Рефетека.ру / Математика

Курсовая работа: Простейшие способы обработки опытных данных

Выпускная квалификационная работа

Выполнила студентка 5курса математического факультета О.И. Окуловская

Вятский Государственный Гуманитарный Университет

Киров 2003

Введение.

Данная тема не достаточно широко освещена в математической литературе.В математической статистике при обработке опытных данных чаще всего применяются способ средних и способ наименьших квадратов.

В настоящее время эти способы широко применяются при обработке количественных результатов естественно-научных опытов, технических данных, астрономических и геодезически наблюдений и измерений.

Также возможно применение этих способов при обработке полученных практическим путем данных физических процессов. Например, изучая силу тока в проводниках с постоянным сопротивлением, мы можем зафиксировать значение силы тока при определенном напряжении, то есть не во всех точках, а в небольшом количестве. Применяя способ средних и способ наименьших квадратов, мы имеем возможность с помощью полученных точек подобрать такую функцию, которая бы наиболее близко проходила через эти точки. Это позволяет более полно использовать информацию из наблюдений.

Цели данной работы:

Овладение простейшими способами обработки опытных данных.

С помощью способа средних и способа наименьших квадратов для экспериментально найденных функционально зависимых величин подобрать функцию, которая наиболее точно описывала бы данный процесс.

Применить описанные методы для описания реальных процессов.

§ 1. Простейшие способы обработки опытных данных.

1.1. Подбор параметров способом средних.

Способ средних основывается на допущении, что наиболее подходящей линией служит та, для которой алгебраическая сумма уклонений равна нулю. Для того чтобы найти этим способом неизвестные постоянные в эмпирической формуле, сначала подставляем в эту формулу все пары наблюдавшихся или замеренных значений x и y и получаем столько уклонений, сколько пар значений (x ; y) в таблице (уклонения—вертикальные расстояния от данных точек до графика функции). Затем распределяем эти уклонения по группам, составляя столько групп, сколько неизвестных параметров эмпирической формулы надо найти. Наконец, приравнивая нулю сумму уклонений по каждой группе, получим систему линейных уравнений относительно параметров.

Частный случай.S = A*tq.

t t1 t2 t3 t4 . . . . . . tn
S S1 S2 S3 S4 . . . . . . Sn

Уклонения имеют вид d = A*tq – S. Подставляя значения S и t , взятые из таблицы, и приравнивая уклонения нулю, получим систему уравнений относительно параметров A и q:

Простейшие способы обработки опытных данныхПростейшие способы обработки опытных данных (l<n)

Решение этой системы затруднительно. Поэтому без большей потери в точности, можно приравнять нулю сумму уклонений логарифма S, то есть

d’ = lg A + q * lg T – lg S.

Тогда система примет вид

Простейшие способы обработки опытных данныхПростейшие способы обработки опытных данных (l<n)

Из системы и определяют q и S.

Частный случай . S = a0 + a1*t + a2 *t2.

t t1 t2 t3 t4 . . . . . . tn
S S1 S2 S3 S4 . . . . . . Sn

Уклонения имеют вид d = a0 + a1 * t + a2 * t2 - S . Подставляя значения S и t , взятые из таблицы, и приравнивая уклонения нулю, получим систему

уравнений относительно параметров a0, a1, a2 :

Простейшие способы обработки опытных данныхПростейшие способы обработки опытных данных (l<m<n)

Из системы и определяют a0, a1, a2.Простейшие способы обработки опытных данных

1.2.Подбор параметров способом наименьших квадратов.

На практике часто приходится решать такую задачу. Пусть для двух функционально связанных величин x и y известны n пар соответствующих значений ,которые могут быть представлены в виде таблицы

x x1 x2 x3 . . . xn
y y1 y2 y3 . . . yn

 Требуется в наперед заданной формуле y = f(x,a1, a2, …,am) определить m параметров a1, a2, …,am (m < n) так, чтобы в эту формулу наилучшим образом «укладывались» бы известные n пар значений x и y.

Оценки параметров a1, a2, …,am определяются из условия, чтобы сумма квадратов отклонений значений y, вычисленных по формуле, от заданных, то есть

L = å [f (xk,a1, a2, …,am) – yk ] 2

принимала наименьшее значение. Поэтому сам способ получил название способа наименьших квадратов.

Это условие дает систему m уравнений, из которых определяются a1, a2, …,am:

Простейшие способы обработки опытных данных ∂L/∂a1=0,

∂L/∂a2=0 , (1)

. . . . . .

∂L/∂am=0.

На практике заданную формулу y = f(x,a1, a2, …,am) иногда приходится (в ущерб строгости полученного решения) преобразовывать к такому виду, чтобы систему (1) было проще решать (при подборе параметров в формулах y=A*ect и y=A*tq).

a) Частный случай. y = A ect.

