Рефетека.ру / Математика

Реферат: Морфологический анализ цветных (спектрозональных) изображений

Морфологический анализ цветных (спектрозональных) изображений 1. Введение

Хорошо известно, что изображения одной и той же сцены, полученные при различных условиях освещения и(или) измененных оптических свойствах объектов могут отличаться радикально. Это обстоятельство порождает значительные трудности в прикладных задачах анализа и интерпретации изображений реальных сцен, в которых решение должно не зависеть от условий регистрации изображений. Речь идет, например, о задачах выделения неизвестного объекта на фоне известной местности, известного объекта на произвольном фоне при неконтролируемых условиях освещения, о задаче совмещения изображенний одной и той же сцены, полученных в различных спектральных диапазонах и т.д.

Методы морфологического анализа, разработанные более десяти лет тому назад, [1-5], для решения перечисленных задач, были в основном ориентированы для применения к черно-белым изображениям и оказались достаточно эффективными, [5-11].

Между тем, по меньшей мере два обстоятельства указывают на целесообразность разработки морфологических методов анализа цветных изображений. Во-первых, в задаче обнаружения и выделения объекта последний, как правило, прежде всего цветом отличается от фона. Во-вторых, описание формы изображения в терминах цвета позволит практически устранить эффект теней и влияние неопределенности в пространственном распределении интенсивности спектрально однородного освещения.

2. Цвет и яркость спектозонального изображения.

Рассмотрим некоторые аспекты теории цвета так называемых многоспектральных (спектрозональных, [13]) изображений, аналогичной классической колориметрии [12]. Будем считать заданными n детекторов излучения со спектральными чувствительностями j=1,2,...,n, где Î (0,¥ ) - длина волны излучения. Их выходные сигналы, отвечающие потоку излучения со спектральной плотностью e()³ 0, Î (0,¥ ), далее называемой излучением, образуют вектор , w=. Определим суммарную спектральную чувствительность детекторов , Î (0,¥ ), и соответствующий суммарный сигнал назовем яркостью излучения e. Вектор назовем цветом излучения e. Если цвет e и само излучение назовем черным. Поскольку равенства и эквивалентны, равенство имеет смысл и для черного цвета, причем в этом случае - произвольный вектор, яркость оторого равна единице. Излучение eназовем белым и его цвет обозначим если отвечающие ему выходные сигналы всех детекторов одинаковы:

.

Векторы , и , , удобно считать элементами n-мерного линейного пространства . Векторы fe, соответствующие различным излучениям e, содержатся в конусе . Концы векторов содержатся в множестве , где Ï - гиперплоскость .

Далее предполагается, что всякое излучение , где E - выпуклый конус излучений, содержащий вместе с любыми излучениями все их выпуклые комбинации (смеси) Поэтому векторы в образуют выпуклый конус , а векторы .

Если то и их аддитивная смесь . Для нее

.(1)

Отсюда следует

Лемма 1. Яркость fe и цвет j eлюбой аддитивной смеси e излучений e1(× ),...,em(× ), m=1,2,... определяются яркостями и цветами слагаемых.

Подчеркнем, что равенство , означающее факт совпадения яркости и цвета излучений e и , как правило, содержит сравнительно небольшую информацию об их относительном спектральном составе. Однако замена e на в любой аддитивной смеси излучений не изменит ни цвета, ни яркости последней.

Далее предполагается, что вектор w таков, что в E можно указать базовые излучения , для которых векторы , j=1,...,n, линейно независимы. Поскольку цвет таких излучений непременно отличен от черного, их яркости будем считать единичными, , j=1,...,n. В таком случае излучение характеризуется лишь цветом , j=1,...,n.

Для всякого излучения e можно записать разложение

,(1*)

в котором - координаты в базисе ,

или, в виде выходных сигналов детекторов излучения, - , где , , - выходной сигнал i-го детектора, отвечающий j-ому излучению e j(× ), i, j=1,...,n. Матрица - стохастическая, поскольку ее матричные элементы как яркости базовых излучений неотрицательны и , j=1,...,n. При этом яркость и вектор цвета , , j=1,...,n, (конец которого лежит в П) определяются координатами a j и цветами излучений , j=1,...,n, и не зависят непосредственно от спектрального состава излучения e.

В ряде случаев белое излучение естественно определять исходя из базовых излучений, а не из выходных сигналов детекторов, считая белым всякое излучение, которому в (1*) отвечают равные координаты: .

Заметим, что слагаемые в (1*), у которых a j<0, физически интерпретируются как соответствующие излучениям, "помещенным" в левую часть равенства (1*) с коэффициентами -a j>0: . В такой форме равенство (1*) представляет “баланс излучений”.

Определим в скалярное произведение и векторы , биортогонально сопряженные с : , i,j=1,...,n.

Лемма 2. В разложении (1*) , j=1,...,n, . Яркость , где , причем вектор ортогонален гиперплоскости П, так как , i,j=1,...,n.

Что касается скалярного проиведения , то его естественно определять так, чтобы выходные сигналы детекторов были координатами feв некотором ортонормированном базисе . В этом базисе конус . Заметим, что для любых векторов и, тем более, для , .

Пусть Х - поле зрения, например, ограниченная область на плоскости R2, или на сетке , спектральная чувствительность j-го детектора излучения, расположенного в точке ; - излучение, попадающее в точку . Изображением назовем векторнозначную функцию

(2**)

Точнее, пусть Х - поле зрения, (Х, С, ) - измеримое пространство Х с мерой C - s -алгебра подмножеств X. Цветное (спектрозональное) изображениеопределим равенством

,(2)

в котором почти для всех , , - m -измеримые функции на поле зрения X, такие, что

.

Цветные изображения образуют подкласс функций лебеговского класса функций . Класс цветных изображений обозначим LE,n.

Впрочем, для упрощения терминологии далее любой элемент называется цветным изображением, а условие

(2*)

условием физичности изображений f(× ).

Если f - цветное изображение (2), то , как нетрудно проверить, - черно-белое изображение [2], т.е. , . Изображение , назовем черно-белым вариантом цветного изображения f, а цветное изображение , f(x)¹ 0, xÎ X - цветом изображения f. В точках множества Â={xÎ X: f(x)=0} черного цвета (x), xÎ В, - произвольные векторы из , удовлетворяющие условию: яркость (x)=1. Черно-белым вариантом цветного изображения f будем также называть цветное изображение b(× ), имеющее в каждой точке Х ту же яркость, что и f, b(x)=f(x), xÎ X, и белый цвет, b (x)=b(x)/b(x)=b , xÎ X.

