Рефетека.ру / Наука и техника

Реферат: Рабочие жидкости

Рабочие жидкости

1 . ТРЕБОВАНИЯ К РАБОЧИМ ЖИДКОСТЯМ .

Нормальная эксплуатация гидропривода возможна при использовании таких рабочих жидкостей ,которые одновременно могут выполнять различные функции.

В первую очередь рабочая жидкость в гидроприводе является рабочим телом, т.е. является носителем энергии, обеспечивающим передачу последней от источника энергии (двигателя) к её потребителю (исполнительным механизмам). Кроме того, рабочая жидкость выполняет роль смазки в парах трения гидропривода, являясь смазывающим и охлаждающим агентом, и средой, удаляющей продукты изнашивания. К функциям рабочей жидкости относится и защита деталей гидропривода от коррозии.

В связи с этим к рабочим жидкостям предъявляются разносторонние требования, в некоторой степени противоречивые и выполнение которых в полной мере не всегда возможно. К ним относятся:

- хорошие смазочные свойства;

- малое изменение вязкости при изменении температуры и давления;

- инертность в отношении конструкционных материалов деталей гидропривода;

-оптимальная вязкость, обеспечивающая минимальные энергетические потери и нормальное функционирование уплотнений;

- малая токсичность самой рабочей жидкости и её паров;

- малая склонность к вспениванию;

- антикоррозийные свойства; способность предохранять детали гидропривода от коррозии;

- оптимальная плотность;

- долговечность;

- оптимальная растворимость воды рабочей жидкостью: плохая для чистых минеральных масел ; хорошая для эмульсий и т.п.

- невоспламеняемость;

- малая способность поглощения или растворения воздуха;

- хорошая теплопроводность;

- малый коэффициент теплового расширения;

- способность хорошо очищаться от загрязнений;

- совместимость с другими марками рабочей жидкости;

- низкая цена;

Невыполнение этих условий приводит к различным нарушениям в функционировании гидропривода. В частности плохие смазочные или антикоррозийные свойства приводят к уменьшению сроков службы гидропривода; неоптимальная вязкость или её слишком большая зависимость от режимов работы гидропривода снижают общий к.п.д. и т.д.

Нормальная и долговременная работа гидропривода определяется в равной мере как правильностью выбора марки рабочей жидкости при конструировании,так и грамотной эксплуатацией гидропривода.

2 .СВОЙСТВА И ХАРАКТЕРИСТИКИ РАБОЧЕЙ ЖИДКОСТИ

2.1 ОБЩЕФИЗИЧЕСКИЕ СВОЙСТВА

Плотность рабочей жидкости - физическая величина, характеризующая отношение массы m жидкости к её объёму :

r = m / V.

Размерность плотности - кг / м3.

Величина плотности имеет большое значение для энергетических характеристик гидропривода. От неё зависит величина гидравлических потерь, определяемая, как

pпот=rC2/2 ,

где С - скорость движения жидкости.

Изменение плотности рабочей жидкости при изменении темпе-ратуры от t1 до t2 описывается выражением:

rt2 =r n1 / 1+b(t2-t1).

где b - коэфициент объемного расширения.

Относительное изменение объема жидкости при изменении температуры характеризуется температурным коэффициентом объёмного расширения b .

b= DV/ V Dt,

где V и DV - начальный объём и приращение объёма при повышении температуры на Dt. Размерность коэффициента b - 1/°c.

Изменение объёма DV и объём рабочей жидкости при изменении температуры с t1 до t2 может быть определено по формулам :

DV=b V (t2-t1),

Vt2= Vt1[1+b(t2-t1)].

Величина коэффициента объёмного расширения невелика. Однако , это изменение следует всё же учитывать при расчёте гидроприводов с замкнутой циркуляцией потока , чтобы избежать разрушений элементов гидропривода при нагреве.

Возможность разрушения деталей гидропривода обусловлена разницей в значениях температурного коэффициента объёмного расширения рабочей жидкости и металла деталей гидропривода. Повышение давления ,обусловленное нагревом , принято оценивать по формуле:

Dp = (b-bм)DtE / k

где bм - коэффициент объёмного расширения материала деталей гидропривода;

E - модуль упругости жидкости;

k- коэффициент , характеризующий объёмную упругость материала элементов гидропривода.