Для упрощения системы (1) эту формулу, связывающую x и y, предварительно логарифмируют и заменяют формулой

lg y = lg A + c*lg e*x .

Продифференцировав величину L по A и c и приравняв нулю, получим систему из двух уравнений с двумя неизвестными A и c.

Простейшие способы обработки опытных данныхПростейшие способы обработки опытных данных (2)

Система (2) примет следующий вид:

Простейшие способы обработки опытных данныхПростейшие способы обработки опытных данных Простейшие способы обработки опытных данных (2’)

Для определения коэффициентов (2’) удобно составить вспомогательную таблицу:

k xk xk2 lg yk xk*lg yk
1 x1 x12 lg y1 x1*lg y1
2 x2 x22 lg y2 x2*lg y2
n xn xn2 lg yn xn*lg yn
å

Из системы (2’) определяют c и A .

б) Частный случай. y=A*xq.

Эту формулу также предварительно логарифмируют и заменяют следующей:

lg y = lg A + q * lg x.

Система (1) теперь примет вид

Простейшие способы обработки опытных данныхПростейшие способы обработки опытных данных (4)

Вспомогательная таблица имеет вид

k lg xk lg2 xk lg yk lg xk * lg yk
1 lg x1 lg2 x1 lg y1 lg x1 * lg y1
2 lg x2 lg2 x2 lg y2 lg x2 * lg y2
n lg xn lg2 xn lg yn lg xn * lg yn

Из системы (3) определяют A и q.

§2. Применение простейших способов обработки опытных данных к конкретным процессам.

2.1.Применение простейших способов обработки опытных данных к математической модели .

Задача 1. На рисунке 1 изображена индикаторная диаграмма (упрощенная) паровой машины

Простейшие способы обработки опытных данных S

A

Простейшие способы обработки опытных данныхПростейшие способы обработки опытных данныхПростейшие способы обработки опытных данныхПростейшие способы обработки опытных данныхПростейшие способы обработки опытных данныхПростейшие способы обработки опытных данныхПростейшие способы обработки опытных данных10 B

C

70 t

рис.1

Точки кривой ВС соответствуют значениям из таблицы 1:

T 35 40 45 50 55 60 65 70
S 10 8,41 7,21 6,29 5,56 4,96 4,47 4,06

Нужно, используя способ средних и способ наименьших квадратов, найти

такую функцию, график которой наиболее приближен к данным точкам.

Способом средних подберем функцию вида S = A*tq , отвечающую

таблице 1. Уклонения имеют вид δ`= lg A + q*lg t – lg S.Подставив

онкретные значения S и t, получим:

δ`1= lg A + 1,5441*q – 1,0000 ,

δ`2= lg A + 1,6021*q – 0,9248 ,

δ`3= lg A + 1,6532*q – 0,8579 ,

δ`4= lg A + 1,6990*q – 0,7987 ,

δ`5= lg A + 1,7404*q – 0,7451 ,

δ`6= lg A + 1,7782*q – 0,6955 ,

δ`7= lg A + 1,8129*q – 0,6503 ,

δ`8= lg A + 1,8451*q – 0,6085 .

Приравняв нулю сумму уклонений по этим двум группам, получаем систему уравнений для определения параметров А и q:

Простейшие способы обработки опытных данных4*lgA + 6,4984*q = 3,5814 ,

4*lgA + 7,1766*q = 2,6994 .

Решение этой системы q = -1,3 , A = 1017,02 . Таким образом, искомая

степенная функция имеет вид S = 1017,02 * t –1,3 .

t 35 40 45 50 55 60 65 70
S 10 8,41 7,22 6,29 5,56 4,97 4,47 4,06

Ошибка составляет: Σ (Δ Si)2 = 0,012 + 0,012 = 0,0002 .

Способом наименьших квадратов подберем степенную функцию

вида S = A*tq , отвечающую таблице 1.

Составим вспомогательную таблицу:

K xk = lg Sk xk2 yk = lg Sk xk * yk
1 1,5441 2,3842 1,0000 1,5441
2 1,6021 2,5667 0,9248 1,4816
3 1,6532 2,7331 0,8579 1,4183
4 1,6990 2,8866 0,7987 1,3570
5 1,7404 3,0290 0,7451 1,2968
6 1,7782 3,1620 0,6955 1,2367
7 1,8129 3,2866 0,6503 1,1789
8 1,8451 3,4133 0,6085 1,1227
13,6748 23,4516 6,2808 10,6362

 

Получаем систему уравнений:

Простейшие способы обработки опытных данных13,6748*q + 8*lgA = 6,2808 ,

23,4516*q + 13,6748*lgA = 10,6362 .

Решение этой системы q = -1,3 , A = 1017 .Таким образом, искомая

степенная функция имеет вид S = 1017*t –1,3 .