3. Форма цветного изображения.

Понятие формы изображения призвано охарактеризовать форму изображенных объектов в терминах характерности изображений, инвариантных относительно определенного класса преобразований изображения, моделирующих меняющиеся условия его регистрации. Например, довольно часто может меняться освещение сцены, в частности, при практически неизменном спектральном составе может радикально изменяться распределение интенсивности освещения сцены. Такие изменения освещения в формуле (2**) выражаются преобразованием , в котором множитель k(x) модулирует яркость изображения в каждой точке при неизменном распределении цвета. При этом в каждой точке у вектора f(x) может измениться длина, но направление останется неизменным.

Нередко изменение распределения интенсивности освещения сопровождается значительным изменением и его спектрального состава, но - пространственно однородным, одним и тем же в пределах всей изображаемой сцены. Поскольку между спектром излучения e и цветом j нет взаимно однозначного соответствия, модель сопутствующего преобразования изображения f(x) в терминах преобразования его цвета j (× ). Для этого определим отображение A(× ):, ставящее в соответствие каждому вектору цвета подмножество поля зрения в точках которого изображение , имеет постоянный цвет .

Пусть при рассматриваемом изменении освещения и, соответственно, ; предлагаемая модель преобразования изображения состоит в том, что цвет преобразованного изображения должен быть также постоянным на каждом множестве A(j ), хотя, вообще говоря, - другим, отличным от j . Характекрным в данном случае является тот факт, что равенство влечет . Если - самое детальное изображение сцены, то, вообще говоря, на различных множествах A(j ¢ ) и A(j ) цвет изображения может оказаться одинаковым.

Как правило, следует учитывать непостоянство оптических характеристик сцены и т.д. Во всех случаях форма изображения должна быть инвариантна относительно преобразования из выделенного класса и, более того, должна определять изображение с точностью до произвольного преобразования из этого класса.

Для определения понятия формы цветного изображения f(× ) на удобно ввести частичный порядок p , т.е. бинарное отношение, удовлетворяющее условиям: 1), 2) , , то , ; отношение p должно быть согласованным с определением цветного изображения (с условием физичности), а именно, , если . Отношение p интерпретируется аналогично тому, как это принято в черно-белой морфологии[2], а именно, означает, что изображения fиg сравнимы по форме, причем формаgне сложнее, чем форма f. Если и , то fи g назовем совпадающими по форме (изоморфными), f ~ g. Например, если fи g - изображения одной и той же сцены, то g, грубо говоря, характеризует форму изображенных объектов не точнее (подробнее, детальнее), чем f, если .

В рассматриваемом выше примере преобразования изображений если между множествами A(j ), и (j ¢ ), существует взаимно-однозначное соответствие, т.е., если существует функция , такая, что (j ¢ (j ))= A(j ),, причем, если . В этом случае равенства и эквивалентны, и изоморфны и одинаково детально характеризуют сцену, хотя и в разных цветах.

Если же не взаимно однозначно, то (j ¢ )=U A(j ) и . В этом случае равенство влечет (но не эквивалентно) , передает, вообще говоря, не все детали сцены, представленные в .

Пусть, скажем, g - черно-белый вариант f, т.е. g(x)=f(x) и g(x)/g(x)=b , xÎ X. Если преобразование - следствие изменившихся условий регистрации изображения, то, естественно, . Аналогично, если fgизображения одной и той же сцены, но в gвследствие неисправности выходные сигналы некоторых датчиков равны нулю, то . Пусть F - некоторая полугруппа преобразований , тогда для любого преобразования FÎ F , поскольку, если некоторые детали формы объекта не отражены в изображении f, то они, тем более, не будут отражены в g.

Формой изображения f назовем множество изображений , форма которых не сложнее, чем форма f`, и их пределов в (черта символизирует замыкание в ). Формой изображения fв широком смысле назовем минимальное линейное подпространство , содержащее . Если считать, что для любого изображения , то это будет означать, что отношение p непрерывно относительно сходимости в в том смысле, что .

Рассмотрим теперь более подробно понятие формы для некоторых характерных классов изображений и их преобразований.

4. Форма кусочно-постоянного (мозаичного) цветного изображения.

Во многих практически важных задачах форма объекта на изображении может быть охарактеризована специальной структурой излучения, достигающего поле зрения X в виде здесь - индикаторные функции непересекающихся подмножеств Аi, i=1,…...,N, положительной меры поля зрения Х, на каждом из которых функции , , j=1,...,n, i=1,...,N, непрерывны. Поскольку согласно лемме 2

,(3)ы

то цветное изображение fe, такого объекта характеризует его форму непрерывным распределением яркости и цвета на каждом подмножестве Ai, i=1,...,N. Для изображения , где , также характерно напрерывное распределение яркости и цвета на каждом Ai, если , - непрерывные функции.

Если, в частности, цвет и яркость постоянны на Ai, i=1,...,N, то это верно и для всякого изображения , если не зависит явно от . Для такого изображения примем следующее представление:

,(4)

его черно-белый вариант

(4*)

на каждом Ai имеет постоянную яркость , и цвет изображения (4)

(4**)

не меняется на Ai и равен , i=1,...,N.

Поскольку для реальных изображений должно быть выполнено условие физичности (2*), , то форму изображения (4), имеющего на различных множествах Аi имеет несовпадающие яркости и различные цвета , определим как выпуклый замкнутый в конус:

.(4***)

v(a), очевидно, содержится в n× N мерном линейном подпространстве

,(4****)

которое назовем формой a(× ) в широком смысле.

Форму в широком смысле любого изображения a(× ), у которого не обязательно различны яркости и цвета на различных подмножествах Ai ,i=1,...,N, определим как линейное подпространство, натянутое не вектор-функции Fa(× ),FÎ F, где F - класс преобразований , определенных как преобразования векторов a(x)® Fa(x) во всех точках xÎ X; здесь F - любое преобразование . Тот факт, что F означает как преобразование , так и преобразование , не должен вызывать недоразумения.

Изображения из конуса(4***) имеют форму, которая не сложнее, чем форма a(× ) (4), поскольку некоторые из них могут иметь одно и то же значение яркости или(и) цвета на различных множествах Аi, i=1,…………..,N. Также множества оказываются, по существу, объединенными в одно, что и приводит к упрощению формы изображения, поскольку оно отражает меньше деталей формы изображенного объекта, чем изображение (4). Это замечание касается и L(a(× )), если речь идет о форме в широком смысле.