Грубая оценка повышения давления в замкнутом сосуде при нагреве на 10°C и принятых средних значениях b=8.75 10-4, bм=5.3 10-5, E=1.7 103 Мпа и k=1 дает величину около 15 Мпа. Поэтому в гидроприводе с замкнутой циркуляцией, эксплуатируемых при широком диапазоне изменения температуры рабочей жидкос- ти, должны быть установлены предохранительные клапаны или другие устройства , компенсирующие температурное увеличение объёма жидкости .

Сжимаемость жидкости - это её способность под действием внешнего давления изменять свой объём обратимым образом , т.е. так, что после прекращения действия внешнего давления восстанав- ливается первоначальный объём .

Сжимаемость жидкости характеризуется модулем упругости жидкости Е с размерностью Па ( или Мпа) .

Уменьшение объёма жидкости под действием давления определяется по формуле

DV=DV Dp / E .

При повышении давления модуль упругости увеличивается , а при нагреве жидкости - уменьшается .

Обычно в масле работающего гидропривода содержится до 6% нерастворённого воздуха. После отстаивания в течение суток содержание воздуха уменьшается до 0.01-0.02%. В этом случае рабочая жидкость представляет собой газожидкостную смесь , модуль упругости которой подсчитывается по формуле :

Егж = Е(Vж/Vp+1)/(V ж/Vp+E p0/p 2)

где Vж, Vp - объёмы соответственно жидкостной и газовой фаз при атмосферном давлении Р0.

В рабочей жидкости содержится также определённое количество растворённого воздуха (пропорциональное величине давления), который практически не влияет на физико-химические свойства масла, однако способствует возникновению кавитации , особенно во всасывающих линиях насосов, в дросселях и других местах гидропривода, где происходит резкое изменение давления.

2.2 ВЯЗКОСТЬ

Вязкость - свойство жидкости оказывать сопротивление сдвигу одного слоя относительно другого под действием касательной силы внутреннего трения. Напряжение трения согласно закону Ньютона пропорционально градиенту скорости dC/dy

t=hdC/dy.

Коэффициент пропорциональности h носит название динамиче-ской вязкости

h= t/dv/dy.

Единицей динамической вязкости является 1Па.с.(паскаль-секунда).

Более распространённым является другой показатель - кинематическая вязкость , которая учитывает зависимость сил внутреннего трения от инерции потока жидкости. Кинематическая вязкость ( или коэффициент динамической вязкости) определяется выражением

g=h/r.

Единицей кинематической вязкости является 1м2/c. Эта величина велика и неудобна для практических расчётов . Поэтому используют величину в 104 меньше -1 см2/c = 1Cт(стокс) , или 1 сотую часть Ст - сСт (сантистокс). В нормативно-технических документах обычно ука-зывают кинематическую вязкость при 100°С - (g100) или при 50 °С -(g50). Для новых марок масел в соответствии с международными нормами указывается вязкость при 40°С (точнее при 37.8°С) - g40. Указанная температура соответствует 1000 по Фаренгейту.

На практике используются и другие параметры , характеризующие вязкость жидкостей. Часто используют так называемую условную или относительную вязкость , определямую по течению жидкости через малое отверстие вискозиметра (прибора для определения вязкости) и сравнению времени истечения с временем истечения воды. В зависимости от количества испытуемой жидкости , диаметра отверстия и других условий испытаний применяют различные показатели. В России для измерения условий вязкости приняты условные градусы Энглера (°Е), которые представляют собой показания вискозиметра при 20, 50 и 100°С и обозначаются соответственно °E20; °E50 и °E100 . Значение вязкости в градусах Энглера есть отношение времени истечения через отверстие вяскозиметра 200 см3 испытуемой жидкости к времени истечения такого же количества дистиллированной воды при t=20 С..

Вязкость жидкости зависит от химического состава , от температуры и давления. Наиболее важным фактором , влияющим на вязкость , является температура. Зависимость вязкости от температуры различна для различных жидкостей. Для масел в диапазоне температур от t = +50 0C до температуры начала застывания применяется фор-мула :

nж= n50 exp (A / Tжa )

где nж - значение кинематической вязкости при температуре Tж ( ° K), в cCm;

A и a - эмпирические коэффициенты.

Для некоторых рабочих жидкостей значения коэффициентов А и а приведены в табл. 1.

Таблица 1.