T 35 40 45 50 55 60 65 70
S 10 8,42 7,22 6,29 5,56 4,96 4,48 4,06

Ошибка составляет: Σ (Δ Si)2 = 0,012 + 0,012 +0,012= 0,0003 .

Способом наименьших квадратов подберем показательную

функцию S = A*ect, отвечающую таблице 1.

Составим вспомогательную таблицу:

K T t2 y=lgSk T*y
1 35 1225 1,0000 35,0000
2 40 1600 0,9248 36,9920
3 45 2025 0,8379 38,6055
4 50 2500 0,7987 39,9350
5 55 3025 0,7451 40,9805
6 60 3600 0,6955 41,7300
7 65 4225 0,6503 42,2695
8 70 4900 0,6085 42,5950
420 23100 6,2808 318,1075

 

Получаем систему уравнений:

Простейшие способы обработки опытных данных420*c*lg e + 8*lg A = 6,2808 ,

23100*c*lg e + 420*lg A = 318,1063 .

Решение этой системы c = - 0,026 , A = 23,27 .Таким образом, искомая показательная функция имеет вид S = 23,27 * e – 0,026*t .

T 35 40 45 50 55 60 65 70
S 9,39 8,25 7,25 6,37 5,59 4,91 4,32 3,79

Ошибка составляет:

Σ (Δ Si)2 = 0,3721 + 0,0256 + 0,0016 + 0,0064 + 0,0009 + 0,0025 +

+ 0,0729 = 0,5045.

Таким образом, кривую ВС для заданных значений t и S  (таблица 1) наиболее точно описывает степенная функция вида  S = A*tq , найденная с помощью способа средних.

2.2.Применение простейших способов обработки опытных данных к физической модели .

Задача 2. На рисунке 2 представлена индикаторная диаграмма  дизельного двигателя

Простейшие способы обработки опытных данных

Простейшие способы обработки опытных данных Рис.2

Адиабата ВС соответствует значениям таблицы 2:

T 4 6 8 10 12 14 16 18 20
S 35 20,66 14,21 10,64 8,39 6,87 5,77 4,95 4,32

Адиабата AD соответствует значениям таблицы 3:

T 2 4 6 8 10 12 14 16 18 20
S 35 13,73 7,94 5,39 3,99 3,12 2,53 2,11 1,8 1,56

Требуется с помощью способа средних и способа наименьших  квадратов для адиабат AD и BC найти такие функции, графики которых  наиболее приближены к данным точкам.

Рассмотрим адиабату ВС.

Способом средних подберем функцию вида S = A*tq , отвечающую  таблице 2. Уклонения имеют вид δ`= lg A + q*lg t – lg S.Подставив  конкретные значения S и t, получим:

δ`1= lg A + 0,6021*q – 1,5441 ,

δ`2= lg A + 0,7782*q – 1,3151 ,

δ`3= lg A + 1,9031*q – 1,1526 ,

δ`4= lg A + 1,0000*q – 1,0269 ,

δ`5= lg A + 1,0792*q – 0,9238 ,

δ`6= lg A + 1,1461*q – 0,8370 ,

δ`7= lg A + 1,2041*q – 0,7612 ,

δ`8= lg A + 1,2553*q – 0,6946 ,

δ`9= lg A + 1,3010*q – 0,6355 .

Приравняв нулю сумму уклонений по этим двум группам, получим  систему уравнений для определения параметров А и q:

Простейшие способы обработки опытных данных5*lg A + 4,3626*q = 5,9625 ,

4*lg A + 4,9065*q = 2,9283 .

Решение этой системы q = -1.3 , A = 212.22 .Таким образом, искомая  степенная функция имеет вид S = 212.22*t – 1,3 .

T 4 6 8 10 12 14 16 18 20
S 35 20,66 14,22 10,64 8,39 6,87 5,77 4,95 4,32

Ошибка составляет: Σ (Δ Si)2 = 0,012 = 0,0001 .

Способом наименьших квадратов подберем функцию вида S = A*tq , которая отвечает таблице 2.

Составим вспомогательную таблицу:

K xk = lg tk xk2 yk = lg Sk xk*yk
1 0,6021 0,3625 1,5441 0,9297
2 0,7782 0,6056 1,3151 1,0234
3 0,9031 0,7028 1,1526 1,0412
4 1,0000 1,0000 1,0269 1,0269
5 1,0792 1,1647 0,9238 0,9970
6 1,1461 1,3135 0,8370 0,9593
7 1,2041 1,4499 0,7612 0,9166
8 1,2553 1,5758 0,6946 0,8710
9 1,3010 1,6926 0,6355 0,8268
9,2690 9,9802 8,8907 8,5928

Получаем систему уравнений:

Простейшие способы обработки опытных данных9,2690*q + 9*lgA=8,8907 ,

9,9802*q + 9,2690*lgA=8,5928 .

Решение этой системы q = -1,3 , A = 212,21 .Таким образом, искомая  степенная функция имеет вид S = 212,21*t –1,3 .