Лемма 3. Пусть {Аi} - измеримое разбиение X: .

Изображение (3) имеет на каждом подмножестве Ai :

- постоянную яркость и цвет , если и только если выполняется равенство (4);

- постоянный цвет , если и только если в (3) ;

- постоянную яркость fi , i=1,...,N, если и только если в (3) не зависит от , i=1,…...,N.

Доказательство .На множестве Ai яркость и цвет изображения (3) равны соответственно

, , i=1,.…..,N.

Если выполнено равенство (4), то и от не зависят. Наоборот, если и , то и , т.е. выполняется (4).

Если , то цвет не зависит от . Наоборот, пусть не зависит от . В силу линейной независимости координаты (i)(x) не зависят от , т.е. и, следовательно, где - яркость на A i и . Последнее утверждение очевидно n

Цвет изображения определяется как электродинамическими свойствами поверхности изображенного объекта, так и спектральным составом облучающего электромагнитного излучения в том диапазоне, который используется для регистрации изображения. Речь идет о спектральном составе излучения, покидающего поверхность объекта и содержащего как рассеянное так и собственное излучения объекта. Поскольку спектральный состав падающего излучения, как правило, пространственно однороден, можно считать, что цвет изображения несет информацию о свойствах поверхности объекта, о ее форме, а яркость в значительной степени зависит и от условий “освещения”. Поэтому на практике в задачах морфологического анализа цветных изображений сцен важное значение имеет понятие формы изображения, имеющего постоянный цвет и произвольное распределение яркости в пределах заданных подмножеств Ai , i=1,...,N, поля зрения X.

Итак, пусть в согласии с леммой 3

,(5)

где, - индикаторная функция Ai, ,функция gi задает распределение яркости

(6)

в пределах Ai при постоянном цвете

, i=1,...,N,(7)

причем для изображения (5) цвета j (i), i=1,.…..,N, считаются попарно различными, а функции g(i), i=1,.…..,N, - удовлетворяющими условиям i=1,.…..,N.

Нетрудно заметить, что в выражениях (5),(6) и (7) без потери общности можно принять условие нормировки , позволяющее упростить выражения (6) и (7) для распределений яркости и цвета. С учетом нормировки распределение яркости на Ai задается функцией а цвет на Ai равен

(7*)

Форму изображения (5) определим как класс всех изображений

(8)

,

каждое из которых, как и изображение (5), имеет постоянный цвет в пределах каждого Ai, i=1,...,N. Форма таких изображений не сложнее, чем форма f() (5), поскольку в изображении на некоторых различных подмножествах Ai, i=1,...,N, могут совпадать значения цвета, которые непременрно различны в изображении f() (5). Совпадение цвета на различных подмножествах Ai, i=1,...,N ведет к упрощению формы изображения по сравнению с формой f() (5). Все изображения , имеющие различный цвет на различных Ai, i=1,...,N,считаются изоморфными fи между собой), форма остальных не сложнее, чем форма f. Если , то, очевидно, .

Если в (8) яркость , то цвет на Ai считается произвольным (постоянным), если же в точках некоторого подмножества , то цвет на Ai считается равным цвету на , i=1,...,N.

Цвет изображения (8) может не совпадать с цветом (5). Если же по условию задачи все изображения , форма которых не сложнее, чем форма , должны иметь на Ai, i=1,...,N, тот же цвет, что и у то следует потребовать, чтобы , в то время, как яркости остаются произвольными (если , то цвет на Ai определяется равным цвету f на Ai, i=1,...,N).

Нетрудно определить форму любого, не обязательно мозаичного, изображения fв том случае, когда допустимы произвольные изменения яркости при неизменном цвете j (x) в каждой точке . Множество, содержащее все такие изображения

(9)

назовем формой в широком смысле изображения , у которого f(x)¹ 0, m -почти для всех , [ср. 2]. является линейным подпространством , содержащем любую форму

,(10)

в которой включение определяет допустимые значения яркости. В частности, если означает, что яркость неотрицательна: , то - выпуклый замкнутый конус в , принадлежащий .

Более удобное описание формы изображения может быть получено на основе методов аппроксимации цветных изображений, в которых форма определяется как оператор наилучшего приближения. В следующем параграфе дано представление формы изображения в виде оператора наилучшего приближения.

5. Задачи аппроксимации цветных изображений. Форма как оператор наилучшего приближения.

Рассмотрим вначале задачи приближения кусочно-постоянными (мозаичными) изображениями. Решение этих задач позволит построить форму изображения в том случае, когда считается, что для любого преобразования , действующего на изображение как на вектор в каждой точке и оставляющего элементом , т.е. изображением. Форма в широком смысле определяется как оператор наилучшего приближения изображения изображениями

где - класс преобразований , такой, что . Иначе можно считать, что

(10*)

а - оператор наилучшего приближения элементами множества , форма которых не сложнее, чем форма . Характеристическим для является тот факт, что, если f(x)=f(y), то для любого.

5.1. Приближение цветного изображения изображениями, цвет и яркость которых постоянны на подмножествах разбиения поля зрения X.

Задано разбиение , требуется определить яркость и цвет наилучшего приближения на каждом . Рассмотрим задачу наилучшего приближения в цветного изображения f(× ) (2) изображениями (4), в которых считается заданным разбиение поля зрения X и требуется определить из условия

(11)

Теорема 1. Пусть . Тогда решение задачи (11) имеет вид

,i=1,...,N, j=1,...,n,(12)

и искомое изображение (4) задается равенством

.(13)

Оператор является ортогональным проектором на линейное подпространство (4****) изображений (4), яркости и цвета которых не изменяются в пределах каждого Ai , i=1,...,N.

Черно-белый вариант (4*) цветного изображения (4) является наилучшей в аппроксимацией черно-белого варианта цветного изображения f, если цветное изображение (4) является наилучшей в аппроксимацией цветного изображения f. Оператор , является ортогональным проектором на линейное подпространство черно-белых изображений, яркость которых постоянна в пределах каждого .

В точках множества цвет (4**) наилучшей аппроксимации (4) цветного изображения f (2) является цветом аддитивной смеси составляющих f излучений, которые попадают на .

