией Френеля. Если точка наблюдения и источник света
расположены от препятствия так далеко, что лучи, падающие на препятствие, и
лучи, идущие в точку наблюдения, можно считать параллельными пучками, то
говорят о дифракции в параллельных лучах – дифракции Фраунгофера.
Теория дифракции рассматривает волновые процессы в тех случаях, когда на
пути распространения волны имеются какие – либо препятствия.
С помощью теории дифракции решают такие проблемы, как защита от шумов с
помощью акустических экранов, распространение радиоволн над поверхностью
Земли, работа оптических приборов (так как изображение, даваемое
объективом, - всегда дифракционная картина), измерения качества
поверхности, изучение строения вещества и многие другие.
1.3 Поляризация
Явления интерференции и дифракции, послужившие для обоснования волновой
природы света, не дают еще полного представления о характере световых волн.
Новые черты открывает нам опыт над прохождением света через кристаллы, в
частности через турмалин.
Возьмем две одинаковые прямоугольные пластинки турмалина, вырезанные так,
что одна из сторон прямоугольника совпадает с определенным направлением
внутри кристалла, носящим название оптической оси. Наложим одну пластинку
на другую так, чтобы оси их совпадали по направлению, и пропустим через
сложенную пару пластинок узкий пучок света от фонаря или солнца. Так как
турмалин представляет собой кристалл буро – зеленого цвета, то след
прошедшего пучка на экране представится в виде тёмно – зеленого пятнышка.
Начнем поворачивать одну из пластинок вокруг пучка, оставляя вторую
неподвижной. Мы обнаружим, что след пучка становится слабее, и когда
пластинка повернётся на 900, он совсем исчезнет. При дальнейшем вращении
пластинки проходящий пучок вновь начнет усиливаться и дойдет до прежней
интенсивности, когда пластинка повернется на 1800, т.е. когда оптические
оси пластинок вновь расположатся параллельно. При дальнейшем вращении
турмалина пучок вновь слабеет.
Можно объяснить все наблюдающиеся явления, если сделать следующие выводы.
Световые колебания в пучке направлены перпендикулярно к линии
распространения света (световые волны поперечны).
Турмалин способен пропускать световые колебания только в том случае, когда
они направлены определенным образом относительно его оси.
В свете фонаря(солнца) представлены поперечные колебания любого направления
и притом в одинаковой доле, так что ни одно направление не является
преимущественным.
Вывод 3 объясняет, почему естественный свет в одинаковой степени проходит
через турмалин при любой его ориентации, хотя турмалин, согласно выводу 2,
способен пропускать световые колебания только определенного направления.
Прохождение естественного света через турмалин приводит к тому, что из
поперечных колебаний отбираются только те, которые могут пропускаться
турмалином. Поэтому свет, прошедший через турмалин, будет представлять
собой совокупность поперечных колебаний одного направления, определяемого
ориентацией оси турмалина. Такой свет мы будем называть линейно
поляризованным, а плоскость, содержащую направление колебаний и ось
светового пучка, - плоскостью поляризации.
Теперь становится понятным опыт с прохождением света через две
последовательно поставленные пластинки турмалина. Первая пластинка
поляризует проходящий через неё пучок света, оставляя в нем колебания
только одного направления. Эти колебания могут пройти через второй турмалин
полностью только в том случае, когда направление их совпадает с
направлением колебаний, пропускаемых вторым турмалином, т.е. когда его ось
параллельна оси первого. Если же направление колебаний в поляризованном
свете перпендикулярно к направлению колебаний, пропускаемых вторым
турмалином, то свет будет полностью задержан. Если направление колебаний в
поляризованном свете составляет острый угол с направлением, пропускаемым
турмалином, то колебания будут пропущены лишь частично.
Квантовые свойства света.
2.1 Фотоэффект.
Гипотеза Планка о квантах послужила основой для объяснения явления
фотоэлектрического эффекта, открытого в 1887г. немецким физиком Генрихом
Герцем.
Явление фотоэффекта обнаруживается при освещении цинковой пластины,
соединенной со стержнем электрометра. Если пластине и стержню передан
положительный заряд, то электрометр не разряжается при освещении пластины.