T 4 6 8 10 12 14 16 18 20
S 35 20,66 14,22 10,65 8,39 6,87 5,77 4,95 4,31

Ошибка составляет: Σ (Δ Si)2 = 0,012 + 0,012 = 0,0002 .

Способом наименьших квадратов подберем функцию вида

S = A*ect, отвечающую таблице 2.

Составим вспомогательную таблицу:

K t t2 y = lg Sk T * y
1 4 16 1,5441 6,1764
2 6 36 1,3151 7,8906
3 8 64 1,1526 9,2232
4 10 100 1,0269 10,2690
5 12 144 0,9238 11,0856
6 14 196 0,8370 11,7180
7 16 256 0,7612 12,1792
8 18 324 0,6946 12,5028
9 20 400 0,6355 12,7100
108 1536 8,8907 93,7548

 

Простейшие способы обработки опытных данных Получаем систему уравнений:

108*c*lg e + 98*lg A=8,8907 ,

1536*c*lg e + 108*lg A=93,7548 .

Решение этой системы c = - 0,124 , A = 41,05 .Таким образом, искомая показательная функция имеет вид S = 41,05*e – 0,124*t .

T 4 6 8 10 12 14 16 18 20
S 25,39 19,97 15,71 12,36 9,72 7,64 6,01 4,73 3,72

 

Ошибка составляет:

Σ(Δ Si)2 = 9,612 + 0,692 + 1,52 + 1,722 + 1,332 + 0,782 + 0,332 + 0,022 +

+ 0,262 + 0,432 = 10,6719 .

Рассмотрим адиабату AD.

Способом средних подберем функцию вида S = A*tq , отвечающую

таблице 3. Уклонения имеют вид δ`= lg A + q*lg t – lg S.Подставив

конкретные значения S и t, получим:

δ`1 = lg A + 0,3010*q – 1,5441 ,

δ`2 = lg A + 0,6021*q – 1,1377 ,

δ`3 = lg A + 0,7782*q – 0,8998 ,

δ`4 = lg A + 0,9031*q – 0,7316 ,

δ`5 = lg A + 1,0000*q – 0,6010 ,

δ`6 = lg A + 1,0792*q – 0,4942 ,

δ`7 = lg A + 1,1461*q – 0,4031 ,

δ`8 = lg A + 1,2041*q – 0,3243 ,

δ`9 = lg A + 1,2553*q – 0,2553 ,

δ`10 = lg A + 1,3010*q – 0,1931 .

Приравняв нулю сумму уклонений по этим двум группам, получим  систему уравнений для определения параметров А и q:

Простейшие способы обработки опытных данных5*lgA + 3,5844*q = 4,9142 ,

5*lgA + 5,9867*q = 1,6700 .

Решение этой системы q = -1,35, A = 89,125 .Таким образом, искомая  степенная функция имеет вид S = 89,125*t – 1,35 .

T 2 4 6 8 10 12 14 16 18 20
S 34,.96 13,72 7.94 5.38 3.98 3.11 2.53 2.11 1.8 1.56

Ошибка составляет:

Σ(Δ Si)2 = 0,042 + 0,012 + 0,012 + 0,012 + 0,012 = 0,002.

Способом наименьших квадратов подберем функцию вида

S = A*tq , которая отвечает таблице 3.

Составим вспомогательную таблицу:

K xk = lg tk Xk2 yk = lg Sk xk * yk
1 0,3010 0,0906 1,5441 0,4648
2 0,6021 0,3625 1,1377 0,6850
3 0,7782 0,6056 0,8998 0,7002
4 0,9031 0,8156 0,7316 0,6607
5 1,0000 1,0000 0,6010 0,6010
6 1,0792 1,1647 0,4942 0,5333
7 1,1461 1,3135 0,4031 0,4620
8 1,2041 1,4499 0,3243 0,3905
9 1,2553 1,5758 0,2553 0,3205
10 1,3010 1,6926 0,1931 0,2512
9,5701 10,0708 6,5842 5,0692

Простейшие способы обработки опытных данных Получаем систему уравнений:

9,5701* q + 10 * lg A=6,5842 ,

10,0708 * q + 9,5701 * lg A=5.0692 .

Решение этой системы q = -1,35 , A = 89,32 .Таким образом, искомая степенная функция имеет вид S = 89,32*t –1,35 .

T 2 4 6 8 10 12 14 16 18 20
S 35,02 13,75 7,95 5,39 3,99 3,12 2,53 2,12 1,8 1,57

 

Ошибка составляет:

Σ (Δ Si )2 = 0,042 + 0,022 + 0,012 + 0,012 + 0,012 = 0,0023 .

Способом наименьших квадратов подберем функцию вида

S = A*ect, отвечающую таблице 3.