Доказательство.Равенства (12) - условия минимума положительно определенной квадратичной формы (11), П - ортогональный проектор, поскольку в задаче (11) наилучшая аппроксимация - ортогональная проекция f на . Второе утверждение следует из равенства

, вытекающего из (13). Последнее утверждение следует из равенств

,i=1,...,N вытекающих из (12) и равенства (1), в котором индекс k следует заменить на xÎ X. ¦

Замечание 1. Для любого измеримого разбиения ортогональные проекторы и определяют соответственно форму в широком смысле цветного изображения (4), цвет и яркость которого, постоянные в пределах каждого , различны для различных , ибо , и форму в широком смысле черно-белого изображения, яркость которого постоянна на каждом и различна для разных ,[2].

Если учесть, условие физичности (2*), то формой цветного изображения следует считать проектор на выпуклый замкнутый конус (4***)

Аналогично формой черно-белого изображения следует считать проектор на выпуклый замкнутый конус изображений (4*), таких, что [2]. Дело в том, что оператор определяет форму изображения (4), а именно

- множество собственных функций оператора . Поскольку f(× ) - наилучшее приближение изображения изображениями из , для любого изображения из и только для таких - . Поэтому проектор можно отождествить с формой изображения (4).

Аналогично для черно-белого изображения a(× )

, [2]. И проектор можно отождествить с формой изображения (4*), как это сделано в работах [2,3].

Примечания.

Формы в широком смысле не определяются связью задач наилучшего приближения элементами и , которая известна как транзитивность проецирования. Именно, если оператор наилучшего в приближения злементами выпуклого замкнутого (в и в ) конуса , то . Иначе говоря, для определения наилучшего в приближения элементами можно вначале найти ортогональную проекцию изображения на , а затем спроецировать в на . При этом конечномерный проектор для каждого конкретного конуса может быть реализован методом динамического программирования, а для многих задач морфологического анализа изображений достаточным оказывается использование лишь проектора .

Форма в широком смысле (4***) изображения (4) полностью определяется измеримым разложением , последнее, в свою очередь определяется изображением

,

если векторы попарно различны. Если при этом , то форма в широком смысле может быть определена и как оператор ортогонального проецирования на , определенный равенством (13).

Посмотрим, каким образом воспользоваться этими фактами при построении формы в широком смысле как оператора ортогонального проецирования на линейное подпространство (10*) для произвольного изображения . Пусть - множество значений и - измеримое разбиение X , порожденное , в котором - подмножество X , в пределах которого изображение имеет постоянные яркость и цвет, определяемые вектором , если .

Однако для найденного разбиения условие , вообще говоря, невыполнимо и, следовательно, теорема 1 не позволяет построить ортогональный проектор на . Покажем, что можно получить как предел последовательности конечномерных ортогональных проекторов. Заметим вначале, что любое изображение можно представить в виде предела (в ) должным образом организованной последовательности мозаичных изображений

(*)

где - индикатор множества , принадлежащего измеримому разбиению

В (*) можно, например, использовать так называемую исчерпывающую последовательность разбиений [], удовлетворяющую следующим условиям

- - C - измеримо, ;

- N+1-oe разбиение является продолжением N-го, т.е. для любого , найдется i=i(j),, такое, что ;

- минимальная s -алгебра, содержащая все , совпадает с C.

Лемма (*). Пусть - исчерпывающая последователь-ность разбиений X и - то множество из , которое содержит . Тогда для любой C-измеримой функции

и m -почти для всех [ ]. n

Воспользуемся этим результатом для построения формы в широком смысле произвольного изображения . Пусть - минимальная s -алгебра, относительно которой измеримо , т.е. пусть , где - прообраз борелевского множества , B - s -алгебра борелевских множеств . Заменим в условиях, определяющих исчерпывающую последовательность разбиений, C на и выберем эту, зависящую от , исчерпывающую последовательность ( - измеримых) разбиений в лемме (*).

Теорема (*). Пусть , - исчерпывающая последовательность разбиений X, причем - минимальная s -алгебра, содержащая все и П(N) - ортогональный проектор , определенный равенством ,

Тогда

1) для любого -измеримого изображения и почти для всех , ,

2) для любого изображения при ), где П - ортогональный проектор на .

Доказательство. Первое утверждение непосредственно следует из леммы (*) и определения . Для доказательства второго утверждения заметим, что, так как A(N+1) - продолжение разбиения A(N), N=1,2,..., то последовательность проекторов П(N), N=1,2,..., монотонно неубывает: и потому сходится (поточечно) к некоторому ортогональному проектору П. Так как - множество всех -измеримых изображений и их пределов (в ), а в силу леммы (*) для любого -измеримого изображения

, то для любого изображения и для любого , ибо -измеримо, N=1,2,... n

Вопрос о том, каким образом может быть построена исчерпывающая последовательность разбиений, обсуждается в следующем пункте.

Заданы векторы f1,...,fq, требуется определить разбиение , на множествах которого наилучшее приближение принимает соответственно значенния f1,...,fq. Рассмотрим задачу приближения цветного изображения f, в которой задано не разбиение поля зрения X, а векторы в , и требуется построить измеримое разбиение поля зрения, такое, что цветное изображение - наилучшая в аппроксимация f. Так как

,(14*)

то в Ai следует отнести лишь те точки , для которых , =1,2,...,q, или, что то же самое, =1,2,...,q. Те точки, которые согласно этому принципу могут быть отнесены к нескольким множествам, должны быть отнесены к одному из них по произволу. Учитывая это, условимся считать, что запись

,(14)

означает, что множества (14) не пересекаются и .

Чтобы сформулировать этот результат в терминах морфологического анализа, рассмотрим разбиение , в котором

(15)

и звездочка указывает на договоренность, принятую в (14). Определим оператор F, действующий из в по формуле , , i=1,...,q. Очевидно, F всегда можно согласовать с (14) так, чтобы включения и , i=1,...,q, можно было считать эквивалентными.

Теорема 2.Пусть - заданные векторы Rn. Решение задачи

наилучшего в приближения изображения f изображениями имеет вид , где - индикаторная функция множества . Множество определено равенством (15). Нелинейный оператор , как всякий оператор наилучшего приближения удовлетворяет условию F2=F, т.е. является пректором.

Замечание 2. Если данные задачи доступны лишь в черно-белом варианте, то есть заданы числа , i=1,...,q, которые можно считать упорядоченными согласно условию , то, как показано в [3], искомое разбиение X состоит из множеств

где , и имеет мало общего с разбиением (14).

Замечание 3. Выберем векторы fi, i=1,..,q единичной длины: , i=1,...,q. Тогда

.(16)

Множества (16) являются конусами в Rn , ограниченными гиперплоскостями, проходящими через начало координат. Отсюда следует, что соответствующее приближение изображения f инвариантно относительно произвольного преобразования последнего, не изменяющего его цвет (например ), в частности, относительно образования теней на f.