При сообщении пластине отрицательного электрического заряда электрометр
разряжается, как только на пластину попадает ультрафиолетовое излучение.
Этот опыт доказывает, что с поверхности металлической пластины под
действием света могут освобождаться отрицательные электрические заряды.
Измерение заряда и массы частиц, вырываемых светом, показало, что эти
частицы – электроны.
Фотоэффекты бывают нескольких видов: внешний и внутренний фотоэффект,
вентильный фотоэффект и ряд других эффектов.
Внешним фотоэффектом называют явление вырывания электронов из вещества под
действием падающего на него света.
Внутренним фотоэффектом называют появление свободных электронов и дырок в
полупроводнике в результате разрыва связей между атомами за счет энергии
света, падающего на полупроводник.
Вентильным фотоэффектом называют возникновение под действием света
электродвижущей силы в системе, содержащей контакт двух различных
полупроводников или полупроводника и металла.
2.2 Эффект Комптона.
Наиболее полно корпускулярные свойства света проявляются в эффекте
Комптона. Американский физик А. Комптон (1892-1962), исследуя в 1923 г.
Рассеяние монохроматического рентгеновского излучения веществами с лёгкими
атомами (парафин, бор), обнаружил, что в составе рассеянного излучения
наряду с излучением первоначальной длины волны наблюдается также более
длинноволновое излучение.
Эффектом Комптона называется упругое рассеяние коротковолнового электромагнитного излучения (рентгеновского и гамма-излучений) на свободных(или слабосвязанных) электронах вещества, сопровождающееся увеличением длины волны. Этот эффект не укладывается в рамки волновой теории, согласно которой длина волны при рассеянии изменяться не должна: под действием периодического поля световой волны электрон колеблется с частотой поля и поэтому излучает рассеянные волны той же частоты.
Объяснение эффекта Комптона дано на основе квантовых представлений о природе света. Если считать, как это делает квантовая теория, что излучение имеет корпускулярную природу.
Эффект Комптона наблюдается не только на электронах, но и на других заряженных частицах, например протонах, однако из-за большой массы протона его отдача «просматривается» лишь при рассеянии фотонов очень высоких энергий.
Как эффект Комптона, так и фотоэффект на основе квантовых представлений обусловлены взаимодействием фотонов с электронами. В первом случае фотон рассеивается, во втором- поглощается. Рассеяние происходит при взаимодействии фотона со свободными электронами, а фотоэффект – со связанными электронами. Можно показать, что при столкновении фотона со свободными электронами не может произойти поглощения фотона, так как это находится в противоречии с законами сохранения импульса и энергии. Поэтому при взаимодействии фотонов со свободными электронами может наблюдаться только их рассеяние, .т.е. эффект Комптона.
Заключение.
Итак, свет корпускулярен в том смысле, что его энергия, импульс,
масса и спин локализованы в фотонах, а не размыты в пространстве, но не в
том, что фотон может находиться в данном точно определенном месте
пространства. Свет ведет себя как волна в том смысле, что распространение и
распределение фотонов в пространстве носят вероятный характер: вероятность
того, что фотон находится в данной точке определяется квадратом амплитуды в
этой точке. Но вероятностный (волновой) характер распределения фотонов в
пространстве не означает, что фотон в каждый момент времени находится в
какой-то одной точке.
Таким образом, свет сочетает в себе непрерывность волн и дискретность
частиц. Если учтем, что фотоны существуют только при движении (со скоростью
с), то приходим к выводу, что свету одновременно присущи как волновые, так
и корпускулярные свойства. Но в некоторых явлениях при определенных
условиях основную роль играют или волновые, или корпускулярные свойства и
свет можно рассматривать или как волну, или как частицы (корпускулы).
Список использованной литературы.
1) А.А. Детлаф Б.М. Яворский «Курс физики» изд. «Высшая школа» 2000 г.
2) Т.И. Трофимова «Курс физики» изд. «Высшая школа» 2001 г.
3) Х. Кухлинг «Справочник по физике» изд. «Мир» 1982 г.
4) Гурский И.П. «Элементарная физика» под ред. И.В. Савельева 1984 г.
5) Тарасов Л.В., Тарасова А.Н. «Беседы о преломлении света» /под ред.
В.А.
Фабриканта, изд. «Наука», 1982.