Составим вспомогательную таблицу:

K t t2 y = lg Sk t*y
1 2 4 1,5441 3,0882
2 4 16 1,1377 4,5508
3 6 36 0,8998 5,3988
4 8 64 0,7316 5,8528
5 10 100 0,6010 6,0100
6 12 144 0,4942 5,9304
7 14 196 0,4031 5,6434
8 16 256 0,3243 5,1888
9 18 324 0,2553 4,5954
10 20 400 0,1931 3,9520
110 1540 6,5842 50,2206

Получаем систему уравнений:

Простейшие способы обработки опытных данных110*c*lg e + 10*lg A=6,5842 ,

1540*c*lg e + 110*lg A=50,2206 .

Решение этой системы c = - 0,155 , A = 25,05 .Таким образом, искомая показательная функция имеет вид S = 25,05*e – 0,1550*t .

T 2 4 6 8 10 12 14 16 18 20
S 34,16 13,67 9,88 7,24 5,31 3,90 2,86 2,09 1,54 1,13

Ошибка составляет:

Σ (Δ Si )2 = 0,842 + 0,262 + 1,942 + 1,852 + 1,322 + 0,782 + 0,332 + 0,022 +

+ 0,262 + 0,432 = 10,6719 .

Таким образом, адиабаты AD и BC для заданных значений t и S

(таблицы 2 и 3) наиболее точно описывают степенные функции вида

S = A*tq ,найденные с помощью способа средних.

2.3.Применение простейших способов обработки опытных данных к

реальному процессу.

Задача 3. На рисунке 3 изображена индикаторная диаграмма работы пара в цилиндре паровой машины:

Простейшие способы обработки опытных данных

рис.3

Точки кривой ABC соответствуют значениям из таблицы 4:

T 7,7 15,8 23,9 32,0 40,1 48,2 56,3 64,4 72,5 80,6 88,7
S 60,6 53,0 32,2 24,4 19,9 17,0 15,0 13,3 12,0 11,0 6,2

Точки кривой EHD соответствуют значениям из таблицы 5:

T 7,7 15,8 23,9 32,0 40,1 48,2 56,3 64,4 72,5 80,6 88,7
S 5,8 1,2 0,6 0,6 0,7 0,8 0,9 1,0 1,3 1,8 5,7

Требуется, используя способ средних и способ наименьших квадратов,

для кривых ABC и EHD найти такие функции, графики которых наиболее приближены к данным точкам.

Для кривой BC подберем функции вида S = A*tq и S = A*ect с

помощью способа средних и способа наименьших квадратов,

соответствующие таблице 4.1:

T 23,9 32,0 40,1 48,2 56,3 64,4 72,5 80,6 88,7
S 32,2 24,4 19,9 17,0 15,0 13,3 12,0 11,0 6,2

 Способом средних подберем функцию вида S = A*tq , которая

отвечает таблице 4.1. Уклонения имеют вид δ`= lg A + q*lg t – lg S.

Подставив конкретные значения S и t, получим:

δ`1 = lg A + 1,3784*q – 1,5079 ,

δ`2 = lg A + 1,5052*q – 1,3874 ,

δ`3 = lg A + 1,6031*q – 1,2989 ,

δ`4 = lg A + 1,6830*q – 1,2304 ,

δ`5 = lg A + 1,7505*q – 1,1761 ,

δ`6 = lg A + 1,8098*q – 1,1239 ,

δ`7 = lg A + 1,8603*q – 1,0792 ,

δ`8 = lg A + 1,9063*q – 1,0414 , δ`9 = lg A + 1,9479*q – 0,7924 .

Приравняв нулю сумму уклонений по этим двум группам, получим

систему уравнений для определения параметров A и q:

Простейшие способы обработки опытных данных5*lg A + 7,9202*q = 6,6007 ,

4*lg A + 7,5234*q = 4,0369 .

Решение этой системы q = -1,05 ,A = 955,94 .Таким образом, искомая

степенная функция имеет вид S = 955,94*t –1,05 .

T 23,9 32,0 40,1 48,2 56,3 64,4 72,5 80,6 88,7
S 34,13 25,12 19,82 16,34 13,88 12,05 10,64 9,52 8,61

Ошибка составляет:

Σ (Δ Si )2 = (-1,93)2 + (-0,72)2 + 0,082 + 0,662 + 1,122 + 1,252 + 1,362 +

+ 1,482 + (-2,41)2 = 17,3503 .

Способом наименьших квадратов подберем функцию вида

S = A*tq , которая отвечает таблице 4.1.