Замечание 4. Для любого заданного набора попарно различных векторов оператор F, приведенный в теореме 2, определяет форму изображения, принимающего значения соответственно на измеримых множествах (любого) разбиения X. Всякое такое изображение является неподвижной (в ) точкой F: , если , все они изоморфны между собой. Если некоторые множества из - пустые, или нулевой меры, соответствующие изображения имеют более простую форму.

Иначе говоря, в данном случае формой изображения является множество всех изображений, принимающих заданные значения на множествах положительной меры любого разбиения X, и их пределов в .

Теоремы 1 и 2 позволяют записать необходимые и достаточные условия наилучшего приближения изображения f(× ) изображениями , в котором требуется определить как векторы , так и множества так, чтобы

.

Следствие 1.

Пусть Di ,i=1,...,N, - подмножества Rn (15), П - ортогональный проектор (13), , где . Тогда необходимые и достаточные условия суть следующие: , где , .

Следующая рекуррентная процедура, полезная для уточнения приближений, получаемых в теоремах 1,2, в некоторых случаях позволяет решать названную задачу. Пусть - исходные векторы в задаче (14*), - соответствующее оптимальное разбиение (14), F(1)- оператор наилучшего приближения и - невязка. Воспользовавшись теоремой 1, определим для найденного разбиения оптимальные векторы . Согласно выражению (13) , и соответствующий оператор наилучшего приближения (1) (13) обеспечит не менее точное приближение f(× ), чем F(1): . Выберем теперь в теореме 2 , определим соответствующее оптимальное разбиение и построим оператор наилучшего приближения F(2). Тогда . На следующем шаге по разбиению строим и оператор (3) и т.д.

В заключение этого пункта вернемся к вопросу о построении исчерпывающего -измеримого разбиения X, отвечающего заданной функции . Выберем произвольно попарно различные векторы из f(X) и построим по формуле (15) разбиение Rn . Для каждого q=1,2,... образуем разбиение E(N(q)), множества , j=1,...,N(q), которого образованы всеми попарно различными пересечениями множеств из . Последовательность соответствующих разбиений X , i=1,...,N(q), q=1,2... -измеримы и является продолжением

5.2. Приближение изображениями, цвет которых постоянен на подмножествах разбиения поля зрения X.

Задано разбиение , требуется определить цвет и распределение яркостей наилучшего приближения на каждом Ai,i=1,...,N.

Для практики, как уже было отмечено, большой интерес представляет класс изображений (5), цвет которых не изменяется в пределах некоторых подмножеств поля зрения, и задачи аппроксимации произвольных изображений изображениями такого класса.

Запишем изображение (5) в виде

(17)

где .

Пусть A1,...,AN - заданное разбиение X, - индикаторная функция Ai, i=1,...,N. Рассмотрим задачу наилучшего в приближения изображения изображениями (17), не требуя, чтобы

(18)

Речь идет о задаче аппроксимации произвольного изображения изображениями, у которых яркость может быть произвольной функцией из , в то время, как цвет должен сохранять постоянное значение на каждом из заданных подмножеств A1,...,AN поля зрения X, (см. Лемму 3).

Так как

то минимум S (19) по достигается при

,(20)

и равен

(21)

Задача (18) тем самым сведена к задаче

.(22)

В связи с последней рассмотрим самосопряженный неотрицательно определенный оператор

.(23)

Максимум (неотрицательной) квадратичной формы на сфере в Rn, как известно, (см.,например, [11]) достигается на собственном векторе yi оператора Фi, отвечающем максимальному собственному значению >0,

,

и равен , т.е. . Следовательно, максимум в (22) равен и достигается, например, при

Теорема 3. Пусть A1,...,AN -заданное измеримое разбиение X, причем (Ai)>0, i=1,...,N. Решением задачи (18) наилучшего приближения изображения изображениями g(× ) (17) является изображение

(24)

Операторы ,i=1,...,N, и - нелинейные (зависящие от f(× )) проекторы: Пi проецирует в Rn векторы на линейное подпространство , натянутое на собственный вектор оператора Фi (23), отвечающий наибольшему собственному значению i,

;(25)

проецирует в изображение на минимальное линейное подпространство , содержащее все изображения

Невязка наилучшего приближения

(19*).

Доказательство. Равентство (24) и выражение для Пi следует из (17),(20) и решения задачи на собственные значения для оператора Фi (23). Поскольку Фi самосопряженный неотрицательно определенный оператор, то задача на собственные значения (23) разрешима, все собственные значения Фi неотрицательны и среди них i - наибольшее.

Для доказательства свойств операторов Пi, i=1,...,N, и введем обозначения, указывающие на зависимость от f(× ):

(26*)

Эти равенства, показывающие, что результат двукратного действия операторов Пi, i=1,...,N, и (26) не отличается от результатата однократного их действия, позволят считать операторы (26) проекторами.

Пусть fi - cсобственный вектор Фi , отвечающий максимальному собственному значению i. Чтобы определить следует решить задачу на собственные значения для оператора :

.

Поскольку rank=1, имеет единственное положительное собственное значение, которое, как нетрудно проверить, равно i, и ему соответствует единственный собственный вектор fi. Поэтому

.

Отсюда, в свою очередь, следует равенство (26*) для n

Лемма 4. Для любого изображения решение (24) задачи (18) наилучшего приближения единственно и является элементом .

Доказательство. Достаточно доказать, что единственный (с точностью до положительного множителя) собственный вектор fi оператора (23), отвечающий максимальному собственному значению i, можно выбрать так, чтобы , поскольку в таком случае будут выполнены импликации:

,

составляющие содержание леммы. Действительно, если то согласно (23) , поскольку включение означает, что; отсюда и из (25) получим, что ,i=1,...,N, а поэтому и в (24) .

Убедимся в неотрицательности . В ортонормированном базисе e1,...,en, в котором , выходной сигнал i-го детектора в точке (см. замечание 1) задача на собственные значения (23*) имеет вид , p=1,...,n,

где , .

Так как матрица симметрическая и неотрицательно определенная () она имеет n неотрицательных собственных значений, которым соответствуют n ортонормированных собственных векторов , а поскольку матричные элементы , то согласно теореме Фробенуса-Перрона максимальное собственное значение - алгебраически простое (некратное), а соответствующий собственный вектор можно выбирать неотрицательным:

. Следовательно, вектор fi определен с точностью до положительного множителя , .n

Замечание 4.