Составим вспомогательную таблицу:

K xk = lg Sk xk2 yk = lg Sk xk * yk
1 1,3784 1,9000 1,5079 2,0785
2 1,5052 2,2656 1,3874 2,0883
3 1,6031 2,5699 1,2989 2,0823
4 1,6831 2,8328 1,2304 2,0709
5 1,7505 3,0643 1,1761 2,0588
6 1,8089 3,2721 1,1239 2,0330
7 1,8604 3,4611 1,0792 2,0077
8 1,9063 3,6340 1,0414 1,9852
9 1,9479 3,7943 0,7924 1,5435
15,4438 26,7941 10,6374 17,9477

Получаем систему уравнений:

Простейшие способы обработки опытных данных15,4438*q + 9*lg A = 10,6374 ,

26,7941*q + 15,4438*lg A = 17,9477 .

Решение этой системы q = -1,03 , A = 900,27 .Таким образом, искомая

степенная функция имеет вид S = 900,27*t –1,03 .

 

T

23,9 32,0 40,1 48,2 56,3 64.4 72,5 80,6 88,7
S 34,25 25,36 20,10 16,63 14,17 12,34 10,92 9,79 8,87

Ошибка составляет:

Σ (Δ Si )2 = (-2,05)2 + (-0,96)2 + (-0,2)2 + 0,37 2+ 0,832 + 0,962 + 1,082 +

+ 1,212 + (-2,67)2 = 16,6709.

Способом наименьших квадратов подберем функцию вида

S = A*ect, отвечающую таблице 4.1.

Составим вспомогательную таблицу:

K t t2 y=lgSk t*y
1 23,9 571,21 1,5079 36,0328
2 32,0 1024,00 1,3874 44,3968
3 40,1 1608,01 1,2989 52,0859
4 48,2 2323,24 1,2304 59,3053
5 56,3 3169,69 1,1761 66,2144
6 64,4 4147,36 1,1239 72,3792
7 72,5 5256,25 1,0792 78,2420
8 80,6 6496,36 1,0414 83,9368
9 88,7 7867,69 0,7924 70,2859
506,7 32463,81 10,6374 562,8791

Простейшие способы обработки опытных данных Получаем систему уравнений:

506,7*c*lg e + 9*lg A = 10,6374 ,

32463,81*c*lg e + 506,7*lg A = 562,8791 .

Решение этой системы c = -0,02 , A = 49,76 .Таким образом, искомая показательная функция имеет вид S = 49,76*e -0,02*t .

T 23,9 32,0 40,1 48,2 56,3 64,4 72,5 80,6 88,7
S 30,9 26,29 22,37 19,03 16,19 13,78 11,72 9,98 8.49

Ошибка составляет:

Σ (Δ Si) 2 = 1,32 + (-1,89)2 + (-2,47)2 + (-2,03)2 + (-1,19)2 + (-0,48)2 + 0,282 +

+ 1,022 + (-2,29)2 = 23,4933.

Для кривой AB подберем функцию вида S=a0 + a1*t + a2*t2 с

помощью способа средних, отвечающую таблице 4.2:

T 7,7 15,8 23,9
S 60,6 53,0 32,2

 

Уклонения имеют вид δ`= a0 + a1*t + a2*t2 - S. Подставив конкретные

значения S и t, получим:

δ`1= a0 + 7,7*a1 + 59,29*a2 – 60,6 ,

δ`2= a0 + 15,8*a1 + 249,64*a2 – 53,0 ,

δ`3= a0 + 23,9*a1 + 571,21*a2 – 32,2 .

Приравняв нулю эти уклонения, получим систему трех уравнений

для определения параметров a0, a1, a2:

Простейшие способы обработки опытных данных a0 + 7,7*a1 + 59,29*a2 = 60,6

a0 + 15,8*a1 + 249,64*a2 = 53,0

a0 + 23,9*a1 + 571,21*a2 = 32,2

Решение этой системы a0 = 55,67, a1 = 1,41 , a2 = - 0,1.Таким образом,

искомая квадратичная функция имеет вид S = 55,67 + 1,41*t – 0,1*t2 .

T 7,7 15,8 23,9
S 60,6 52,98 32,25

Ошибка составляет:

Σ (Δ Si) 2 = 0,022 + (-0,05)2 = 0,0029.

Таким образом, кривую BC для заданных значений t и S  (таблица 4.1) наиболее точно описывает степенная функция вида  S = A*tq , найденная с помощью способа наименьших квадратов. А  кривую AB для заданных значений t и S (таблица 4.2) наиболее точно описывает квадратичная функция вида S = a0 + a1*t + a2*t2, найденная с помощью способа средних.