Если , т.е. если аппроксимируемое изображение на множествах того же разбиения имеет постоянный цвет, то в теореме 3 , .

Наоборот, если , то

, т.е. определяется выражением (17), в котором .

Итак, пусть в изображении g(× ) (17) все векторы f1,.…..,fN попарно не коллинеарны, тюею цвета всех подмножеств A1,...,AN попарно различны. Тогда форма в широком смысле изображения (17) есть множество решений уравнения

,,(27)

где , fi - собственный вектор оператора Фi: , отвечающий максимальному собственному значению i, i=1,...,N . В данном случае , если и только если выполнено равенство (27).

Оператор (24), дающий решение задачи наилучшего приближения , естественно отождествить с формой в широком смысле изображения (17).

Заданы векторы цвета j 1,..., j q, требуется определить разбиение A1,..., Aq, на множествах которого наилучшее приближение имеет соответственно цвета j 1,..., j q и оптимальные распределения яркостей .

Речь идет о следующей задаче наилучшего в приближения изображения

.(28)

Рассмотрим вначале задачу (28) не требуя, чтобы . Так как для любого измеримого

,(29)

и достигается на

,(30)

то, как нетрудно убедиться,

,(31)

где звездочка * означает то же самое, что и в равенстве (14): точки xÎ X, в которых выполняется равенство могут быть произвольно отнесены к одному из множеств Ai или Aj.

Пусть - разбиение , в котором

(32)

а F: Rn- > Rn оператор, определенный условием

(33)

Тогда решение задачи (28) можно представить в виде

,(34)

где - индикаторная функция множества Ai (31), i=1,...,q и F -оператор, действующий в по формуле (34) (см. сноску 4 на стр. 13).

Нетрудно убедиться, что задача на минимум (29) с условием физичности

(35)

имеет решение

(36)

Соответственно решение задачи (28) с условием физичности имеет вид

,(37)

где - индикаторная функция множества

,(38)

В ряде случаев для построения (34) полезно определить оператор F+: Rn- > Rn, действующий согласно формуле

(39)

где

, так что ,i=1,...q. (40)

Подытожим сказанное.

Теорема 4. Решение задачи (28) наилучшего в приближения изображения изображениями на искомых множествах A1,...,Aq разбиения X заданные цветами j 1,..., j q соответственно, дается равенством (34), искомое разбиение A1,...,Aq определено в (31). Требование физичности наилучшего приближения приводит к решению (37) и определяет искомое разбиение формулами (38). Решение (34) инвариантно относительно любого, а (37) - относительно любого, сохраняющего физичность, преобразования, неизменяющего его цвет.

Формой в широком смысле изображения, имеющего заданный набор цветов j 1,..., j q на некоторых множествах положительной меры A1,...,Aq разбиение поля зрения можно назвать оператор (34), формой такого изображения является оператор F+ (37). Всякое такое изображение g(× ), удовлетворяющее условиям физичности (неотрицательности яркостей), удовлетворяет уравнению F+g(× )=g(× ), те из них, у которых m (Ai)>0, i=1,...,q, изоморфны, остальные имеют более простую форму.n

В заключение этого раздела вернемся к понятию формы изображения, заданного с точностью до произвольного, удовлетворяющего условиям физичности, преобразования яркости. Речь идет о форме изображения , заданного распределением цвета , при произвольном (физичном) распределении яркости, например, . Для определения формы рассмотрим задачу наилучшего в приближения изображения такими изображениями

,(41)

Теорема 5. Решение задачи (41) дается равенством

,(42)

в котором , где . Невязка приближения

,(43)

( !)n

Определение. Формой изображения, заданного распределением цвета , назовем выпуклый, замкнутый конус изображений

или - проектор на .

Всякое изображение g(× ), распределение цвета которого есть j (× ) и только такое изображение содержится в и является неподвижной точкой оператора

: g(× ) = g(× ).(#)

Поскольку на самом деле детали сцены, передаваемые распределением цвета j (× ), не представлены на изображении f(× ) = f(× )j (× ) в той области поля зрения, в которой яркость f(x)=0, xÎ X, будем считать, что - форма любого изображения f(x) = f(x)j (x), f(x)>0, xÎ X(modm ), все такие изображения изоморфны, а форма всякого изображения g(× ), удовлетворяющего уравнению (#), не сложнее, чем форма f(× ).

Замечание 5. Пусть j 1,..., j N - исходный набор цветов, , A1,...,AN - соответствующее оптимальное разбиение X, найденное в теореие 4 и

,(34*)

- наилучшее приближение f(× ). Тогда в равенстве (24)

,(24*)

если A1,...,AN - исходное разбиение X в теореме 3. Наоборот, если A1,...,AN - заданное в теореме 3 разбиение X и f1,...,fN - собственные векторы операторов Ф1,...,ФN (23) соответственно, отвечающие максимальным собственным значениям, то f1,...,fN и будет выполнено равенство (24), если в (34*) определить j i как цвет fi в (24), i=1,...,N.

Проверка этого замечания не представляет затруднений.

В. Случай, когда допускаются небольшие изменения цвета в пределах каждого Ai, i=1,...,N.

Разумеется, условие постоянства цвета на множествах Ai, i=1,...,N, на практике может выполняться лишь с определенной точностью. Последнюю можно повысить как путем перехода к более мелкому разбиению , так и допустив некоторые изменения цвета в пределах каждого Ai, i=1,...,N, например, выбрав вместо (17) класс изображений

(17*)

в котором в (3).

Поскольку в задаче наилучшего приближения f(× ) изображениями этого класса предстоит найти , векторы при любом i=1,...,N, можно считать ортогональными, определив

,(*)

из условия минимума невязки по . После этого для каждого i=1,...,N векторы должны быть определены из условия

(**)

при дополнительном условии ортогональности

. Решение этой задачи дается в следующей лемме

Лемма 5. Пусть ортогональные собственные векторы оператора Фi (23), упорядоченные по убыванию собственных значений:

.

Тогда решение задачи (**) дается равенствами .

Доказательство. Заметим, что, поскольку Фi - самосопряженный неотрицательно определенный оператор, его собственные значения неотрицательны, а его собственные векторы всегда можно выбрать так, чтобы они образовали ортогональный базис в Rn. Пусть Pi - ортогонально проецирует в Rn на линейную оболочку собственных векторов и

[Pi Фi Pi] - сужение оператора Pi Фi Pi на . Тогда левая часть (*) равна следу оператора [Pi Фi Pi]

, где - j-ое собственное значение оператора (см., например, [10]). Пусть . Тогда согласно теореме Пуанкаре, [10], , откуда следует утверждаемое в лемме. ¦

Воспользовавшись выражениями (*) и леммой 5, найдем, что в рассматриваемом случае имеет место утверждение, аналогичное теореме 3.