Для кривой HD подберем функции вида S = A*tq и S = A*ect с  помощью способа средних и способа наименьших квадратов, соответствующие таблице 5.1:

T 23,9 32,0 40,1 48,2 56,3 64,4 72,5 80,6 88,7
S 0,6 0,6 0,7 0,8 0,9 1,0 1,3 1,8 5,7

Способом средних подберем функцию вида S = A*tq , отвечающую

таблице 5.1.Уклонения имеют вид δ`= lg A + q*lg t – lg S. Подставив

конкретные значения S и t, получим:

δ`1 = lg A + 1,3783*q – (- 0,2218) ,

δ`2 = lg A + 1,5052*q – (- 0,2218) ,

δ`3 = lg A + 1,6031*q – (-0,1549) ,

δ`4 = lg A + 1,6831*q – (-0,0969) ,

δ`5 = lg A + 1,7505*q – (- 0,0458) ,

δ`6 = lg A + 1,8089*q – 0 ,

δ`7 = lg A + 1,8604*q – 0,1139 ,

δ`8 = lg A + 1,9063*q – 0,2553 ,

δ`9 = lg A + 1,9479*q – 0,7559 .

Приравняв нулю сумму уклонений по этим двум группам, получим  систему уравнений для определения параметров A и q:

Простейшие способы обработки опытных данных5*lg A + 7,9202*q = - 0,7412 ,

4*lg A + 7,5234*q = 1,1251 .

Решение этой системы q = 1,45 , A = 0,004 .Таким образом, искомая  степенная функция имеет вид S = 0,004*t 1,45 .

T 23,9 32,0 40,1 48,2 56,3 64,4 72,5 80,6 88,7
S 0,40 0,61 0,84 1,1 1,38 1,67 1,99 2,32 2,67

 

Ошибка составляет:

Σ (Δ Si)2 = 0,22 + (-0,01)2 + (-0,14)2 + (-0,3)2 + (-0,48)2 + (-0,67)2 + (-0,69)2 +

+ (-0,52)2 + 3,032 = 10,7564 .

Способом наименьших квадратов подберем функцию вида

S = A*tq , отвечающая таблице 5.1.

Составим вспомогательную таблицу:

K xk = lg Sk x k2 yk = lg Sk xk*yk
1 1,3784 1,9000 -0,2218 -0,3057
2 1,5052 2,2656 -0,2218 -0,3338
3 1,6031 2,5699 -0,1549 -0,2483
4 1,6831 2,8328 -0,0969 -0,1631
5 1,7505 3,0643 -0,0458 -0,0802
6 1,8089 3,2721 0 0
7 1,8604 3,4611 0,1139 0,2119
8 1,9063 3,6340 0,2553 0,4867
9 1,9479 3,7943 0,7559 1,4724
15,4438 26,7941 0,3839 1,0399

Простейшие способы обработки опытных данных Получаем систему уравнений:

15,4438*q + 9*lg A = 0,3839 ,

26,7941*q + 15,4438*lg A = 1,0399 .

Решение этой системы q = 1,3 , A = 0,006 .Таким образом, искомая  степенная функция имеет вид S = 0,006 * t1,3 .

T 23,9 32,0 40,1 48,2 56,3 64,4 72,5 80,6 88,7
S 0,4 0,54 0,73 0,92 1,13 1,35 1,57 1,8 2,04

Ошибка составляет:

Σ (Δ Si)2 = 0,22 + 0,062 + (-0,03)2 + (-0,12)2 + (-0,23)2 + (-0,35)2 + (-0,27)2 +

+ 3,662 = 13,7028 .

Способом наименьших квадратов подберем функцию вида

S = A*ect, отвечающая таблице 5.1.

Составим вспомогательную таблицу:

K t t2 y = lg Sk t*y
1 23,9 571,21 -0,2218 -5,3010
2 32,0 1024,0 -0,2218 -7,0976
3 40,1 1608,01 -0,1549 -6,2115
4 48,2 2323,24 -0,0969 -4,6706
5 56,3 3169,69 -0,0458 -2,5785
6 64,4 4147,36 0 0
7 72,5 5256,25 0,1139 8,2578
8 80,6 6496,36 0,2553 20,5772
9 88,7 7867,69 0,7559 67,0483
506,7 32763,81 0,3839 70,0241

Получаем систему уравнений:

Простейшие способы обработки опытных данных 506,7*c*lg e + 9*lg A = 0,3839 ,

32763,81*c*lg e + 506,7*lg A = 70,0241 .

Решение этой системы c = 0,03 , A = 0,25 .Таким образом, искомая  показательная функция имеет вид S = 0,25e 0,03 * t .

T 23,9 32,0 40,1 48,2 56,3 64,4 72,5 80,6 88,7
S 0,51 0,65 0,83 1,06 1,35 1,72 2,19 2,79 3,55

Ошибка составляет:

Σ (Δ Si) 2 = 0,092 + (-0,05)2 + (-0,13)2 +(-0,26)2 + (-0,45)2 + (-0,72)2 +

+(-0,89)2 +(-0,99)2 + 2,152=7,2107 .

Для кривой EH подберем квадратичную функцию вида

S=a0 + a1*t + a2*t2 с помощью способа средних, отвечающую таблице 5.2:

T 7,7 15.8 23,9
S 5,8 1,2 0,6

Уклонения имеют вид δ`= a0 + a1*t + a2*t2 - S. Подставив конкретные значения S и t, получим:

δ`1= a0 + 7,7*a1 + 59,29*a2 – 5,8 ,

δ`2= a0 +15,8*a1 + 249,64*a2 – 1,2 ,

δ`3= a0 + 23,9*a1 + 571,21*a2 – 0,6 .

Приравняв нулю эти уклонения, получим систему трех уравнений  для определения параметров a0, a1, a2:

Простейшие способы обработки опытных данных a0 + 7,7*a1 + 59,29* a2 = 5,8 ,

a0 +15,8*a1 + 249,64* a2 = 1,2 ,

a0 + 23,9*a1 + 571,21* a2 = 0,6 .

Решение этой системы a0 = 13,8 , a1 = -1,27 , a2 = 0,03 .Таким образом,  искомая квадратичная функция имеет вид S = 13,8 – 1,27*t + 0,03*t2 .

T 7,7 15,8 23,9
S 5,78 1,22 0,58

Ошибка составляет:

Σ (Δ Si)2 = 0,022 + (-0,02)2 + 0,022 = 0,0012.

Таким образом, кривую HD для заданных значениях t и S (таблица 5.1) наиболее точно описывает показательная функция S = A*ect , найденная с помощью способа наименьших квадратов. А кривую EH для заданных значениях t и S (таблица 5.2) наиболее точно описывает квадратичная функция S=a0 + a1*t + a2*t2 .

Для реального процесса работы пара в цилиндре, зная только одиннадцать значений (t; S), мы подобрали функции:

w кривую AB наиболее точно описывает квадратичная функция

S = 55,67 + 1,41*t – 0,1*t2 , где t є [0;23,9];

w кривую BC наиболее точно описывает степенная функция

S = 900,27 * t -1,03, где t є [23,9;+∞);

w кривую EH наиболее точно описывает квадратичная функция

S = 13,8 - 1,27*t + 0,03*t2 , где t є [0;23,9];

w кривую HD наиболее точно описывает показательная функция

S = 0,25 * e 0,03 * t, где t є [23,9;+∞).

C помощью найденных функций можно:

äØ приближенно вычислить работу пара в цилиндре не только в  заданных точках, но и в промежуточных. Например, можно примерно подсчитать, что при объеме пара t = 55 в процессе расширения давление пара в цилиндре S = 900,27*55-1,03 = 14,51 , а в процессе сжатия  S = 0,25*e 0,03 *55 = 1,3. При объеме пара t = 10 в процессе расширения  давление пара в цилиндре S = 55,67 + 1,41*10 – 0,1*102 = 59,77 ,а в  процессе сжигания S = 13,8 - 1,27*10 + 0,03*102 = 4,1.

äØсделать предположение о том, как будет происходить работа паровой машины при увеличении объема до бесконечности (что невозможно проделать на практике).

Заключение.

В данной работе были достигнуты следующие цели:

Овладение простейшими способами обработки опытных данных.

С помощью способа средних и способа наименьших квадратов для экспериментально найденных функционально зависимых величин подобрать функцию, которая бы наиболее точно описывала данный процесс.

Применение вышеназванных способов для описания реальных процессов.

При этом нельзя сделать однозначный вывод о том, какой способ наиболее точно описывает тот или иной процесс. Например, к математической и физической моделям наиболее точно можно подобрать функции с помощью способа средних. А реальный процесс лучше описывать не одной функцией, а несколькими на различных промежутках.

Таким образом, для обработки опытных данных необходимо использовать и способ средних, и способ наименьших квадратов.

Список литературы

1. Берман Г.Н. Сборник задач по курсу математического анализа. –  СПб.: Профессия, 2001.

2. Данко П.Е. и другие. Высшая математика в упражнениях и задачах. –  М.: Высшая школа, 1999.

3. Мантуров О.В. Курс высшей математики. -

Похожие работы:

  1. • Простейшие способы обработки опытных данных
  2. • Статистические способы обработки экспериментальных ...
  3. • Технические средства обработки данных
  4. • Электроискровая и электроимпульсная обработка металла
  5. • Исследование прочности на разрыв полосок ситца
  6. • Параллелизм как способ параллельной обработки данных
  7. • Автоматизированные системы обработки экономической информации
  8. •  ... и методы проектирования систем обработки данных
  9. • Способы обработки экономической информации
  10. • Патентная охрана авторского права
  11. • Основные положения Федерального закона "О персональных данных ...
  12. • Информационно-аналитическое обеспечение управления персоналом
  13. • Обработка материалов электрическим током и лазером
  14. • Методы математической статистики
  15. • Обработка пищевых продуктов
  16. • Современные способы обработки информации
  17. • Автоматизированная система обработки структур данных
  18. • Физическое описание явления фильтрации жидкости
  19. • Статистические методы обработки данных
Рефетека ру refoteka@gmail.com