Теорема 3*. Наилучшее приближение любого изображения f(× ) изображениями (17*) имеет вид

,

Где : ортогональный проектор на линейную оболочку , собственных векторов задачи

.

Невязка наилучшего приближения равна

.n

Рассмотрим теперь задачу наилучшего приближения изображения f изображениями (17), в которых заданы и фиксированы векторы , и надлежит определить измеримое разбиение и функции , как решение задачи

(30)

При любом разбиении минимум в (30) по достигается при , определяемых равенством (20). В свою очередь, очевидно, что

(31)

где точки , в которых выполняется равенство могут быть произвольно включены в одно из множеств : либо в , либо в . Это соглашение отмечено звездочкой в (31).

Таким образом доказана

Теорема 6. Пусть заданные векторы Rn. Решением задачи (30) является изображение

,

где ортогональный проектор определен равенством (25), а - индикаторная функция множества (31), i=1,...,N. Невязка наилучшего приближения равна

. n

Замечание 5. Так как при

,

то условия (31), определяющие разбиение , можно записать в виде

, (32)

показывающем, что множество в (32) инвариантно относительно любого преобразования изображения , не изменяющего его цвет.

Теоремы 3 и 6 позволяют сформулировать необходимые и достаточные условия наилучшего приближения изображения f(× ) изображениями (17), при котором должны быть найдены и c i0 , i=1,...,N, такие, что

.

Теорема 7. Для заданного изображения f(× ) определим множества равенствами (32), оператор П - равенством (24), - равенствами (25). Тогда ,

определено равенством (32), в котором - собственный вектор оператора Фi (23), отвечающий наибольшему собственному значению, причем в (23) , наконец, будет дано равенством (20), в котором , где - собственный вектор оператора , отвечающий наибольшему собственному значению ; наконец,

. n

Замечание 6. Следующая итерационная процедура полезна при отыскании : Для изображения f(× ) зададим и по теореме 5 найдем и , затем по теореме 3, используя найдем и . После этого вновь воспользуемся теоремой 3 и по найдем и и т.д. Построенная таким образом последовательность изображений очевидно обладает тем свойством, что числовая последовательность , k=1,2,.….. монотонно не возрастает и, следовательно, сходится. К сожалению ничего определенного нельзя сказать о сходимости последовательности .

Формы (10) и (9) удобно задавать операторами f и П*f соответственно.

Теорема 7. Форма в широком смысле изображения определяется ортогональным проектором П*f :

,

при этом и .

Доказательство. Так как для , то получаем первое утверждение. Для доказательства второго утверждения рассмотрим выпуклую задачу на минимум , решение которой определяется условиями (см., например, [11]) . Отсюда следует, что и тем самым доказано и второе утверждение n

Замечание. Так как , где fi(x) - выходной сигнал i-го детектора в точке , причем fi(x)³ 0 ,i=1,...,n, и, следовательно цвет реальных изображений непременно имеет неотрицательные , то для реальных изображений , условия и , эквивалентны. Если же для некоторого , то условие не влечет . Заметим также, что для изображений g(× ), удовлетворяющих условию , всегда .

Для спектрозональных изображений характерна ситуация, при которой k детекторов регистрируют рассеянную объектами солнечную радиацию в диапазоне видимого света, а остальные n-k регистрируют собственное тепловое излучение объектов ( в инфракрасном диапазоне). В таком случае любое изображение можно представить разложением

(40)

В котором

. Если ИК составляющей солнечного излучения можно пренебречь по сравнению с собственным излучением объектов, то представляет интерес задача приближения изображениями f(× ) , в которых f1(× ) - любая неотрицательная функция из , j 1(× ) - фиксированное векторное поле цвета, f2(× ) - термояркость, j 2(× ) - термоцвет в точке . Форма *f видимой компоненты f(× ) (40) определяется как оператор наилучшего приближения в задаче

, в данном случае

, причем *f действует фактически только на "видимую компоненту" g(× ), обращая "невидимую, ИК, компоненту" g(× ) в ноль.

Форма ИК компоненты f(× ) может быть определена лишь тогда, когда известно множество возможных преобразований j 2(× ) f2(× ).

Некоторые применения.

Задачи идентификации сцен.

Рассмотрим вначале задачи идентификации сцен по их изображения, неискаженным геометрическими преобразованиями, поворотами, изменениями масштаба и т.д. Ограничимся задачами, в которых предъявляемые для анализа изображения получены при изменяющихся и неконтролируемых условиях освещения и неизвестных и, вообще говоря, различных оптических характеристиках сцены.

1). Задачи идентификации при произвольно меняющейся интенсивности освещения.

Можно ли считать f(× ) и g(× ) изображениями одной и той же сцены, возможно, отличающимя лишь распределениями яркости, например, наличием теней?

В простейшем случае для идентификации достаточно воспользоваться теоремой 5, а именно, f(× ) и g(× ) можно считать изображениями одной и той же сцены, если существует распределение цвета , для которого v(j (× )) содержит f(× ) и g(× ). Если , и , то, очевидно, существует , при котором f(x)Î v(j (× )), g(x)Î v(j (× )), а именно, , , если , , если , и, наконец, - произвольно, если .

На практике удобнее использовать другой подход, позволяющий одновременно решать задачи совмещения изображений и выделения объектов. Можно ли, например, считать g(× ) изображением сцены, представленной изображением f(× )? Ответ следует считать утвердительным, если

.

Здесь j (× ) - распределение цвета на изображении f(× ), символ ~0 означает, что значение d (g(× )) можно объяснить наличием шума, каких-либо других погрешностей, или, наконец, - наличием или, наоборот, отсутствием объектов объясняющим несовпадение g(× ) и f(× ) с точностью до преобразования распределения яркостей. Такие объекты, изменившие распределение цвета g(× ) по сравнению с распределением цвета f(× ), представлены в .

2).Идентификация при произвольном изменении распределения интенсивности и пространственно однородном изменении спектрального состава освещения.

Можно ли считать изображением сцены, представленной на изображении f(× ), изображение, полученное при изменившихся условиях регистрации, например, перемещением или изменением теней и изменением спектрального состава освещения?

Пусть - форма в широком смысле изображения f(× ), определенная в теореме @, П* - форма f(× ). Тогда ответ на поставленный вопрос можно считать утвердительным, если . Если изменение g(× ) обусловлено не только изменившимися условиями регистрации, но также появлением и (или) исчезновением некоторых объектов, то изменения, обусловленные этим последним обстоятельством будут представлены на .

3). Задачи совмещения изображений и поиска фрагмента.

Пусть f(× ) - заданное изображение, AÌ X - подмножество поля зрения, c A(× ) - его индикатор, c A(× )f(× ) -назовем фрагментом изображения f(× ) на подмножестве A, представляющем выделенный фрагмент сцены, изображенной на f(× ). Пусть g(× ) - изображение той же сцены, полученное при других условиях, в частности, например, сдвинутое, повернутое, т.е. геометрически искаженное по сравнению с f(× ). Задача состоит в том, чтобы указать на g(× ) фрагмент изображения, представляющий на f(× ) фрагмент сцены и совместить его с c A(× )f(× ).

Ограничимся случаем, когда упомянутые геометрические искажения можно моделировать группой преобразований R2->R2, преобразование изображения назовем сдвигом g(× ) на h. Здесь

Q(h): Rn->Rn, hÎ H, - группа операторов. Векторный сдвиг на h¢ Î H даст

.

В задаче выделения и совмещения фрагмента рассмотрим фрагмент сдвинутого на h изображения g(× ) в “окне” A:

(100)

причем, поскольку где то в (100) - ограничение на сдвиг “окна” А, которое должно оставаться в пределах поля зрения X.

Если кроме цвета g(× ) может отличаться от f(× ), скажем, произвольным преобразованием распределения яркости при неизменном распределении цвета и - форма фрагмента f(× ), то задача выделения и совмещения фрагмента сводится к следующей задаче на минимум

.(101)

При этом считается, что фрагмент изображения g(× ), соответствующий фрагменту c A(× )f(× ), будет помещен в “окно”.А путем соответствующего сдвига h=h*, совпадает с c A(× )f(× ) с точностью до некоторого преобразования распределения яркости на нем. Это означает, что

.

т.е. в (101) при h=h* достигается минимум.

4). В ряде случаев возникает следующая задача анализа спектрозональных изображений: выделить объекты которые “видны”, скажем, в первом канале и “не видны” в остальных.

Рассмотрим два изображения и . Определим форму в широком смысле как множество всех линейных преобразований : (A - линейный оператор R2->R2, не зависящий от xÎ X). Для определения проектора на рассмотрим задачу на минимум

.[*]

Пусть , , тогда задача на минимум [*] эквивалентна следующей: tr A*AS - 2trAB ~ . Ее решение (знаком - обозначено псевдообращение).

=

=

Рис.1.

fe - вектор выходных сигналов детекторов, отвечающий излучению e(× ), j e - его цвет; j 1,j 2,j 3, - векторы (цвета) базовых излучений, b - белый цвет, конец вектора b находится на пересечении биссектрис.

Литература.

[1] Пытьев Ю.П. Морфологические понятия в задачах анализа изображений, - Докл. АН СССР, 1975, т. 224, №6, сс. 1283-1286.

[2] Пытьев Ю.П. Морфологический анализ изображений, - Докл. АН СССР, 1983, т. 296, №5, сс. 1061-1064.

[3] Пытьев Ю.П. Задачи морфологического анализа изображений, - Математические методы исследования природных ресурсов земли из космоса, ред. Золотухин В.Г., Наука, Москва, 1984, сс. хххх-ххххх.

[4] Пытьев Ю.П., Чуличков А.И. ЭВМ анализирует форму изображения, - Знание,сер. Математика, Кибернентика, Москва, 1988, 47 стр.

[5] Yu.P.Pyt’ev. Morphological Image Analysis, Patt. Recogn. and Image Analysis, 1993, v.3, #1, pp.19-28.

[6] Антонюк В.А., Пытьев Ю.П. Спецпроцессоры реального времени для морфологического анализа реальных сцен. Обработка изображений и дистанционное исследования, -Новосибирск, 1981, сс. 87-89.

[7] Антонюк В.А., Пытьев Ю.П., Рау Э.И. Автоматизация визуального контроля изделий микроэлектроники,Радиотехника и электроника, 1985, т. ХХХ,№12, сс. 2456-2458.

[8] Ермолаев А.Г., Пытьев Ю.П. Априорные оценки полезного сигнала для морфологических решающих алглритмов, - Автоматизация, 1984, №5, сс. 118-120.

[9] Пытьев Ю.П, Задорожный С.С., Лукьянов А.Е. Об автоматизации сравнительного морфологического анализа электронномикроскопических изображений, - Изв. АН СССР, сер. физическая, 1977, т. 41, №11, сс. хххх-хххх.

[10] A.A. Stepanov, S.Yu. Zheltov, Yu.V. Visilter. Shape analysis using Pyt'ev morphological paradigm and its using in machine vision. Proc. SPIE - Th. Intern. Soc. For Optical Engineering Videometrics III, 1994, v. 2350, pp. 163-167.

[11] Пытьев Ю.П.. Математические методы интерпретации эксперимента, Высшая школа, 351 стр., 1989.

[12] Майзель С.О. Ратхер Е.С. Цветовые расчеты и измерения. М:Л:Госэнергоиздат 1941, (Труды всесоюзного электротехнического института, вып.56).

[13] P. Kronberg. Fernerkundung der Erde Ferdinand Enke. Verlag Stuthgart 1985.


Похожие работы:

  1. • Морфологический анализ цветных (спектрозональных) изображений
  2. • Применение материалов Аэрофотосъемки при инвентаризации лесов
  3. • Виды космических аппаратов
  4. • Аналитическое дешифрование космических снимков
  5. • Комплексное исследование природных ресурсов Республики ...
  6. • Использование аэрокосмического мониторинга в экологических ...
  7. • Лесная таксация
  8. • Ландшафтно-экологические методы исследований
  9. • Воздействие газовой промышленности на окружающую среду
  10. • Спектрометрическое сканирование атмосферы и ...
  11. • Гидро-климатические условия на космических снимках
  12. • Дешифрование аэрофотоснимков
  13. • Криминалистическая фотография
  14. • Криминалистическая фотография в раскрытии и расследовании ...
  15. • Дистанційний екологічний моніторинг
  16. • Особенности осмотра места происшествия, связанного с ...
  17. • Особенности осмотра места происшествия, связанного с ...
  18. • Лесные пожары
Рефетека ру refoteka@gmail.com